1
|
Yang Y, Cai Q, Yang Y, Wang X, Li L, Sun Z, Li W. Transcriptomics and Metabolomics Reveal Biosynthetic Pathways and Regulatory Mechanisms of Phenylpropanes in Different Ploidy of Capsicum frutescens. PLANTS (BASEL, SWITZERLAND) 2024; 13:3393. [PMID: 39683186 DOI: 10.3390/plants13233393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Pepper is a significant cash crop, and Capsicum frutescens is an exemplary variety of pepper cultivated for its distinctive flavor and substantial nutritional value. Polyploidization of plants often leads to an increase in their biomass and improved stress tolerance, and thus has important applications in plant breeding and improvement. In this study, germplasm innovation was carried out by polyploidy induction of C. frutescens by colchicine. To investigate the effects of polyploidization on C. frutescens, we conducted transcriptomic and metabolomic analyses of diploids and homotetraploids of C. frutescens to gain insights into the mechanisms of metabolite composition and molecular regulation of C. frutescens by polyploidization. Based on the analysis of metabolomics and transcriptomics data, a total of 551 differential metabolites were identified in the leaves of C. frutescens of different ploidy and 634 genes were significantly differentially expressed. In comparison, 241 differential metabolites and 454 genes were significantly differentially expressed in the mature fruits of C. frutescens of different ploidy. Analysis of KEGG enrichment of differentially expressed genes and differential metabolites revealed that both differential metabolites and differentially expressed genes were highly enriched in the phenylalanine metabolic pathway. It is worth noting that phenylpropanoids are highly correlated with capsaicin synthesis and also have an effect on fruit development. Therefore, we comprehensively analyzed the phenylalanine metabolic pathway and found that chromosome doubling significantly down-regulated the expression of genes upstream of phenylalanine (PAL, 4CL), which promoted lignin accumulation, and we suggested that this might have led to the enlargement of polyploid C. frutescens fruits. This study provides some references for further research on the phenotypic traits of different ploidy of C. frutescens, cloning of key regulatory genes, and using genetic engineering techniques in C. frutescens breeding for germplasm improvement.
Collapse
Affiliation(s)
- Yinxin Yang
- Yunnan International Joint R&D Center for Intergrated Utilization of Ornamental Grass, College of Landscape and Horticulture, Southwest Forestry University, Kunming 650224, China
| | - Qihang Cai
- Yunnan International Joint R&D Center for Intergrated Utilization of Ornamental Grass, College of Landscape and Horticulture, Southwest Forestry University, Kunming 650224, China
| | - Yanbo Yang
- Yunnan International Joint R&D Center for Intergrated Utilization of Ornamental Grass, College of Landscape and Horticulture, Southwest Forestry University, Kunming 650224, China
| | - Xuan Wang
- Yunnan International Joint R&D Center for Intergrated Utilization of Ornamental Grass, College of Landscape and Horticulture, Southwest Forestry University, Kunming 650224, China
| | - Liping Li
- College of Geography and Ecotourism, Southwest Forestry University, Kunming 650224, China
| | - Zhenghai Sun
- Yunnan International Joint R&D Center for Intergrated Utilization of Ornamental Grass, College of Landscape and Horticulture, Southwest Forestry University, Kunming 650224, China
| | - Weiwei Li
- Yunnan International Joint Center of Urban Biodiversity, Kunming 650223, China
| |
Collapse
|
2
|
Matyášek R, Kalfusová R, Kuderová A, Řehůřková K, Sochorová J, Kovařík A. Transcriptional Silencing of 35S rDNA in Tragopogon porrifolius Correlates with Cytosine Methylation in Sequence-Specific Manner. Int J Mol Sci 2024; 25:7540. [PMID: 39062783 PMCID: PMC11276851 DOI: 10.3390/ijms25147540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Despite the widely accepted involvement of DNA methylation in the regulation of rDNA transcription, the relative participation of different cytosine methylation pathways is currently described only for a few model plants. Using PacBio, Bisulfite, and RNA sequencing; PCR; Southern hybridizations; and FISH, the epigenetic consequences of rDNA copy number variation were estimated in two T. porrifolius lineages, por1 and por2, the latter with more than twice the rDNA copy numbers distributed approximately equally between NORs on chromosomes A and D. The lower rDNA content in por1 correlated with significantly reduced (>90%) sizes of both D-NORs. Moreover, two (L and S) prominent rDNA variants, differing in the repetitive organization of intergenic spacers, were detected in por2, while only the S-rDNA variant was detected in por1. Transcriptional activity of S-rDNA in por1 was associated with secondary constriction of both A-NORs. In contrast, silencing of S-rDNA in por2 was accompanied by condensation of A-NORs, secondary constriction on D-NORs, and L-rDNA transcriptional activity, suggesting (i) bidirectional nucleolar dominance and (ii) association of S-rDNAs with A-NORs and L-rDNAs with D-NORs in T. porrifolius. Each S- and L-rDNA array was formed of several sub-variants differentiating both genetically (specific SNPs) and epigenetically (transcriptional efficiency and cytosine methylation). The most significant correlations between rDNA silencing and methylation were detected for symmetric CWG motifs followed by CG motifs. No correlations were detected for external cytosine in CCGs or asymmetric CHHs, where methylation was rather position-dependent, particularly for AT-rich variants. We conclude that variations in rDNA copy numbers in plant diploids can be accompanied by prompt epigenetic responses to maintain an appropriate number of active rDNAs. The methylation dynamics of CWGs are likely to be the most responsible for regulating silent and active rDNA states.
Collapse
Affiliation(s)
- Roman Matyášek
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; (R.K.); (A.K.); (K.Ř.); (J.S.); (A.K.)
| | | | | | | | | | | |
Collapse
|
3
|
Mahelka V, Kopecký D, Majka J, Krak K. Uniparental expression of ribosomal RNA in × Festulolium grasses: a link between the genome and nucleolar dominance. FRONTIERS IN PLANT SCIENCE 2023; 14:1276252. [PMID: 37790792 PMCID: PMC10544908 DOI: 10.3389/fpls.2023.1276252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/30/2023] [Indexed: 10/05/2023]
Abstract
Genome or genomic dominance (GD) is a phenomenon observed in hybrids when one parental genome becomes dominant over the other. It is manifested by the replacement of chromatin of the submissive genome by that of the dominant genome and by biased gene expression. Nucleolar dominance (ND) - the functional expression of only one parental set of ribosomal genes in hybrids - is another example of an intragenomic competitive process which, however, concerns ribosomal DNA only. Although GD and ND are relatively well understood, the nature and extent of their potential interdependence is mostly unknown. Here, we ask whether hybrids showing GD also exhibit ND and, if so, whether the dominant genome is the same. To test this, we used hybrids between Festuca and Lolium grasses (Festulolium), and between two Festuca species in which GD has been observed (with Lolium as the dominant genome in Festulolium and F. pratensis in interspecific Festuca hybrids). Using amplicon sequencing of ITS1 and ITS2 of the 45S ribosomal DNA (rDNA) cluster and molecular cytogenetics, we studied the organization and expression of rDNA in leaf tissue in five hybrid combinations, four generations and 31 genotypes [F. pratensis × L. multiflorum (F1, F2, F3, BC1), L. multiflorum × F. pratensis (F1), L. multiflorum × F. glaucescens (F2), L. perenne × F. pratensis (F1), F. glaucescens × F. pratensis (F1)]. We have found that instant ND occurs in Festulolium, where expression of Lolium-type rDNA reached nearly 100% in all F1 hybrids and was maintained through subsequent generations. Therefore, ND and GD in Festulolium are manifested by the same dominant genome (Lolium). We also confirmed the concordance between GD and ND in an interspecific cross between two Festuca species.
Collapse
Affiliation(s)
- Václav Mahelka
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czechia
| | - David Kopecký
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
| | - Joanna Majka
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
| | - Karol Krak
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czechia
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
4
|
Borowska-Zuchowska N, Mykhailyk S, Robaszkiewicz E, Matysiak N, Mielanczyk L, Wojnicz R, Kovarik A, Hasterok R. Switch them off or not: selective rRNA gene repression in grasses. TRENDS IN PLANT SCIENCE 2023; 28:661-672. [PMID: 36764871 DOI: 10.1016/j.tplants.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 05/13/2023]
Abstract
Nucleolar dominance (ND) is selective epigenetic silencing of 35-48S rDNA loci. In allopolyploids, it is frequently manifested at the cytogenetic level by the inactivation of nucleolar organiser region(s) (NORs) inherited from one or several evolutionary ancestors. Grasses are ecologically and economically one of the most important land plant groups, which have frequently evolved through hybridisation and polyploidisation events. Here we review common and unique features of ND phenomena in this monocot family from cytogenetic, molecular, and genomic perspectives. We highlight recent advances achieved by using an allotetraploid model grass, Brachypodium hybridum, where ND commonly occurs at a population level, and we cover modern genomic approaches that decipher structural features of core arrays of NORs.
Collapse
Affiliation(s)
- Natalia Borowska-Zuchowska
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice 40-032, Poland.
| | - Serhii Mykhailyk
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice 40-032, Poland
| | - Ewa Robaszkiewicz
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice 40-032, Poland
| | - Natalia Matysiak
- Department of Histology and Cell Pathology, the Medical University of Silesia in Katowice, School of Medicine with the Division of Dentistry, Zabrze, Poland
| | - Lukasz Mielanczyk
- Department of Histology and Cell Pathology, the Medical University of Silesia in Katowice, School of Medicine with the Division of Dentistry, Zabrze, Poland; Silesian Nanomicroscopy Centre in Zabrze, Silesia LabMed - Research and Implementation Centre, Medical University of Silesia, Katowice, Poland
| | - Romuald Wojnicz
- Department of Histology and Cell Pathology, the Medical University of Silesia in Katowice, School of Medicine with the Division of Dentistry, Zabrze, Poland; Silesian Nanomicroscopy Centre in Zabrze, Silesia LabMed - Research and Implementation Centre, Medical University of Silesia, Katowice, Poland
| | - Ales Kovarik
- Department of Molecular Epigenetics, Institute of Biophysics, Czech Academy of Sciences, CZ-61200 Brno, Czech Republic
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice 40-032, Poland.
| |
Collapse
|
5
|
Mlinarec J, Boštjančić LL, Malenica N, Jurković A, Boland T, Yakovlev SS, Besendorfer V. Structure and Methylation of 35S rDNA in Allopolyploids Anemone multifida (2 n = 4 x = 32, BBDD) and Anemone baldensis (2 n = 6 x = 48, AABBDD) and Their Parental Species Show Evidence of Nucleolar Dominance. FRONTIERS IN PLANT SCIENCE 2022; 13:908218. [PMID: 35874014 PMCID: PMC9296772 DOI: 10.3389/fpls.2022.908218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/07/2022] [Indexed: 05/26/2023]
Abstract
Transcriptional silencing of 35S rDNA loci inherited from one parental species is occurring relatively frequently in allopolyploids. However, molecular mechanisms by which it is selected for transcriptional silencing remain unclear. We applied NGS, silver staining and bisulfite sequencing to study the structure, expression and methylation landscape of 35S rDNA in two allopolyploids of common origin, allotetraploid Anemone multifida (2n = 4x = 32, genome composition BBDD) and allohexaploid A. baldensis (2n = 6x = 48, AABBDD), and their genome donors, A. sylvestris (2n = 16, AA), A. cylindrica (2n = 16, BB) and A. parviflora (2n = 16, DD). The size of the recovered 35S rDNA units varied from 10,489 bp in A. cylindrica to 12,084 bp in A. sylvestris. Anemone showed an organization typical of most ribosomal 35S rDNA composed of NTS, ETS, rRNA genes, TTS and TIS with structural features of plant IGS sequences and all functional elements needed for rRNA gene activity. The NTS was more variable than the ETS and consisted of SRs which are highly variable among Anemone. Five to six CpG-rich islands were found within the ETS. CpG island located adjacent to the transcription initiation site (TIS) was highly variable regarding the sequence size and methylation level and exhibited in most of the species lower levels of methylation than CpG islands located adjacent to the 18S rRNA gene. Our results uncover hypomethylation of A. sylvestris- and A. parviflora-derived 35S rDNA units in allopolyploids A. multifida and A. baldensis. Hypomethylation of A. parviflora-derived 35S rDNA was more prominent in A. baldensis than in A. multifida. We showed that A. baldensis underwent coupled A. sylvestris-derived 35S rDNA array expansion and A. parviflora-derived 35S rDNA copy number decrease that was accompanied by lower methylation level of A. sylvestris-derived 35S rDNA units in comparison to A. parviflora-derived 35S rDNA units. These observations suggest that in A. baldensis nucleolar dominance is directed toward A. sylvestris-derived chromosomes. This work broadens our current knowledge of the 35S rDNA organization in Anemone and provides evidence of the progenitor-specific 35S rDNA methylation in nucleolar dominance.
Collapse
Affiliation(s)
| | - Ljudevit Luka Boštjančić
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt, Germany
- Department of Computer Science, ICube, UMR 7357, CNRS, Centre de Recherche en Biomédecine de Strasbourg, University of Strasbourg, Strasbourg, France
| | - Nenad Malenica
- Division of Molecular Biology, Department of Biology, University of Zagreb, Horvatovac, Croatia
| | - Adela Jurković
- Division of Molecular Biology, Department of Biology, University of Zagreb, Horvatovac, Croatia
| | - Todd Boland
- Memorial University of Newfoundland’s Botanical Gardens, St. John’s, NL, Canada
| | - Sonja Siljak Yakovlev
- CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| | - Višnja Besendorfer
- Division of Molecular Biology, Department of Biology, University of Zagreb, Horvatovac, Croatia
| |
Collapse
|
6
|
Tulpová Z, Kovařík A, Toegelová H, Navrátilová P, Kapustová V, Hřibová E, Vrána J, Macas J, Doležel J, Šimková H. Fine structure and transcription dynamics of bread wheat ribosomal DNA loci deciphered by a multi-omics approach. THE PLANT GENOME 2022; 15:e20191. [PMID: 35092350 DOI: 10.1002/tpg2.20191] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Three out of four RNA components of ribosomes are encoded by 45S ribosomal DNA (rDNA) loci, which are organized as long head-to-tail tandem arrays of nearly identical units, spanning several megabases of sequence. Due to this structure, the rDNA loci are the major sources of gaps in genome assemblies, and gene copy number, sequence composition, and expression status of particular arrays remain elusive, especially in complex genomes harboring multiple loci. Here we conducted a multi-omics study to decipher the 45S rDNA loci in hexaploid bread wheat. Coupling chromosomal genomics with optical mapping, we reconstructed individual rDNA arrays, enabling locus-specific analyses of transcription activity and methylation status from RNA- and bisulfite-sequencing data. We estimated a total of 6,650 rDNA units in the bread wheat genome, with approximately 2,321, 3,910, 253, and 50 gene copies located in short arms of chromosomes 1B, 6B, 5D, and 1A, respectively. Only 1B and 6B loci contributed substantially to rRNA transcription at a roughly 2:1 ratio. The ratio varied among five tissues analyzed (embryo, coleoptile, root tip, primary leaf, mature leaf), being the highest (2.64:1) in mature leaf and lowest (1.72:1) in coleoptile. Cytosine methylation was considerably higher in CHG context in the silenced 5D locus as compared with the active 1B and 6B loci. In conclusion, a fine genomic organization and tissue-specific expression of rDNA loci were deciphered, for the first time, in a complex polyploid species. The results are discussed in the context of wheat evolution and transcription regulation.
Collapse
Affiliation(s)
- Zuzana Tulpová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Aleš Kovařík
- Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic
| | - Helena Toegelová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Pavla Navrátilová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Veronika Kapustová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Eva Hřibová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jan Vrána
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jiří Macas
- Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Hana Šimková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| |
Collapse
|
7
|
Rosselló JA, Maravilla AJ, Rosato M. The Nuclear 35S rDNA World in Plant Systematics and Evolution: A Primer of Cautions and Common Misconceptions in Cytogenetic Studies. FRONTIERS IN PLANT SCIENCE 2022; 13:788911. [PMID: 35283933 PMCID: PMC8908318 DOI: 10.3389/fpls.2022.788911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/27/2022] [Indexed: 05/04/2023]
Abstract
The ubiquitous presence of rRNA genes in nuclear, plastid, and mitochondrial genomes has provided an opportunity to use genomic markers to infer patterns of molecular and organismic evolution as well as to assess systematic issues throughout the tree of life. The number, size, location, and activity of the 35S rDNA cistrons in plant karyotypes have been used as conventional cytogenetic landmarks. Their scrutiny has been useful to infer patterns of chromosomal evolution and the data have been used as a proxy for assessing species discrimination, population differentiation and evolutionary relationships. The correct interpretation of rDNA markers in plant taxonomy and evolution is not free of drawbacks given the complexities derived from the lability of the genetic architecture, the diverse patterns of molecular change, and the fate and evolutionary dynamics of the rDNA units in hybrids and polyploid species. In addition, the terminology used by independent authors is somewhat vague, which often complicates comparisons. To date, no efforts have been reported addressing the potential problems and limitations involved in generating, utilizing, and interpreting the data from the 35S rDNA in cytogenetics. This review discusses the main technical and conceptual limitations of these rDNA markers obtained by cytological and karyological experimental work, in order to clarify biological and evolutionary inferences postulated in a systematic and phylogenetic context. Also, we provide clarification for some ambiguity and misconceptions in terminology usually found in published work that may help to improve the usage of the 35S ribosomal world in plant evolution.
Collapse
|
8
|
Borowska‐Zuchowska N, Kovarik A, Robaszkiewicz E, Tuna M, Tuna GS, Gordon S, Vogel JP, Hasterok R. The fate of 35S rRNA genes in the allotetraploid grass Brachypodium hybridum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1810-1825. [PMID: 32506573 PMCID: PMC7497271 DOI: 10.1111/tpj.14869] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 05/22/2023]
Abstract
Nucleolar dominance (ND) consists of the reversible silencing of 35S/45S rDNA loci inherited from one of the ancestors of an allopolyploid. The molecular mechanisms by which one ancestral rDNA set is selected for silencing remain unclear. We applied a combination of molecular (Southern blot hybridization and reverse-transcription cleaved amplified polymorphic sequence analysis), genomic (analysis of variants) and cytogenetic (fluorescence in situ hybridization) approaches to study the structure, expression and epigenetic landscape of 35S rDNA in an allotetraploid grass that exhibits ND, Brachypodium hybridum (genome composition DDSS), and its putative progenitors, Brachypodium distachyon (DD) and Brachypodium stacei (SS). In progenitor genomes, B. stacei showed a higher intragenomic heterogeneity of rDNA compared with B. distachyon. In all studied accessions of B. hybridum, there was a reduction in the copy number of S homoeologues, which was accompanied by their inactive transcriptional status. The involvement of DNA methylation in CG and CHG contexts in the silencing of the S-genome rDNA loci was revealed. In the B. hybridum allotetraploid, ND is stabilized towards the D-genome units, irrespective of the polyphyletic origin of the species, and does not seem to be influenced by homoeologous 35S rDNA ratios and developmental stage.
Collapse
Affiliation(s)
- Natalia Borowska‐Zuchowska
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental ProtectionFaculty of Natural SciencesUniversity of Silesia in KatowiceJagiellonska 28Katowice40‐032Poland
| | - Ales Kovarik
- Department of Molecular EpigeneticsInstitute of BiophysicsAcademy of Sciences of the Czech Republic, v.v.i.Královopolská 135Brno612 65Czech Republic
| | - Ewa Robaszkiewicz
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental ProtectionFaculty of Natural SciencesUniversity of Silesia in KatowiceJagiellonska 28Katowice40‐032Poland
| | - Metin Tuna
- Department of Field CropsFaculty of AgricultureTekirdag Namik Kemal UniversitySuleymanpasaTekirdag59030Turkey
| | | | - Sean Gordon
- US Department of Energy (DOE) Joint Genome Institute (JGI)BerkeleyCA94720USA
| | - John P. Vogel
- US Department of Energy (DOE) Joint Genome Institute (JGI)BerkeleyCA94720USA
- University CaliforniaBerkeley, BerkeleyCA94720USA
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental ProtectionFaculty of Natural SciencesUniversity of Silesia in KatowiceJagiellonska 28Katowice40‐032Poland
| |
Collapse
|
9
|
Glombik M, Bačovský V, Hobza R, Kopecký D. Competition of Parental Genomes in Plant Hybrids. FRONTIERS IN PLANT SCIENCE 2020; 11:200. [PMID: 32158461 PMCID: PMC7052263 DOI: 10.3389/fpls.2020.00200] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/11/2020] [Indexed: 05/17/2023]
Abstract
Interspecific hybridization represents one of the main mechanisms of plant speciation. Merging of two genomes from different subspecies, species, or even genera is frequently accompanied by whole-genome duplication (WGD). Besides its evolutionary role, interspecific hybridization has also been successfully implemented in multiple breeding programs. Interspecific hybrids combine agronomic traits of two crop species or can be used to introgress specific loci of interests, such as those for resistance against abiotic or biotic stresses. The genomes of newly established interspecific hybrids (both allopolyploids and homoploids) undergo dramatic changes, including chromosome rearrangements, amplifications of tandem repeats, activation of mobile repetitive elements, and gene expression modifications. To ensure genome stability and proper transmission of chromosomes from both parental genomes into subsequent generations, allopolyploids often evolve mechanisms regulating chromosome pairing. Such regulatory systems allow only pairing of homologous chromosomes and hamper pairing of homoeologs. Despite such regulatory systems, several hybrid examples with frequent homoeologous chromosome pairing have been reported. These reports open a way for the replacement of one parental genome by the other. In this review, we provide an overview of the current knowledge of genomic changes in interspecific homoploid and allopolyploid hybrids, with strictly homologous pairing and with relaxed pairing of homoeologs.
Collapse
Affiliation(s)
- Marek Glombik
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Václav Bačovský
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Roman Hobza
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - David Kopecký
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| |
Collapse
|
10
|
Georgiev O, Mishev K, Krasnikova M, Kitanova M, Dimitrova A, Karagyozov L. The Hordeum bulbosum 25S-18S rDNA region: comparison with Hordeum vulgare and other Triticeae. ACTA ACUST UNITED AC 2019; 74:319-328. [PMID: 31421048 DOI: 10.1515/znc-2018-0109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 07/18/2019] [Indexed: 11/15/2022]
Abstract
Hordeum vulgare and Hordeum bulbosum are two closely related barley species, which share a common H genome. H. vulgare has two nucleolar organizer regions (NORs), while the NOR of H. bulbosum is only one. We sequenced the 2.5 kb 25S-18S region in the rDNA of H. bulbosum and compared it to the same region in H. vulgare as well as to the other Triticeae. The region includes an intergenic spacer (IGS) with a number of subrepeats, a promoter, and an external transcribed spacer (5'ETS). The IGS of H. bulbosum downstream of 25S rRNA contains two 143-bp repeats and six 128-bp repeats. In contrast, the IGS in H. vulgare contains an array of seven 79-bp repeats and a varying number of 135-bp repeats. The 135-bp repeats in H. vulgare and the 128-bp repeats in H. bulbosum show similarity. Compared to H. vulgare, the 5'ETS of H. bulbosum is shorter. Additionally, the 5'ETS regions in H. bulbosum and H. vulgare diverged faster than in other Triticeae genera. Alignment of the Triticeae promoter sequences suggests that in Hordeum, as in diploid Triticum, transcription starts with guanine and not with adenine as it is in many other plants.
Collapse
Affiliation(s)
- Oleg Georgiev
- Institute of Molecular Life Sciences, University Zurich-Irchel, Winterthurer Str. 190, CH-8057 Zurich, Switzerland
| | - Kiril Mishev
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Maria Krasnikova
- Department of Genetics, Faculty of Biology, St. Kl. Ohridsky University of Sofia, 8 Dragan Tsankov bld., 1164 Sofia, Bulgaria
| | - Meglena Kitanova
- Department of Genetics, Faculty of Biology, St. Kl. Ohridsky University of Sofia, 8 Dragan Tsankov bld., 1164 Sofia, Bulgaria
| | - Anna Dimitrova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria, Phone: +359 2 9792677, Fax: +359 2 9785516, E-mail:
| | - Luchezar Karagyozov
- Department of Genetics, Faculty of Biology, St. Kl. Ohridsky University of Sofia, 8 Dragan Tsankov bld., 1164 Sofia, Bulgaria
| |
Collapse
|
11
|
Matyášek R, Krumpolcová A, Lunerová J, Mikulášková E, Rosselló JA, Kovařík A. Unique Epigenetic Features of Ribosomal RNA Genes (rDNA) in Early Diverging Plants (Bryophytes). FRONTIERS IN PLANT SCIENCE 2019; 10:1066. [PMID: 31543890 PMCID: PMC6739443 DOI: 10.3389/fpls.2019.01066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/06/2019] [Indexed: 05/03/2023]
Abstract
Introduction: In plants, the multicopy genes encoding ribosomal RNA (rDNA) typically exhibit heterochromatic features and high level of DNA methylation. Here, we explored rDNA methylation in early diverging land plants from Bryophyta (15 species, 14 families) and Marchantiophyta (4 species, 4 families). DNA methylation was investigated by methylation-sensitive Southern blot hybridization in all species. We also carried out whole genomic bisulfite sequencing in Polytrichum formosum (Polytrichaceae) and Dicranum scoparium (Dicranaceae) and used available model plant methyloms (Physcomitrella patents and Marchantia polymorpha) to determine rDNA unit-wide methylation patterns. Chromatin structure was analyzed using fluorescence in situ hybridization (FISH) and immunoprecipitation (CHIP) assays. Results: In contrast to seed plants, bryophyte rDNAs were efficiently digested with methylation-sensitive enzymes indicating no or low levels of CG and CHG methylation in these loci. The rDNA methylom analyses revealed variation between species ranging from negligible (<3%, P. formosum, P. patens) to moderate (7 and 17% in M. polymorpha and D. scoparium, respectively) methylation levels. There were no differences between coding and noncoding parts of rDNA units and between gametophyte and sporophyte tissues. However, major satellite repeat and transposable elements were heavily methylated in P. formosum and D. scoparium. In P. formosum rDNA, the euchromatic H3K4m3 and heterochromatic H3K9m2 histone marks were nearly balanced contrasting the angiosperms data where H3K9m2 typically dominates rDNA chromatin. In moss interphase nuclei, rDNA was localized at the nucleolar periphery and its condensation level was high. Conclusions: Unlike seed plants, the rRNA genes seem to escape global methylation machinery in bryophytes. Distinct epigenetic features may be related to rDNA expression and the physiology of these early diverging plants that exist in haploid state for most of their life cycles.
Collapse
Affiliation(s)
- Roman Matyášek
- Department of Molecular Epigenetics, Institute of Biophysics of the Czech Academy of Sciences, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Alice Krumpolcová
- Department of Molecular Epigenetics, Institute of Biophysics of the Czech Academy of Sciences, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Jana Lunerová
- Department of Molecular Epigenetics, Institute of Biophysics of the Czech Academy of Sciences, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Eva Mikulášková
- Department of Botany and Zoology, Masaryk University, Brno, Czechia
| | - Josep A. Rosselló
- Jardín Botánico, ICBiBE-Unidad Asociada CSIC, Universidad de Valencia, Valencia, Spain
| | - Aleš Kovařík
- Department of Molecular Epigenetics, Institute of Biophysics of the Czech Academy of Sciences, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
12
|
Matyášek R, Kuderová A, Kutílková E, Kučera M, Kovařík A. Intragenomic heterogeneity of intergenic ribosomal DNA spacers in Cucurbita moschata is determined by DNA minisatellites with variable potential to form non-canonical DNA conformations. DNA Res 2019; 26:273-286. [PMID: 31231763 PMCID: PMC6589552 DOI: 10.1093/dnares/dsz008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 04/03/2019] [Indexed: 11/26/2022] Open
Abstract
The intergenic spacer (IGS) of rDNA is frequently built of long blocks of tandem repeats. To estimate the intragenomic variability of such knotty regions, we employed PacBio sequencing of the Cucurbita moschata genome, in which thousands of rDNA copies are distributed across a number of loci. The rRNA coding regions are highly conserved, indicating intensive interlocus homogenization and/or high selection pressure. However, the IGS exhibits high intragenomic structural diversity. Two repeated blocks, R1 (300-1250 bp) and R2 (290-643 bp), account for most of the IGS variation. They exhibit minisatellite-like features built of multiple periodically spaced short GC-rich sequence motifs with the potential to adopt non-canonical DNA conformations, G-quadruplex-folded and left-handed Z-DNA. The mutual arrangement of these motifs can be used to classify IGS variants into five structural families. Subtle polymorphisms exist within each family due to a variable number of repeats, suggesting the coexistence of an enormous number of IGS variants. The substantial length and structural heterogeneity of IGS minisatellites suggests that the tempo of their divergence exceeds the tempo of the homogenization of rDNA arrays. As frequently occurring among plants, we hypothesize that their instability may influence transcription regulation and/or destabilize rDNA units, possibly spreading them across the genome.
Collapse
Affiliation(s)
- Roman Matyášek
- Institute of Biophysics of the Czech Academy of Sciences, CZ Brno, Czech Republic
| | - Alena Kuderová
- Institute of Biophysics of the Czech Academy of Sciences, CZ Brno, Czech Republic
| | - Eva Kutílková
- Institute of Biophysics of the Czech Academy of Sciences, CZ Brno, Czech Republic
| | - Marek Kučera
- Institute of Biophysics of the Czech Academy of Sciences, CZ Brno, Czech Republic
| | - Aleš Kovařík
- Institute of Biophysics of the Czech Academy of Sciences, CZ Brno, Czech Republic
| |
Collapse
|
13
|
Borowska-Zuchowska N, Robaszkiewicz E, Wolny E, Betekhtin A, Hasterok R. Ribosomal DNA loci derived from Brachypodium stacei are switched off for major parts of the life cycle of Brachypodium hybridum. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:805-815. [PMID: 30481334 PMCID: PMC6363085 DOI: 10.1093/jxb/ery425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/21/2018] [Indexed: 05/15/2023]
Abstract
Nucleolar dominance is an epigenetic phenomenon that occurs in some plant and animal allopolyploids and hybrids, whereby only one ancestral set of 35S rRNA genes retains the ability to form the nucleolus while the rDNA loci derived from the other progenitor are transcriptionally silenced. There is substantial evidence that nucleolar dominance is regulated developmentally. This study focuses upon the establishment and/or maintenance of nucleolar dominance during different stages of development in the model grass allotetraploid Brachypodium hybridum. Fluorescence in situ hybridization with a 25S rDNA probe to cells in three-dimensional cytogenetic preparations showed that nucleolar dominance is present not only in root meristematic and differentiated cells of this species, but also in male meiocytes at prophase I, tetrads of microspores, and different embryonic tissues. The inactive state of Brachypodium stacei-originated rDNA loci was confirmed by silver staining. Only B. distachyon-derived 35S rDNA loci formed nucleoli in the aforementioned tissues, whereas B. stacei-like loci remained highly condensed and thus transcriptionally suppressed. The establishment of nucleolar dominance during earlier stages of B. hybridum embryo development cannot be ruled out. However, we propose that gradual pseudogenization of B. stacei-like loci in the evolution of the allotetraploid seems to be more likely.
Collapse
Affiliation(s)
- Natalia Borowska-Zuchowska
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
- Correspondence:
| | - Ewa Robaszkiewicz
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Elzbieta Wolny
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Alexander Betekhtin
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
14
|
Marques A, Moraes L, Aparecida Dos Santos M, Costa I, Costa L, Nunes T, Melo N, Simon MF, Leitch AR, Almeida C, Souza G. Origin and parental genome characterization of the allotetraploid Stylosanthes scabra Vogel (Papilionoideae, Leguminosae), an important legume pasture crop. ANNALS OF BOTANY 2018; 122:1143-1159. [PMID: 29982475 PMCID: PMC6324754 DOI: 10.1093/aob/mcy113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/28/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUNDS AND AIMS The genus Stylosanthes includes nitrogen-fixing and drought-tolerant species of considerable economic importance for perennial pasture, green manure and land recovery. Stylosanthes scabra is adapted to variable soil conditions, being cultivated to improve pastures and soils worldwide. Previous studies have proposed S. scabra as an allotetraploid species (2n = 40) with a putative diploid A genome progenitor S. hamata or S. seabrana (2n = 20) and the B genome progenitor S. viscosa (2n = 20). We aimed to provide conclusive evidence for the origin of S. scabra. METHODS We performed fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH) experiments and Illumina paired-end sequencing of S. scabra, S. hamata and S. viscosa genomic DNA, to assemble and compare complete ribosomal DNA (rDNA) units and chloroplast genomes. Plastome- and genome-wide single nucleotide variation detection was also performed. KEY RESULTS GISH and phylogenetic analyses of plastid DNA and rDNA sequences support that S. scabra is an allotetraploid formed from 0.63 to 0.52 million years ago (Mya), from progenitors with a similar genome structure to the maternal donor S. hamata and the paternal donor S. viscosa. FISH revealed a non-additive number of 35S rDNA sites in S. scabra compared with its progenitors, indicating the loss of one locus from A genome origin. In S. scabra, most 5S rDNA units were similar to S. viscosa, while one 5S rDNA site of reduced size most probably came from an A genome species as revealed by GISH and in silico analysis. CONCLUSIONS Our approach combined whole-plastome and rDNA assembly with additional cytogenetic analysis to shed light successfully on the allotetraploid origin of S. scabra. We propose a Middle Pleistocene origin for S. scabra involving species with maternal A and paternal B genomes. Our data also suggest that variation found in rDNA units in S. scabra and its progenitors reveals differences that can be explained by homogenization, deletion and amplification processes that have occurred since its origin.
Collapse
Affiliation(s)
- André Marques
- Laboratory of Genetic Resources, Federal University of Alagoas, Arapiraca, AL, Brazil
| | - Lívia Moraes
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Brazil
| | | | - Iara Costa
- Laboratory of Genetic Resources, Federal University of Alagoas, Arapiraca, AL, Brazil
| | - Lucas Costa
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Brazil
| | - Tomáz Nunes
- Laboratory of Genetic Resources, Federal University of Alagoas, Arapiraca, AL, Brazil
| | - Natoniel Melo
- Laboratory of Biotechnology, Embrapa Semi-arid, Petrolina, Brazil
| | | | | | - Cicero Almeida
- Laboratory of Genetic Resources, Federal University of Alagoas, Arapiraca, AL, Brazil
| | - Gustavo Souza
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
15
|
Re-exploration of U's Triangle Brassica Species Based on Chloroplast Genomes and 45S nrDNA Sequences. Sci Rep 2018; 8:7353. [PMID: 29743507 PMCID: PMC5943242 DOI: 10.1038/s41598-018-25585-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 04/24/2018] [Indexed: 12/31/2022] Open
Abstract
The concept of U's triangle, which revealed the importance of polyploidization in plant genome evolution, described natural allopolyploidization events in Brassica using three diploids [B. rapa (A genome), B. nigra (B), and B. oleracea (C)] and derived allotetraploids [B. juncea (AB genome), B. napus (AC), and B. carinata (BC)]. However, comprehensive understanding of Brassica genome evolution has not been fully achieved. Here, we performed low-coverage (2-6×) whole-genome sequencing of 28 accessions of Brassica as well as of Raphanus sativus [R genome] to explore the evolution of six Brassica species based on chloroplast genome and ribosomal DNA variations. Our phylogenomic analyses led to two main conclusions. (1) Intra-species-level chloroplast genome variations are low in the three allotetraploids (2~7 SNPs), but rich and variable in each diploid species (7~193 SNPs). (2) Three allotetraploids maintain two 45SnrDNA types derived from both ancestral species with maternal dominance. Furthermore, this study sheds light on the maternal origin of the AC chloroplast genome. Overall, this study clarifies the genetic relationships of U's triangle species based on a comprehensive genomics approach and provides important genomic resources for correlative and evolutionary studies.
Collapse
|
16
|
Herklotz V, Kovařík A, Lunerová J, Lippitsch S, Groth M, Ritz CM. The fate of ribosomal RNA genes in spontaneous polyploid dogrose hybrids [Rosa L. sect. Caninae (DC.) Ser.] exhibiting non-symmetrical meiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:77-90. [PMID: 29385286 DOI: 10.1111/tpj.13843] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 01/03/2018] [Accepted: 01/15/2018] [Indexed: 05/02/2023]
Abstract
Dogroses represent an exceptional system for studying the effects of genome doubling and hybridization: their asymmetrical meiosis enables recombination in bi-parentally inherited chromosomes but prevents it in maternally inherited ones. We employed fluorescent in situ hybridization, genome skimming, amplicon sequencing of genomic and cDNA as well as conventional cloning of nuclear ribosomal DNA in two phylogenetically distinct pentaploid (2n = 5x = 35) species, Rosa canina and Rosa inodora, and their naturally occurring reciprocal hybrids, Rosa dumalis (5x) and Rosa agrestis (5x, 6x). Both progenitor species differed in composition, meiotic behaviour and expression of rDNA loci: R. canina (five 18S and 5-8 5S loci) was dominated by the Canina ribotypes, but R. inodora (four 18S loci and 7-8 5S loci) by the Rubiginosa ribotype. The co-localized 5S/18S loci occurred on either bivalent-forming (R. canina) or univalent-forming (R. inodora) chromosomes. Ribosomal DNA loci were additively inherited; however, the Canina ribotypes were dominantly expressed, even in genotypes with relatively low copy number of these genes. Moreover, we observed rDNA homogenization towards the paternally transmitted Canina ribotype in 6x R. agrestis. The here-observed variation in arrangement and composition of rDNA types between R. canina and R. inodora suggests the involvement of different genomes in bivalent formation. This results supports the hypothesis that the asymmetrical meiosis arose at least twice by independent ancient hybridization events.
Collapse
Affiliation(s)
- Veit Herklotz
- Department of Botany, Senckenberg Museum of Natural History Görlitz, Am Museum 1, D-02826, Görlitz, Germany
| | - Aleš Kovařík
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| | - Jana Lunerová
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| | - Susan Lippitsch
- Department of Ecology and Environment Protection, University of Applied Sciences Zittau/Görlitz, Theodor-Körner-Allee 16, D-02763, Zittau, Germany
| | - Marco Groth
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstr. 11, D-07745, Jena, Germany
| | - Christiane M Ritz
- Department of Botany, Senckenberg Museum of Natural History Görlitz, Am Museum 1, D-02826, Görlitz, Germany
| |
Collapse
|
17
|
Rabanal FA, Nizhynska V, Mandáková T, Novikova PY, Lysak MA, Mott R, Nordborg M. Unstable Inheritance of 45S rRNA Genes in Arabidopsis thaliana. G3 (BETHESDA, MD.) 2017; 7:1201-1209. [PMID: 28188182 PMCID: PMC5386868 DOI: 10.1534/g3.117.040204] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/07/2017] [Indexed: 12/30/2022]
Abstract
The considerable genome size variation in Arabidopsis thaliana has been shown largely to be due to copy number variation (CNV) in 45S ribosomal RNA (rRNA) genes. Surprisingly, attempts to map this variation by means of genome-wide association studies (GWAS) failed to identify either of the two likely sources, namely the nucleolus organizer regions (NORs). Instead, GWAS implicated a trans-acting locus, as if rRNA gene CNV was a phenotype rather than a genotype. To explain these results, we investigated the inheritance and stability of rRNA gene copy number using the variety of genetic resources available in A. thaliana - F2 crosses, recombinant inbred lines, the multiparent advanced-generation inter-cross population, and mutation accumulation lines. Our results clearly show that rRNA gene CNV can be mapped to the NORs themselves, with both loci contributing equally to the variation. However, NOR size is unstably inherited, and dramatic copy number changes are visible already within tens of generations, which explains why it is not possible to map the NORs using GWAS. We did not find any evidence of trans-acting loci in crosses, which is also expected since changes due to such loci would take very many generations to manifest themselves. rRNA gene copy number is thus an interesting example of "missing heritability"-a trait that is heritable in pedigrees, but not in the general population.
Collapse
Affiliation(s)
- Fernando A Rabanal
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030, Austria
| | - Viktoria Nizhynska
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030, Austria
| | - Terezie Mandáková
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Polina Yu Novikova
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030, Austria
| | - Martin A Lysak
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Richard Mott
- University College London Genetics Institute, WC1E 6BT, UK
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030, Austria
| |
Collapse
|
18
|
Pavlištová V, Dvořáčková M, Jež M, Mozgová I, Mokroš P, Fajkus J. Phenotypic reversion in fas mutants of Arabidopsis thaliana by reintroduction of FAS genes: variable recovery of telomeres with major spatial rearrangements and transcriptional reprogramming of 45S rDNA genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:411-424. [PMID: 27377564 DOI: 10.1111/tpj.13257] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 05/28/2023]
Abstract
Arabidopsis thaliana mutants dysfunctional in the evolutionarily conserved protein complex chromatin assembly factor-1 (CAF-1), which deposits the canonical histone H3 variant H3.1 during DNA synthesis-dependent chromatin assembly, display complex phenotypic changes including meristem and growth alterations, sensitivity to DNA-damaging agents, and reduced fertility. We reported previously that mutants in the FAS1 subunit of CAF-1 progressively lose telomere and 45S rDNA repeats. Here we show that multiple aspects of the fas phenotype are recovered immediately on expression of a reintroduced FAS1 allele, and are clearly independent of the recovery of rDNA copy-numbers and telomeres. In reverted lines, 45S rDNA genes are recovered to diverse levels with a strikingly different representation of their variants, and the typical association of nucleolar organizing region 4 with the nucleolus is perturbed. One of 45S rDNA variants (VAR1), which is silenced in wild-type (WT) plants without mutation history (Col-0 WT), dominates the expression pattern, whereas VAR2 is dominant in Col-0 WT plants. We propose an explanation for the variability of telomere and 45S rDNA repeats associated with CAF-1 function, suggesting that the differences in nuclear partitioning and expression of the rDNA variants in fas mutants and their revertants provide a useful experimental system to study genetic and epigenetic factors in gene dosage compensation.
Collapse
Affiliation(s)
- Veronika Pavlištová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martina Dvořáčková
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic
- Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic
| | - Michal Jež
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Iva Mozgová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Mokroš
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
19
|
Huska D, Leitch IJ, de Carvalho JF, Leitch AR, Salmon A, Ainouche M, Kovarik A. Persistence, dispersal and genetic evolution of recently formed Spartina homoploid hybrids and allopolyploids in Southern England. Biol Invasions 2016. [DOI: 10.1007/s10530-015-0956-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Matyášek R, Dobešová E, Húska D, Ježková I, Soltis PS, Soltis DE, Kovařík A. Interpopulation hybridization generates meiotically stable rDNA epigenetic variants in allotetraploid Tragopogon mirus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:362-377. [PMID: 26711705 DOI: 10.1111/tpj.13110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 06/05/2023]
Abstract
Uniparental silencing of 35S rRNA genes (rDNA), known as nucleolar dominance (ND), is common in interspecific hybrids. Allotetraploid Tragopogon mirus composed of Tragopogon dubius (d) and Tragopogon porrifolius (p) genomes shows highly variable ND. To examine the molecular basis of such variation, we studied the genetic and epigenetic features of rDNA homeologs in several lines derived from recently and independently formed natural populations. Inbred lines derived from T. mirus with a dominant d-rDNA homeolog transmitted this expression pattern over generations, which may explain why it is prevalent among natural populations. In contrast, lines derived from the p-rDNA dominant progenitor were meiotically unstable, frequently switching to co-dominance. Interpopulation crosses between progenitors displaying reciprocal ND resulted in d-rDNA dominance, indicating immediate suppression of p-homeologs in F1 hybrids. Original p-rDNA dominance was not restored in later generations, even in those segregants that inherited the corresponding parental rDNA genotype, thus indicating the generation of additional p-rDNA and d-rDNA epigenetic variants. Despite preserved intergenic spacer (IGS) structure, they showed altered cytosine methylation and chromatin condensation patterns, and a correlation between expression, hypomethylation of RNA Pol I promoters and chromatin decondensation was apparent. Reversion of such epigenetic variants occurred rarely, resulting in co-dominance maintained in individuals with distinct genotypes. Generally, interpopulation crosses may generate epialleles that are not present in natural populations, underlying epigenetic dynamics in young allopolyploids. We hypothesize that highly expressed variants with distinct IGS features may induce heritable epigenetic reprogramming of the partner rDNA arrays, harmonizing the expression of thousands of genes in allopolyploids.
Collapse
Affiliation(s)
- Roman Matyášek
- Laboratory of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic
| | - Eva Dobešová
- Laboratory of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic
| | - Dalibor Húska
- Laboratory of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic
| | - Ivana Ježková
- Laboratory of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic
| | - Pamela S Soltis
- Florida Museum of National History, University of Florida, Gainesville, FL, 32611, USA
| | - Douglas E Soltis
- Florida Museum of National History, University of Florida, Gainesville, FL, 32611, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Aleš Kovařík
- Laboratory of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic
| |
Collapse
|
21
|
Wang X, Zhang H, Li Y, Zhang Z, Li L, Liu B. Transcriptome asymmetry in synthetic and natural allotetraploid wheats, revealed by RNA-sequencing. THE NEW PHYTOLOGIST 2016; 209:1264-77. [PMID: 26436593 DOI: 10.1111/nph.13678] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/20/2015] [Indexed: 05/20/2023]
Abstract
Allopolyploidization has occurred frequently within the Triticum-Aegilops complex which provides a suitable system to investigate how allopolyploidization shapes the expression patterns of duplicated homeologs. We have conducted transcriptome-profiling of leaves and young inflorescences in wild and domesticated tetraploid wheats, Triticum turgidum ssp. dicoccoides (BBAA) and ssp. durum (BBAA), an extracted tetraploid (BBAA), and a synthetic tetraploid (S(l) S(l) AA) wheat together with its diploid parents, Aegilops longissima (S(l) S(l) ) and Triticum urartu (AA). The two diploid species showed tissue-specific differences in genome-wide ortholog expression, which plays an important role in transcriptome shock-mediated homeolog expression rewiring and hence transcriptome asymmetry in the synthetic tetraploid. Further changes of homeolog expression apparently occurred in natural tetraploid wheats, which led to novel transcriptome asymmetry between the two subgenomes. In particular, our results showed that extremely biased homeolog expression can occur rapidly upon the allotetraploidzation and this trend is further enhanced in the course of domestication and evolution of polyploid wheats. Our results suggest that allopolyploidization is accompanied by distinct phases of homeolog expression changes, with parental legacy playing major roles in the immediate rewiring of homeolog expression upon allopolyploidization, while evolution and domestication under allotetraploidy drive further homeolog-expression changes toward re-established subgenome expression asymmetry.
Collapse
Affiliation(s)
- Xutong Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yaling Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Linfeng Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- Department of Biology, Washington University in St Louis, St Louis, MO, 63130, USA
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
22
|
Borowska-Zuchowska N, Kwasniewski M, Hasterok R. Cytomolecular Analysis of Ribosomal DNA Evolution in a Natural Allotetraploid Brachypodium hybridum and Its Putative Ancestors-Dissecting Complex Repetitive Structure of Intergenic Spacers. FRONTIERS IN PLANT SCIENCE 2016; 7:1499. [PMID: 27790225 PMCID: PMC5064635 DOI: 10.3389/fpls.2016.01499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/20/2016] [Indexed: 05/22/2023]
Abstract
Nucleolar dominance is an epigenetic phenomenon associated with nuclear 35S rRNA genes and consists in selective suppression of gene loci inherited from one of the progenitors in the allopolyploid. Our understanding of the exact mechanisms that determine this process is still fragmentary, especially in case of the grass species. This study aimed to shed some light on the molecular basis of this genome-specific inactivation of 35S rDNA loci in an allotetraploid Brachypodium hybridum (2n = 30), which arose from the interspecific hybridization between two diploid ancestors that were very similar to modern B. distachyon (2n = 10) and B. stacei (2n = 20). Using fluorescence in situ hybridization with 25S rDNA and chromosome-specific BAC clones as probes we revealed that the nucleolar dominance is present not only in meristematic root-tip cells but also in differentiated cell fraction of B. hybridum. Additionally, the intergenic spacers (IGSs) from both of the putative ancestors and the allotetraploid were sequenced and analyzed. The presumptive transcription initiation sites, spacer promoters and repeated elements were identified within the IGSs. Two different length variants, 2.3 and 3.5 kb, of IGSs were identified in B. distachyon and B. stacei, respectively, however only the IGS that had originated from B. distachyon-like ancestor was present in the allotetraploid. The amplification pattern of B. hybridum IGSs suggests that some genetic changes occurred in inactive B. stacei-like rDNA loci during the evolution of the allotetraploid. We hypothesize that their preferential silencing is an effect of structural changes in the sequence rather than just the result of the sole inactivation at the epigenetic level.
Collapse
Affiliation(s)
- Natalia Borowska-Zuchowska
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in KatowiceKatowice, Poland
- *Correspondence: Natalia Borowska-Zuchowska
| | - Miroslaw Kwasniewski
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia in KatowiceKatowice, Poland
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in KatowiceKatowice, Poland
| |
Collapse
|