1
|
Gavazzi F, Charsar B, Hamilton E, Erler JA, Patel V, Woidill S, Sevagamoorthy A, Helman G, Schmidt J, Pizzino A, Muirhead K, Takanohashi A, Bonkowsky JL, Meyerhoffer K, Simons C, Doi H, Satoko M, Matsumoto N, Delgado MR, Sanchez-Castillo M, Wang J, de Carvalho DR, Tournev I, Chamova T, Jordanova A, Clegg NJ, Nicita F, Bertini E, Teng M, Williams D, Tonduti D, Houlden H, Stellingwerff M, Wassmer E, Garcia-Cazorla A, Bernard G, Mirchi A, Toutounchi H, Wolf NI, van der Knaap MS, Shults J, Adang LA, Vanderver AL. The natural history of variable subtypes in pediatric-onset TUBB4A-related leukodystrophy. Mol Genet Metab 2025; 144:109048. [PMID: 39951964 PMCID: PMC11875891 DOI: 10.1016/j.ymgme.2025.109048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/21/2024] [Accepted: 01/29/2025] [Indexed: 02/17/2025]
Abstract
We establish the natural history of pediatric-onset TUBB4A-related leukodystrophy to improve clinical trial readiness through a medical record-based longitudinal study. An international cohort of 216 individuals with pediatric-onset TUBB4A-related leukodystrophy was included. Demographic information and medical events were extracted from medical records or publications. Retrospective scores (Gross Motor Function - Metachromatic Leukodystrophy [GMFC-MLD] and Communication Function Classification System [CFCS]) were applied to assess function. Survival analysis distinguished differences in longitudinal neurocognitive function and time to event outcomes between subtypes. A decision tree predicted independent ambulation from early motor milestones. Genotype (p.Asp249Asn vs non-p.Asp249Asn) and independent sitting by age 9 months predicted ambulation by 3 years, and stratification into three subgroups: early-infantile (non- sitting by 9 months), late-infantile (normal early milestones without the common p.Asp249Asn mutation), and a cohort of p.Asp249Asn late-infantile onset individuals. Median age at symptom onset was 0.71 years (interquartile range: [0.33, 1.50]). Common symptoms at onset include delayed development and tone abnormalities (n = 125, 66.5 % and n = 77, 43.0 %). The most common medical complications included scoliosis (N = 51/142), hip dislocation (N = 30/101), and seizures (N = 51/163). The early-infantile more severely affected cohort had a greater prevalence of G-tube placement, scoliosis, and seizure compared to the late-infantile form (p < 0.01). Peak motor and communication abilities were comparable between the p.Asp249Asn and the late infantile cohorts. Despite the acquisition of early milestones, individuals with p.Asp249Asn showed a more rapid decline of functional abilities compared to other late infantile forms (log-rank p = 0.0002). Better understanding of TUBB4A-related leukodystrophy subtypes will improve clinical care, allow targeted preventive interventions, and permit disease stratification for future disease-modifying clinical trials.
Collapse
Affiliation(s)
- Francesco Gavazzi
- Neurology Department, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Brittany Charsar
- Neurology Department, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eline Hamilton
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Netherlands
| | - Jacqueline A Erler
- Neurology Department, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Virali Patel
- Neurology Department, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sarah Woidill
- Neurology Department, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Anjana Sevagamoorthy
- Neurology Department, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Guy Helman
- Neurology Department, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Johanna Schmidt
- Neurology Department, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Amy Pizzino
- Neurology Department, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kayla Muirhead
- Neurology Department, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Asako Takanohashi
- Neurology Department, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joshua L Bonkowsky
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA; Center for Personalized Medicine, Primary Children's Hospital, Salt Lake City, UT, USA
| | - Kelsee Meyerhoffer
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Cas Simons
- Murdoch Childrens Research Institute, Melbourne, Australia
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Miyatake Satoko
- Department of Human Genetics, Yokoama City University, Yokohama, Japan
| | | | - Mauricio R Delgado
- Department of Neurology, University of Texas Southwestern Medical Center, USA
| | | | - Jingming Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | | | - Ivailo Tournev
- Clinic of Nervous Diseases, University Hospital Aleksandrovska, Department of Neurology, Medical University-Sofia, Bulgaria; Department of Cognitive Science and Psychology, New Bulgarian University, Bulgaria
| | - Teodora Chamova
- Department of Neurology, University Hospital Alexandrovska, Medical University Sofia, Sofia, Bulgaria
| | - Albena Jordanova
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical University - Sofia, Sofia, Bulgaria; Molecular Neurogenomics Group, Center for Molecular Neurology, VIB, Antwerpen, Belgium; Molecular Neurogenomics Group, Center for Molecular Neurology, Department of Biomedical Sciences, University of Antwerp, Antwerpen, Belgium
| | - Nancy J Clegg
- Division of Clinical Research, Department of Research, Scottish Rite for Children, Dallas, TX, USA
| | - Francesco Nicita
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Enrico Bertini
- Research Unit of Neuromuscular and Neurodegenerative Diseases, Bambino Gesu' Children's Hospital, IRCCS, Rome, Italy
| | | | | | - Davide Tonduti
- Unit of Pediatric Neurology, C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Milan, Italy; Department of Biomedical and Clinical Sciences, L. Sacco University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Henry Houlden
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | | | - Evangeline Wassmer
- Neurology Department, Birmingham Children's Hospital, Institute of Health and Neurodevelopment, Aston University, Birmingham, UK
| | - Angeles Garcia-Cazorla
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain; Neurology Department, Neurometabolic Unit and Synaptic Metabolism Lab, Institut Pediàtric de Recerca, Hospital Sant Joan de Déu, metabERN and CIBERER-ISCIII, Barcelona, Spain
| | - Geneviève Bernard
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, Quebec, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Amytice Mirchi
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Helia Toutounchi
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Nicole I Wolf
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, Netherlands
| | - Marjo S van der Knaap
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, Netherlands
| | - Justine Shults
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura A Adang
- Neurology Department, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adeline L Vanderver
- Neurology Department, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Hsieh PC, Yu PS, Fan WL, Wang CC, Chao CY, Wu YR. A New Phenotype of TUBB4A Mutation in a Family With Adult-Onset Progressive Spastic Paraplegia and Isolated Hypomyelination Leukodystrophy: A Case Report and Literature Review. J Mov Disord 2024; 17:94-98. [PMID: 37867417 PMCID: PMC10846974 DOI: 10.14802/jmd.23142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/25/2023] [Accepted: 10/23/2023] [Indexed: 10/24/2023] Open
Abstract
Tubulin beta 4A class IVa (TUBB4A) spectrum disorders include autosomal dominant dystonia type 4 or hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC syndrome). However, in rare cases, only mild hypomyelination in the cortex with no basal ganglia atrophy may be observed. We report a case of a family with TUBB4A mutation and complicated hereditary spasticity paraplegia (HSP). We performed quadro whole-exome sequencing (WES) on the family to identify the causative gene of progressive spastic paraparesis with isolated hypomyelination leukodystrophy. We identified a novel TUBB4A p.F341L mutation, which was present in all three affected patients but absent in the unaffected father. The affected patients presented with adult-onset TUBB4A disorder, predominant spastic paraparesis with/without ataxia, and brain hypomyelination with no cognitive impairment or extrapyramidal symptoms. In the literature, HSP is considered a TUBB4A spectrum disorder.
Collapse
Affiliation(s)
- Pei-Chen Hsieh
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Pei Shan Yu
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Wen-Lang Fan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Chun-Chieh Wang
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Chih-Ying Chao
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- Department of Neurology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
3
|
Ganne A, Balasubramaniam M, Ayyadevara H, Kiaei L, Shmookler Reis RJ, Varughese KI, Kiaei M. In silico analysis of TUBA4A mutations in Amyotrophic Lateral Sclerosis to define mechanisms of microtubule disintegration. Sci Rep 2023; 13:2096. [PMID: 36747013 PMCID: PMC9902468 DOI: 10.1038/s41598-023-28381-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 01/18/2023] [Indexed: 02/08/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an inexorably progressive and degenerative disorder of motor neurons with no currently-known cure. Studies to determine the mechanism of neurotoxicity and the impact of ALS-linked mutations (SOD1, FUS, TARDP, C9ORF72, PFN1, TUBA4A and others) have greatly expanded our knowledge of ALS disease mechanisms and have helped to identify potential targets for ALS therapy. Cellular pathologies (e.g., aggregation of mutant forms of SOD1, TDP43, FUS, Ubiqulin2, PFN1, and C9ORF72), mitochondrial dysfunction, neuroinflammation, and oxidative damage are major pathways implicated in ALS. Nevertheless, the selective vulnerability of motor neurons remains unexplained. The importance of tubulins for long-axon infrastructure, and the special morphology and function of motor neurons, underscore the central role of the cytoskeleton. The recent linkage of mutations to the tubulin α chain, TUBA4A, to familial and sporadic cases of ALS provides a new investigative opportunity to shed light on both mechanisms of ALS and the vulnerability of motor neurons. In the current study we investigate TUBA4A, a structural microtubule protein with mutations causal to familial ALS, using molecular-dynamic (MD) modeling of protein structure to predict the effects of each mutation and its overall impact on GTP binding, chain stability, tubulin assembly, and aggregation propensity. These studies predict that each of the reported mutations will cause notable structural changes to the TUBA4A (α chain) tertiary protein structure, adversely affecting its physical properties and functions. Molecular docking and MD simulations indicate certain α chain mutations (e.g. K430N, R215C, and W407X) may cause structural deviations that impair GTP binding, and plausibly prevent or destabilize tubulin polymerization. Furthermore, several mutations (including R320C and K430N) confer a significant increase in predicted aggregation propensity of TUBA4A mutants relative to wild-type. Taken together, these in silico modeling studies predict structural perturbations and disruption of GTP binding, culminating in failure to form a stable tubulin heterocomplex, which may furnish an important pathogenic mechanism to trigger motor neuron degeneration in ALS.
Collapse
Affiliation(s)
- Akshatha Ganne
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Meenakshisundaram Balasubramaniam
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.,Central Arkansas Veterans Healthcare Service, McClellan Veterans Medical Center, Little Rock, AR, 72205, USA.,SiBioLead, LLC, Little Rock, AR, 72207, USA
| | | | - Lily Kiaei
- University of California, Los Angeles, Los Angeles, CA, 90095, USA.,RockGen Therapeutics, LLC, Little Rock, AR, 72205, USA
| | - Robert J Shmookler Reis
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.,Central Arkansas Veterans Healthcare Service, McClellan Veterans Medical Center, Little Rock, AR, 72205, USA.,SiBioLead, LLC, Little Rock, AR, 72207, USA
| | - Kottayil I Varughese
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Mahmoud Kiaei
- RockGen Therapeutics, LLC, Little Rock, AR, 72205, USA. .,Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA. .,Department of Neurology, University of Arkansas for Medical Sciences, 4301 W. Markham St., Slot 611 (BioMed 1, Rm B-306A), Little Rock, AR, 72205, USA.
| |
Collapse
|
4
|
Attard TJ, Welburn JPI, Marsh JA. Understanding molecular mechanisms and predicting phenotypic effects of pathogenic tubulin mutations. PLoS Comput Biol 2022; 18:e1010611. [PMID: 36206299 PMCID: PMC9581425 DOI: 10.1371/journal.pcbi.1010611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/19/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022] Open
Abstract
Cells rely heavily on microtubules for several processes, including cell division and molecular trafficking. Mutations in the different tubulin-α and -β proteins that comprise microtubules have been associated with various diseases and are often dominant, sporadic and congenital. While the earliest reported tubulin mutations affect neurodevelopment, mutations are also associated with other disorders such as bleeding disorders and infertility. We performed a systematic survey of tubulin mutations across all isotypes in order to improve our understanding of how they cause disease, and increase our ability to predict their phenotypic effects. Both protein structural analyses and computational variant effect predictors were very limited in their utility for differentiating between pathogenic and benign mutations. This was even worse for those genes associated with non-neurodevelopmental disorders. We selected tubulin-α and -β disease mutations that were most poorly predicted for experimental characterisation. These mutants co-localise to the mitotic spindle in HeLa cells, suggesting they may exert dominant-negative effects by altering microtubule properties. Our results show that tubulin mutations represent a blind spot for current computational approaches, being much more poorly predicted than mutations in most human disease genes. We suggest that this is likely due to their strong association with dominant-negative and gain-of-function mechanisms.
Collapse
Affiliation(s)
- Thomas J. Attard
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Julie P. I. Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Joseph A. Marsh
- MRC Human Genetics Unit, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Hashiguchi M, Monden Y, Nozaki Y, Watanabe K, Nakashima M, Saitsu H, Yamagata T, Osaka H. A TUBB4A Met363Thr variant in pediatric hypomyelination without atrophy of the basal ganglia. Hum Genome Var 2022; 9:19. [PMID: 35661708 PMCID: PMC9166743 DOI: 10.1038/s41439-022-00198-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/21/2022] [Accepted: 05/02/2022] [Indexed: 01/11/2023] Open
Abstract
TUBB4A gene variants cause dystonia type 4 and hypomyelination with atrophy of the basal ganglia and cerebellum. We report the case of a child with delayed motor development, intellectual disability, and dystonia. Magnetic resonance imaging revealed hypomyelination and progressive cerebellar atrophy without atrophy of the basal ganglia. Whole-exome sequencing revealed a de novo heterozygous variant, c.1088T > C, p.(Met363Thr), in TUBB4A. The present case further supports the vulnerability of the cerebellum in patients with TUBB4A pathogenic variants.
Collapse
Affiliation(s)
- Marina Hashiguchi
- grid.410804.90000000123090000Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Yukifumi Monden
- grid.410804.90000000123090000Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Yasuyuki Nozaki
- grid.410804.90000000123090000Department of Pediatrics, Jichi Medical University, Tochigi, Japan ,Department of Pediatrics, Shin-Oyama City Hospital, Tochigi, Japan
| | - Kazuki Watanabe
- grid.505613.40000 0000 8937 6696Department of Biochemistry, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Mitsuko Nakashima
- grid.505613.40000 0000 8937 6696Department of Biochemistry, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Hirotomo Saitsu
- grid.505613.40000 0000 8937 6696Department of Biochemistry, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Takanori Yamagata
- grid.410804.90000000123090000Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Hitoshi Osaka
- grid.410804.90000000123090000Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
6
|
Fellner A, Goldberg Y, Lev D, Basel-Salmon L, Shor O, Benninger F. In-silico phenotype prediction by normal mode variant analysis in TUBB4A-related disease. Sci Rep 2022; 12:58. [PMID: 34997144 PMCID: PMC8741991 DOI: 10.1038/s41598-021-04337-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/21/2021] [Indexed: 11/09/2022] Open
Abstract
TUBB4A-associated disorder is a rare condition affecting the central nervous system. It displays a wide phenotypic spectrum, ranging from isolated late-onset torsion dystonia to a severe early-onset disease with developmental delay, neurological deficits, and atrophy of the basal ganglia and cerebellum, therefore complicating variant interpretation and phenotype prediction in patients carrying TUBB4A variants. We applied entropy-based normal mode analysis (NMA) to investigate genotype–phenotype correlations in TUBB4A-releated disease and to develop an in-silico approach to assist in variant interpretation and phenotype prediction in this disorder. Variants included in our analysis were those reported prior to the conclusion of data collection for this study in October 2019. All TUBB4A pathogenic missense variants reported in ClinVar and Pubmed, for which associated clinical information was available, and all benign/likely benign TUBB4A missense variants reported in ClinVar, were included in the analysis. Pathogenic variants were divided into five phenotypic subgroups. In-silico point mutagenesis in the wild-type modeled protein structure was performed for each variant. Wild-type and mutated structures were analyzed by coarse-grained NMA to quantify protein stability as entropy difference value (ΔG) for each variant. Pairwise ΔG differences between all variant pairs in each structural cluster were calculated and clustered into dendrograms. Our search yielded 41 TUBB4A pathogenic variants in 126 patients, divided into 11 partially overlapping structural clusters across the TUBB4A protein. ΔG-based cluster analysis of the NMA results revealed a continuum of genotype–phenotype correlation across each structural cluster, as well as in transition areas of partially overlapping structural clusters. Benign/likely benign variants were integrated into the genotype–phenotype continuum as expected and were clearly separated from pathogenic variants. We conclude that our results support the incorporation of the NMA-based approach used in this study in the interpretation of variant pathogenicity and phenotype prediction in TUBB4A-related disease. Moreover, our results suggest that NMA may be of value in variant interpretation in additional monogenic conditions.
Collapse
Affiliation(s)
- Avi Fellner
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Hospital, 49100, Petah Tikva, Israel. .,Department of Neurology, Rabin Medical Center, Beilinson Hospital, 49100, Petah Tikva, Israel.
| | - Yael Goldberg
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Hospital, 49100, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | - Dorit Lev
- Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel-Aviv, Israel.,Metabolic-Neurogenetic Clinic, Wolfson Medical Center, 58220, Holon, Israel.,Rina Mor Institute of Medical Genetics, Wolfson Medical Center, 58220, Holon, Israel
| | - Lina Basel-Salmon
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Hospital, 49100, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel-Aviv, Israel.,Felsenstein Medical Research Center, 49100, Petah Tikva, Israel
| | - Oded Shor
- Department of Neurology, Rabin Medical Center, Beilinson Hospital, 49100, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel-Aviv, Israel.,Felsenstein Medical Research Center, 49100, Petah Tikva, Israel
| | - Felix Benninger
- Department of Neurology, Rabin Medical Center, Beilinson Hospital, 49100, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel-Aviv, Israel.,Felsenstein Medical Research Center, 49100, Petah Tikva, Israel
| |
Collapse
|
7
|
Mukherjee A, Sarkar P, Sarkar S, Agrawal R, Dubey S, Pandit A. Adult-onset dystonia with late-onset epilepsy in TUBB4A-Related hypomyelinating leukodystrophy—A new intermediate phenotype. Ann Indian Acad Neurol 2022; 25:562-565. [PMID: 35936629 PMCID: PMC9350765 DOI: 10.4103/aian.aian_952_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/02/2022] [Accepted: 01/14/2022] [Indexed: 11/12/2022] Open
|
8
|
Park K, Hoff KJ, Wethekam L, Stence N, Saenz M, Moore JK. Kinetically Stabilizing Mutations in Beta Tubulins Create Isotype-Specific Brain Malformations. Front Cell Dev Biol 2021; 9:765992. [PMID: 34869359 PMCID: PMC8637541 DOI: 10.3389/fcell.2021.765992] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Mutations in the family of genes encoding the tubulin subunits of microtubules are associated with a spectrum of human brain malformations known as tubulinopathies. How these mutations impact tubulin activity to give rise to distinct developmental consequences is poorly understood. Here we report two patients exhibiting brain malformations characteristic of tubulinopathies and heterozygous T178M missense mutations in different β-tubulin genes, TUBB2A or TUBB3. RNAseq analysis indicates that both TUBB2A and TUBB3 are expressed in the brain during development, but only TUBB2A maintains high expression in neurons into adulthood. The T178 residue is highly conserved in β-tubulins and located in the exchangeable GTP-binding pocket of β-tubulin. To determine the impact of T178M on β-tubulin function we created an analogous mutation in the β-tubulin of budding yeast and show that the substitution acts dominantly to produce kinetically stabilized microtubules that assemble and disassemble slowly, with fewer transitions between these states. In vitro experiments with purified mutant tubulin demonstrate that T178M decreases the intrinsic assembly activity of β-tubulin and forms microtubules that rarely transition to disassembly. We provide evidence that the T178M substitution disrupts GTPase-dependent conformational changes in tubulin, providing a mechanistic explanation for kinetic stabilization. Our findings demonstrate the importance of tubulin’s GTPase activity during brain development, and indicate that tubulin isotypes play different, important roles during brain development.
Collapse
Affiliation(s)
- Kristen Park
- Department of Pediatrics and Neurology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Katelyn J Hoff
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Linnea Wethekam
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Nicholas Stence
- Section of Pediatric Radiology, Department of Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Margarita Saenz
- Section of Genetics, Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
9
|
Gavazzi F, Charsar BA, Williams C, Shults J, Alves CA, Adang L, Vanderver A. Acquisition of Developmental Milestones in Hypomyelination With Atrophy of the Basal Ganglia and Cerebellum and Other TUBB4A-Related Leukoencephalopathy. J Child Neurol 2021; 36:805-811. [PMID: 34514881 PMCID: PMC8505576 DOI: 10.1177/08830738211000977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mutations in TUBB4A are associated with a spectrum of neurologic disorders categorized as TUBB4A-related leukoencephalopathy. Affected children can present with global developmental delay or normal early development, followed by a variable loss of skills over time. Further research is needed to characterize the factors associated with the divergent developmental trajectories in this rare monogenic disorder because this phenotypic spectrum is not fully explained by genotype alone.To characterize early psychomotor features, developmental milestones and age of disease onset were collected from medical records (n=54 individuals). Three subcohorts were identified: individuals with the common p.Asp249Asn variant vs all other genotypes with either early (<12 months of age) or late onset of presentation. Individuals with the p.Asp249Asn variant or those with non-p.Asp249Asn genotypes with later disease onset attained key milestones, including head control, sitting, and independent walking. Subjects with early-onset, non-p.Asp249Asn-associated disease were less likely to achieve developmental milestones. Next, we defined the developmental severity as the percentage of milestones attained by age 2 years. The mild form was defined as attaining at least 75% of key developmental milestones. Among cohort categorized as mild, individuals with p.Asp249Asn variant were more likely to lose acquired abilities when compared with non-p.Asp249Asn individuals.Our results suggest multiple influences on developmental trajectory, including a strong contribution from genotype and age of onset. Further studies are needed to identify additional factors that influence overall outcomes to better counsel families and to design clinical trials with appropriate clinical endpoints.
Collapse
Affiliation(s)
- Francesco Gavazzi
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA,Department of Molecular and Translational Medicine, University of Brescia, Italy
| | | | - Catherine Williams
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Justine Shults
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA,Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Cesar A. Alves
- Division of Neuroradiology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Laura Adang
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Adeline Vanderver
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
10
|
Gavazzi F, Charsar BA, Williams C, Shults J, Alves CA, Adang L, Vanderver A. Acquisition of Developmental Milestones in Hypomyelination With Atrophy of the Basal Ganglia and Cerebellum and Other TUBB4A-Related Leukoencephalopathy. J Child Neurol 2021. [PMID: 33843299 DOI: 10.1177/0883073821000977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mutations in TUBB4A are associated with a spectrum of neurologic disorders categorized as TUBB4A-related leukoencephalopathy. Affected children can present with global developmental delay or normal early development, followed by a variable loss of skills over time. Further research is needed to characterize the factors associated with the divergent developmental trajectories in this rare monogenic disorder because this phenotypic spectrum is not fully explained by genotype alone.To characterize early psychomotor features, developmental milestones and age of disease onset were collected from medical records (n=54 individuals). Three subcohorts were identified: individuals with the common p.Asp249Asn variant vs all other genotypes with either early (<12 months of age) or late onset of presentation. Individuals with the p.Asp249Asn variant or those with non-p.Asp249Asn genotypes with later disease onset attained key milestones, including head control, sitting, and independent walking. Subjects with early-onset, non-p.Asp249Asn-associated disease were less likely to achieve developmental milestones. Next, we defined the developmental severity as the percentage of milestones attained by age 2 years. The mild form was defined as attaining at least 75% of key developmental milestones. Among cohort categorized as mild, individuals with p.Asp249Asn variant were more likely to lose acquired abilities when compared with non-p.Asp249Asn individuals.Our results suggest multiple influences on developmental trajectory, including a strong contribution from genotype and age of onset. Further studies are needed to identify additional factors that influence overall outcomes to better counsel families and to design clinical trials with appropriate clinical endpoints.
Collapse
Affiliation(s)
- Francesco Gavazzi
- Division of Neurology, 6567Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Brittany A Charsar
- Sidney Kimmel Medical College, 23217Jefferson University, Philadelphia, PA, USA
| | - Catherine Williams
- Division of Neurology, 6567Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Justine Shults
- Department of Pediatrics, 6567Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cesar A Alves
- Division of Neuroradiology, 6567Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Laura Adang
- Division of Neurology, 6567Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adeline Vanderver
- Division of Neurology, 6567Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
11
|
Mochel F. Hypomyelinating leukodystrophies in adults. Eur J Neurol 2021; 28:733-734. [PMID: 33400842 DOI: 10.1111/ene.14694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Fanny Mochel
- AP-HP, Department of Genetics, Reference Centers for Adult Neurometabolic Diseases and Adult Leukodystrophies, Pitié-Salpêtrière University Hospital, Paris, France.,INSERM U 1127, CNRS UMR 7225, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Sorbonne Universités, Paris, France
| |
Collapse
|
12
|
Microtubule Dysfunction: A Common Feature of Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21197354. [PMID: 33027950 PMCID: PMC7582320 DOI: 10.3390/ijms21197354] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022] Open
Abstract
Neurons are particularly susceptible to microtubule (MT) defects and deregulation of the MT cytoskeleton is considered to be a common insult during the pathogenesis of neurodegenerative disorders. Evidence that dysfunctions in the MT system have a direct role in neurodegeneration comes from findings that several forms of neurodegenerative diseases are associated with changes in genes encoding tubulins, the structural units of MTs, MT-associated proteins (MAPs), or additional factors such as MT modifying enzymes which modulating tubulin post-translational modifications (PTMs) regulate MT functions and dynamics. Efforts to use MT-targeting therapeutic agents for the treatment of neurodegenerative diseases are underway. Many of these agents have provided several benefits when tested on both in vitro and in vivo neurodegenerative model systems. Currently, the most frequently addressed therapeutic interventions include drugs that modulate MT stability or that target tubulin PTMs, such as tubulin acetylation. The purpose of this review is to provide an update on the relevance of MT dysfunctions to the process of neurodegeneration and briefly discuss advances in the use of MT-targeting drugs for the treatment of neurodegenerative disorders.
Collapse
|
13
|
Sase S, Almad AA, Boecker CA, Guedes-Dias P, Li JJ, Takanohashi A, Patel A, McCaffrey T, Patel H, Sirdeshpande D, Curiel J, Shih-Hwa Liu J, Padiath Q, Holzbaur EL, Scherer SS, Vanderver A. TUBB4A mutations result in both glial and neuronal degeneration in an H-ABC leukodystrophy mouse model. eLife 2020; 9:52986. [PMID: 32463361 PMCID: PMC7255805 DOI: 10.7554/elife.52986] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/13/2020] [Indexed: 12/20/2022] Open
Abstract
Mutations in TUBB4A result in a spectrum of leukodystrophy including Hypomyelination with Atrophy of Basal Ganglia and Cerebellum (H-ABC), a rare hypomyelinating leukodystrophy, often associated with a recurring variant p.Asp249Asn (D249N). We have developed a novel knock-in mouse model harboring heterozygous (Tubb4aD249N/+) and the homozygous (Tubb4aD249N/D249N) mutation that recapitulate the progressive motor dysfunction with tremor, dystonia and ataxia seen in H-ABC. Tubb4aD249N/D249N mice have myelination deficits along with dramatic decrease in mature oligodendrocytes and their progenitor cells. Additionally, a significant loss occurs in the cerebellar granular neurons and striatal neurons in Tubb4aD249N/D249N mice. In vitro studies show decreased survival and dysfunction in microtubule dynamics in neurons from Tubb4aD249N/D249N mice. Thus Tubb4aD249N/D249N mice demonstrate the complex cellular physiology of H-ABC, likely due to independent effects on oligodendrocytes, striatal neurons, and cerebellar granule cells in the context of altered microtubule dynamics, with profound neurodevelopmental deficits.
Collapse
Affiliation(s)
- Sunetra Sase
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, United States
| | - Akshata A Almad
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, United States
| | - C Alexander Boecker
- Department of Physiology, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Pedro Guedes-Dias
- Department of Physiology, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Jian J Li
- Department of Neurology, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Asako Takanohashi
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, United States
| | - Akshilkumar Patel
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, United States
| | - Tara McCaffrey
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, United States
| | - Heta Patel
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, United States
| | - Divya Sirdeshpande
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, United States
| | - Julian Curiel
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, United States
| | - Judy Shih-Hwa Liu
- Department of Neurology, Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, United States
| | - Quasar Padiath
- Department of Human Genetics and Neurobiology, University of Pittsburgh, Pittsburgh, United States
| | - Erika Lf Holzbaur
- Department of Physiology, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Steven S Scherer
- Department of Neurology, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Adeline Vanderver
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, United States.,Department of Neurology, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
14
|
Independent occurrence of de novo HSPD1 and HIP1 variants in brothers with different neurological disorders - leukodystrophy and autism. Hum Genome Var 2018; 5:18. [PMID: 30083362 PMCID: PMC6053359 DOI: 10.1038/s41439-018-0020-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/14/2018] [Accepted: 06/22/2018] [Indexed: 11/23/2022] Open
Abstract
Consecutive occurrence of de novo variants in the same family is an extremely rare phenomenon. Two siblings, a younger brother with hypomyelinating leukodystrophy and an elder brother with severe intellectual disability and autistic features, had independent de novo variants of HSPD1 c.139T > G (p.Leu47Val) and HIP1 c.1393G > A (p.Glu465Lys), respectively. These novel variants were predicted to be pathogenic. Both patients also had a known MECP2 variant, c.499C > T (p.Arg167Trp).
Collapse
|