1
|
Arbab M, Matuszek Z, Kray KM, Du A, Newby GA, Blatnik AJ, Raguram A, Richter MF, Zhao KT, Levy JM, Shen MW, Arnold WD, Wang D, Xie J, Gao G, Burghes AHM, Liu DR. Base editing rescue of spinal muscular atrophy in cells and in mice. Science 2023; 380:eadg6518. [PMID: 36996170 PMCID: PMC10270003 DOI: 10.1126/science.adg6518] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/21/2023] [Indexed: 04/01/2023]
Abstract
Spinal muscular atrophy (SMA), the leading genetic cause of infant mortality, arises from survival motor neuron (SMN) protein insufficiency resulting from SMN1 loss. Approved therapies circumvent endogenous SMN regulation and require repeated dosing or may wane. We describe genome editing of SMN2, an insufficient copy of SMN1 harboring a C6>T mutation, to permanently restore SMN protein levels and rescue SMA phenotypes. We used nucleases or base editors to modify five SMN2 regulatory regions. Base editing converted SMN2 T6>C, restoring SMN protein levels to wild type. Adeno-associated virus serotype 9-mediated base editor delivery in Δ7SMA mice yielded 87% average T6>C conversion, improved motor function, and extended average life span, which was enhanced by one-time base editor and nusinersen coadministration (111 versus 17 days untreated). These findings demonstrate the potential of a one-time base editing treatment for SMA.
Collapse
Affiliation(s)
- Mandana Arbab
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Zaneta Matuszek
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Kaitlyn M. Kray
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, 1060 Carmack Road, Columbus, OH 43210, USA
| | - Ailing Du
- Horae Gene Therapy Center, University of Massachusetts, Medical School, Worcester, MA 01605, USA
| | - Gregory A. Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Anton J. Blatnik
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, 1060 Carmack Road, Columbus, OH 43210, USA
| | - Aditya Raguram
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Michelle F. Richter
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kevin T. Zhao
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jonathan M. Levy
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Max W. Shen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - W. David Arnold
- Department of Neurology, The Ohio State University Wexner Medical Center, 1060 Carmack Road, Columbus, OH 43210, USA
- NextGen Precision Health, University of Missouri, Columbia, MO 65212, USA
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts, Medical School, Worcester, MA 01605, USA
- Horae Gene Therapy Center and RNA Therapeutics Institute, University of Massachusetts, Medical School, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts, Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts, Medical School, Worcester, MA 01605, USA
- Microbiology and Physiological Systems, University of Massachusetts, Medical School, Worcester, MA 01605, USA
| | - Arthur H. M. Burghes
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, 1060 Carmack Road, Columbus, OH 43210, USA
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
2
|
Pinto A, Cunha C, Chaves R, Butchbach MER, Adega F. Comprehensive In Silico Analysis of Retrotransposon Insertions within the Survival Motor Neuron Genes Involved in Spinal Muscular Atrophy. BIOLOGY 2022; 11:824. [PMID: 35741345 PMCID: PMC9219815 DOI: 10.3390/biology11060824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022]
Abstract
Transposable elements (TEs) are interspersed repetitive and mobile DNA sequences within the genome. Better tools for evaluating TE-derived sequences have provided insights into the contribution of TEs to human development and disease. Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease that is caused by deletions or mutations in the Survival Motor Neuron 1 (SMN1) gene but retention of its nearly perfect orthologue SMN2. Both genes are highly enriched in TEs. To establish a link between TEs and SMA, we conducted a comprehensive, in silico analysis of TE insertions within the SMN1/2 loci of SMA, carrier and healthy genomes. We found an Alu insertion in the promoter region and one L1 element in the 3'UTR that may play an important role in alternative promoter as well as in alternative transcriptional termination. Additionally, several intronic Alu repeats may influence alternative splicing via RNA circularization and causes the presence of new alternative exons. These Alu repeats present throughout the genes are also prone to recombination events that could lead to SMN1 exons deletions and, ultimately, SMA. TE characterization of the SMA genomic region could provide for a better understanding of the implications of TEs on human disease and genomic evolution.
Collapse
Affiliation(s)
- Albano Pinto
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Catarina Cunha
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Raquel Chaves
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Matthew E. R. Butchbach
- Division of Neurology, Nemours Children’s Hospital Delaware, Wilmington, DE 19803, USA;
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Filomena Adega
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| |
Collapse
|
3
|
Dai M, Xu Y, Sun Y, Xiao B, Ying X, Liu Y, Jiang W, Zhang J, Liu X, Ji X. Revealing diverse alternative splicing variants of the highly homologous SMN1 and SMN2 genes by targeted long-read sequencing. Mol Genet Genomics 2022; 297:1039-1048. [PMID: 35612622 DOI: 10.1007/s00438-022-01874-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022]
Abstract
The survival of motor neuron (SMN) genes, SMN1 and SMN2, are two highly homologous genes related to spinal muscular atrophy (SMA). Different patterns of alternative splicing have been observed in the SMN genes. In this study, the long-read sequencing technique for distinguishing SMN1 and SMN2 without any assembly were developed and applied to reveal multiple alternative splicing patterns and to comprehensively identify transcript variants of the SMN genes. In total, 36 types of transcript variants were identified, with an equal number of variants generated from both SMN1 and SMN2. Of these, 18 were novel SMN transcripts that have never been reported. The structures of SMN transcripts were revealed to be much more complicated and diverse than previously discovered. These novel transcripts were derived from diverse splicing events, including skipping of one or more exons, intron retention, and exon shortening or addition. SMN1 mainly produces FL-SMN1, SMN1Δ7, SMN1Δ5 and SMN1Δ3. The distribution of SMN2 transcripts was significantly different from those of SMN1, with the majority transcripts to be SMN2Δ7, followed by FL-SMN2, SMN2Δ3,5 and SMN2Δ5,7. Targeted long-read sequencing approach could accurately distinguish sequences of SMN1 from those of SMN2. Our study comprehensively addressed naturally occurring SMN1 and SMN2 transcript variants and splicing patterns in peripheral blood mononuclear cells (PBMCs). The novel transcripts identified in our study expanded knowledge of the diversity of transcript variants generated from the SMN genes and showed a much more comprehensive profile of the SMN splicing spectrum. Results in our study will provide valuable information for the study of low expression level of SMN proteins and SMA pathogenesis based on transcript levels.
Collapse
Affiliation(s)
- Mengyao Dai
- Department of Paediatric Endocrinology/Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Molecular Genetics Group, Shanghai Institute for Paediatric Research, Shanghai, China
- National Research Center for Translational Medicine, National Key Scientific Infrastructure for Translational Medicine (Shanghai), Shanghai Jiaotong University, Shanghai, China
- National Clinical Research Centre for Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yan Xu
- Department of Paediatric Endocrinology/Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Molecular Genetics Group, Shanghai Institute for Paediatric Research, Shanghai, China
- Department of Reproductive Genetics, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Sun
- Department of Paediatric Endocrinology/Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Molecular Genetics Group, Shanghai Institute for Paediatric Research, Shanghai, China
| | - Bing Xiao
- Department of Paediatric Endocrinology/Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Molecular Genetics Group, Shanghai Institute for Paediatric Research, Shanghai, China
| | - Xiaomin Ying
- Department of Paediatric Endocrinology/Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Molecular Genetics Group, Shanghai Institute for Paediatric Research, Shanghai, China
| | - Yu Liu
- Department of Paediatric Endocrinology/Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Molecular Genetics Group, Shanghai Institute for Paediatric Research, Shanghai, China
| | - Wenting Jiang
- Department of Paediatric Endocrinology/Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Molecular Genetics Group, Shanghai Institute for Paediatric Research, Shanghai, China
| | - Jingmin Zhang
- Department of Paediatric Endocrinology/Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Molecular Genetics Group, Shanghai Institute for Paediatric Research, Shanghai, China
| | - Xiaoqing Liu
- Department of Paediatric Endocrinology/Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Molecular Genetics Group, Shanghai Institute for Paediatric Research, Shanghai, China
| | - Xing Ji
- Department of Paediatric Endocrinology/Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Molecular Genetics Group, Shanghai Institute for Paediatric Research, Shanghai, China.
| |
Collapse
|
4
|
High Concentration or Combined Treatment of Antisense Oligonucleotides for Spinal Muscular Atrophy Perturbed SMN2 Splicing in Patient Fibroblasts. Genes (Basel) 2022; 13:genes13040685. [PMID: 35456491 PMCID: PMC9027857 DOI: 10.3390/genes13040685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
Spinal muscular atrophy (SMA) is caused by survival motor neuron 1 SMN1 deletion. The survival motor neuron 2 (SMN2) encodes the same protein as SMN1 does, but it has a splicing defect of exon 7. Some antisense oligonucleotides (ASOs) have been proven to correct this defect. One of these, nusinersen, is effective in SMA-affected infants, but not as much so in advanced-stage patients. Furthermore, the current regimen may exhibit a ceiling effect. To overcome these problems, high-dose ASOs or combined ASOs have been explored. Here, using SMA fibroblasts, we examined the effects of high-concentration ASOs and of combining two ASOs. Three ASOs were examined: one targeting intronic splicing suppressor site N1 (ISS-N1) in intron 7, and two others targeting the 3′ splice site and 5′ region of exon 8. In our experiments on all ASO types, a low or intermediate concentration (50 or 100 nM) showed better splicing efficiency than a high concentration (200 nM). In addition, a high concentration of each ASO created a cryptic exon in exon 6. When a mixture of two different ASOs (100 nM each) was added to the cells, the cryptic exon was included in the mRNA. In conclusion, ASOs at a high concentration or used in combination may show less splicing correction and cryptic exon creation.
Collapse
|
5
|
Ultra-deep sequencing reveals pre-mRNA splicing as a sequence driven high-fidelity process. PLoS One 2019; 14:e0223132. [PMID: 31581208 PMCID: PMC6776343 DOI: 10.1371/journal.pone.0223132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/13/2019] [Indexed: 11/19/2022] Open
Abstract
Alternative splicing diversifies mRNA transcripts in human cells. While the spliceosome pairs exons with a high degree of accuracy, the rates of rare aberrant and non-canonical pre-mRNA splicing have not been evaluated at the nucleotide level to determine the quantity and identity of these events across splice junctions. Using ultra-deep sequencing the frequency of aberrant and non-canonical splicing events for three splice junctions flanking exon 7 of SMN1 were determined at single nucleotide resolution. After correction for background noise introduced by PCR amplification and sequencing steps, pre-mRNA splicing was shown to maintain a low overall rate of aberrant and non-canonically spliced events. Several previously unannotated splicing events across 3 exon|intron junctions in SMN1 were identified. Mutations within SMN exon 7 were shown to affect splicing fidelity by modulating RNA secondary structures, by altering the binding site of regulatory proteins and by changing the 5’ splice site strength. Mutations also create a truncated SMN1 exon 7 through the introduction of a de novo non-canonical 5’ splice site. The results from the ultra-deep sequencing approach highlight the impressive fidelity of pre-mRNA splicing and demonstrate that the immediate sequence context around splice sites is the main driving force behind non-canonical splice site pairing.
Collapse
|
6
|
Activation of Cryptic 3' Splice-Sites by SRSF2 Contributes to Cassette Exon Skipping. Cells 2019; 8:cells8070696. [PMID: 31295920 PMCID: PMC6678912 DOI: 10.3390/cells8070696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 11/21/2022] Open
Abstract
Here we show that the serine/arginine rich splicing factor 2 (SRSF2) promotes cryptic 3′ splice-site (3′AG′) usage during cassette exon exclusion in survival of motor neuron (SMN2) minigenes. Deletion of the 3′AG′ (3′AG′1), its associated branch point (BP′) and polypyrimidine tract (PPT′) sequences directs SRSF2 to promote a second 3′AG′ (3′AG′2) with less conserved associated region for intron splicing. Furthermore, deletion of both 3′AG′1 and 3′AG′2 and their associated sequences triggered usage of a third 3′AG′3 that has very weak associated sequences. Interestingly, when intron splicing was directed to the 3′AG′ cryptic splice-sites, intron splicing from the canonical 3′AG splice-site was reduced along with a decrease in cassette exon inclusion. Moreover, multiple SRSF2 binding sites within the intron are responsible for 3′AG′ activation. We conclude that SRSF2 facilitates exon exclusion by activating a cryptic 3′AG′ and inhibiting downstream intron splicing.
Collapse
|
7
|
Harahap NIF, Niba ETE, Ar Rochmah M, Wijaya YOS, Saito T, Saito K, Awano H, Morioka I, Iijima K, Lai PS, Matsuo M, Nishio H, Shinohara M. Intron-retained transcripts of the spinal muscular atrophy genes, SMN1 and SMN2. Brain Dev 2018; 40:670-677. [PMID: 29580671 DOI: 10.1016/j.braindev.2018.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/02/2018] [Accepted: 03/04/2018] [Indexed: 11/24/2022]
Abstract
BACKGROUND The SMN genes, SMN1 and SMN2, are highly homologous genes which are related to the development or clinical severity of spinal muscular atrophy. Some alternative splicing patterns of the SMN genes have been well documented. In 2007, an SMN1 transcript with a full sequence of intron 3 was reported as the first intron-retained SMN transcript. METHODS Intron-retained SMN transcripts in various cells and tissues were studied using reverse transcription (RT)-PCR. HeLa cells were used for subcellular localization of the transcripts and protein expression analysis with Western blotting. RESULTS Two intron-retained SMN transcripts were detected, which contain full sequences of intron 2b or intron 3. These transcripts were produced from SMN1 and SMN2, and ubiquitously expressed in human cells and tissues. Western blotting analysis showed no proteins derived from the intron-retained transcripts. Fractionation analysis showed that these intron-retained transcripts were localized mainly in the nucleus. Contrary to our expectation, the intron-retained transcript levels decreased during the treatment of cycloheximide, an inhibitor of nonsense-mediated decay (NMD), suggesting that they were not targets of NMD. CONCLUSION Intron 2b-retained SMN transcript and intron3-retained SMN transcript were ubiquitously expressed in human cells and tissues. The intron-retained transcripts were mainly localized in the nucleus and decreased through non-NMD pathway.
Collapse
Affiliation(s)
- Nur Imma Fatimah Harahap
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; Department of Clinical Pathology, Faculty of Medicine, Universitas Gadjah Mada, Radiopoetro Building 5th Floor, Jl. Farmako, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Emma Tabe Eko Niba
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Mawaddah Ar Rochmah
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; Department of Neurology, Faculty of Medicine, Universitas Gadjah Mada, Jl. Kesehatan No.1, Sekip, Yogyakarta 55281, Indonesia
| | - Yogik Onky Silvana Wijaya
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Toshio Saito
- Department of Neurology, National Hospital Organization Toneyama National Hospital, Toneyama 5-1-1, Toyonaka, Osaka 560-8552, Japan
| | - Kayoko Saito
- Institute of Medical Genetics, School of Medicine, Tokyo Women's Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Hiroyuki Awano
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Ichiro Morioka
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, 119228, Singapore
| | - Masafumi Matsuo
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani, Nishi, Kobe 6512180, Japan
| | - Hisahide Nishio
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Masakazu Shinohara
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| |
Collapse
|
8
|
Ottesen EW, Seo J, Singh NN, Singh RN. A Multilayered Control of the Human Survival Motor Neuron Gene Expression by Alu Elements. Front Microbiol 2017; 8:2252. [PMID: 29187847 PMCID: PMC5694776 DOI: 10.3389/fmicb.2017.02252] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/31/2017] [Indexed: 12/12/2022] Open
Abstract
Humans carry two nearly identical copies of Survival Motor Neuron gene: SMN1 and SMN2. Mutations or deletions of SMN1, which codes for SMN, cause spinal muscular atrophy (SMA), a leading genetic disease associated with infant mortality. Aberrant expression or localization of SMN has been also implicated in other pathological conditions, including male infertility, inclusion body myositis, amyotrophic lateral sclerosis and osteoarthritis. SMN2 fails to compensate for the loss of SMN1 due to skipping of exon 7, leading to the production of SMNΔ7, an unstable protein. In addition, SMNΔ7 is less functional due to the lack of a critical C-terminus of the full-length SMN, a multifunctional protein. Alu elements are specific to primates and are generally found within protein coding genes. About 41% of the human SMN gene including promoter region is occupied by more than 60 Alu-like sequences. Here we discuss how such an abundance of Alu-like sequences may contribute toward SMA pathogenesis. We describe the likely impact of Alu elements on expression of SMN. We have recently identified a novel exon 6B, created by exonization of an Alu-element located within SMN intron 6. Irrespective of the exon 7 inclusion or skipping, transcripts harboring exon 6B code for the same SMN6B protein that has altered C-terminus compared to the full-length SMN. We have demonstrated that SMN6B is more stable than SMNΔ7 and likely functions similarly to the full-length SMN. We discuss the possible mechanism(s) of regulation of SMN exon 6B splicing and potential consequences of the generation of exon 6B-containing transcripts.
Collapse
Affiliation(s)
- Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Joonbae Seo
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| |
Collapse
|
9
|
Cao T, Rajasingh S, Samanta S, Dawn B, Bittel DC, Rajasingh J. Biology and clinical relevance of noncoding sno/scaRNAs. Trends Cardiovasc Med 2017; 28:81-90. [PMID: 28869095 DOI: 10.1016/j.tcm.2017.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/18/2017] [Accepted: 08/04/2017] [Indexed: 12/15/2022]
Abstract
Small nucleolar RNAs (snoRNAs) are a group of noncoding RNAs that perform various biological functions, including biochemical modifications of other RNAs, precursors of miRNA, splicing, and telomerase activity. The small Cajal body-associated RNAs (scaRNAs) are a subset of the snoRNA family and collect in the Cajal body where they perform their canonical function to biochemically modify spliceosomal RNAs prior to maturation. Failure of sno/scaRNAs have been implicated in pathology such as congenital heart anomalies, neuromuscular disorders, and various malignancies. Thus, understanding of sno/scaRNAs demonstrates the clinical value.
Collapse
Affiliation(s)
- Thuy Cao
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, Kansas City, KS
| | - Sheeja Rajasingh
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, Kansas City, KS
| | - Saheli Samanta
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, Kansas City, KS
| | - Buddhadeb Dawn
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, Kansas City, KS
| | | | - Johnson Rajasingh
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, Kansas City, KS; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS.
| |
Collapse
|