1
|
Ringsted SB, Markholt S, Andreasen L, Gregersen PA. Phenotypic variability in a family with an inherited KAT6A frameshift variant. Eur J Med Genet 2025; 73:104993. [PMID: 39740728 DOI: 10.1016/j.ejmg.2024.104993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/20/2024] [Accepted: 12/28/2024] [Indexed: 01/02/2025]
Abstract
KAT6A syndrome or Arboleda-Tham Syndrome (ARTHS; OMIM #616268) is a syndromic neurodevelopmental disorder mainly presenting with variable degrees of intellectual disability (ID) and developmental delay (DD), especially speech delay, hypotonia and autism spectrum disorders/behavioral problems. Multiple organ-systems including eyes, heart, gastrointestinal and neurological system can be involved. Other phenotypic features with a suggested association to KAT6A include immune dysfunction and pituitary anomalies. Initially, ID/DD was reported as universal in KAT6A syndrome; however, two children with normal assessment of intellect and development at age 10 and 11 years, were recently reported. KAT6A syndrome is caused by heterozygous pathogenic variants in KAT6A. Inherited variants are rare, and to our knowledge, only three inherited missense variants in KAT6A have been reported, whereas frameshift and nonsense variants have been inherited from mosaic parents only. Here, we report a Danish family, where an inherited KAT6A frameshift variant c.2710dup (p.(Glu904Glyfs∗12)) show clinical variability in disease phenotype expression among three family members. The description includes an affected first child with premature pubarche (the first individual to our knowledge), a mildly affected second child with normal cognitive performance assessment (the third reported individual with normal assessment of cognition and KAT6A syndrome), and a self-sufficient adult family member. The description expands the phenotypic spectrum of KAT6A syndrome, and thus brings important knowledge for improved management and counselling of patients and families with this rare condition.
Collapse
Affiliation(s)
| | - Sara Markholt
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Lotte Andreasen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Pernille Axél Gregersen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark; Centre for Rare Diseases, Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Denmark
| |
Collapse
|
2
|
Wang Q, Zhang Y, Li L, Yang N. Diagnosis of Arboleda-Tham syndrome by whole-exome sequencing in an Asian girl with severe developmental delay. Mol Genet Genomic Med 2024; 12:e2420. [PMID: 38773911 PMCID: PMC11109524 DOI: 10.1002/mgg3.2420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 02/24/2024] [Accepted: 03/19/2024] [Indexed: 05/24/2024] Open
Abstract
OBJECTIVE This study aims to report a severe phenotype of Arboleda-Tham syndrome in a 20-month-old girl, characterized by global developmental delay, distinct facial features, intellectual disability. Arboleda-Tham syndrome is known for its wide phenotypic spectrum and is associated with truncating variants in the KAT6A gene. METHODS To diagnose this case, a combination of clinical phenotype assessment and whole-exome sequencing technology was employed. The genetic analysis involved whole-exome sequencing, followed by confirmation of the identified variant through Sanger sequencing. RESULTS The whole-exome sequencing revealed a novel de novo frameshift mutation c.3048del (p.Leu1017Serfs*17) in the KAT6A gene, which is classified as likely pathogenic. This mutation was not found in the ClinVar and HGMD databases and was not present in her parents. The mutation leads to protein truncation or activation of nonsense-mediated mRNA degradation. The mutation is located within exon 16, potentially leading to protein truncation or activation of nonsense-mediated mRNA degradation. Protein modeling suggested that the de novo KAT6A mutation might alter hydrogen bonding and reduce protein stability, potentially damaging the protein structure and function. CONCLUSION This study expands the understanding of the genetic basis of Arboleda-Tham syndrome, highlighting the importance of whole-exome sequencing in diagnosing cases with varied clinical presentations. The discovery of the novel KAT6A mutation adds to the spectrum of known pathogenic variants and underscores the significance of this gene in the syndrome's pathology.
Collapse
Affiliation(s)
- Qingran Wang
- Qilu Hospital of Shandong University Dezhou HospitalDezhouShandongChina
| | - Yujiao Zhang
- Qilu Hospital of Shandong University Dezhou HospitalDezhouShandongChina
| | - Li Li
- Qilu Hospital of Shandong University Dezhou HospitalDezhouShandongChina
| | - Ning Yang
- Qilu Hospital of Shandong University Dezhou HospitalDezhouShandongChina
| |
Collapse
|
3
|
Lomeli C. S, Kristin B. A. Epigenetic regulation of craniofacial development and disease. Birth Defects Res 2024; 116:e2271. [PMID: 37964651 PMCID: PMC10872612 DOI: 10.1002/bdr2.2271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND The formation of the craniofacial complex relies on proper neural crest development. The gene regulatory networks (GRNs) and signaling pathways orchestrating this process have been extensively studied. These GRNs and signaling cascades are tightly regulated as alterations to any stage of neural crest development can lead to common congenital birth defects, including multiple syndromes affecting facial morphology as well as nonsyndromic facial defects, such as cleft lip with or without cleft palate. Epigenetic factors add a hierarchy to the regulation of transcriptional networks and influence the spatiotemporal activation or repression of specific gene regulatory cascades; however less is known about their exact mechanisms in controlling precise gene regulation. AIMS In this review, we discuss the role of epigenetic factors during neural crest development, specifically during craniofacial development and how compromised activities of these regulators contribute to congenital defects that affect the craniofacial complex.
Collapse
Affiliation(s)
- Shull Lomeli C.
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Artinger Kristin B.
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN, USA
| |
Collapse
|
4
|
St John M, Tripathi T, Morgan AT, Amor DJ. To speak may draw on epigenetic writing and reading: Unravelling the complexity of speech and language outcomes across chromatin-related neurodevelopmental disorders. Neurosci Biobehav Rev 2023; 152:105293. [PMID: 37353048 DOI: 10.1016/j.neubiorev.2023.105293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/11/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Speech and language development are complex neurodevelopmental processes that are incompletely understood, yet current evidence suggests that speech and language disorders are prominent in those with disorders of chromatin regulation. This review aimed to unravel what is known about speech and language outcomes for individuals with chromatin-related neurodevelopmental disorders. A systematic literature search following PRISMA guidelines was conducted on 70 chromatin genes, to identify reports of speech/language outcomes across studies, including clinical reports, formal subjective measures, and standardised/objective measures. 3932 studies were identified and screened and 112 were systematically reviewed. Communication impairment was core across chromatin disorders, and specifically, chromatin writers and readers appear to play an important role in motor speech development. Identification of these relationships is important because chromatin disorders show promise as therapeutic targets due to the capacity for epigenetic modification. Further research is required using standardised and formal assessments to understand the nuanced speech/language profiles associated with variants in each gene, and the influence of chromatin dysregulation on the neurobiology of speech and language development.
Collapse
Affiliation(s)
- Miya St John
- Speech and Language, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Audiology and Speech Pathology, University of Melbourne, VIC, Australia.
| | - Tanya Tripathi
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Parkville, VIC, Australia.
| | - Angela T Morgan
- Speech and Language, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Audiology and Speech Pathology, University of Melbourne, VIC, Australia; Speech Genomics Clinic, Royal Children's Hospital, Parkville, VIC, Australia.
| | - David J Amor
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Parkville, VIC, Australia; Speech Genomics Clinic, Royal Children's Hospital, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, VIC, Australia.
| |
Collapse
|
5
|
Zeng F, Yang Y, Xu Z, Wang Z, Ke H, Zhang J, Dong T, Yang W, Wang J. Clinical manifestations and genetic analysis of a newborn with Arboleda−Tham syndrome. Front Genet 2022; 13:990098. [PMID: 36386811 PMCID: PMC9641261 DOI: 10.3389/fgene.2022.990098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/22/2022] [Indexed: 11/27/2022] Open
Abstract
Arboleda−Tham syndrome (ARTHS) is a rare disorder first characterized in 2015 and is caused by mutations in lysine (K) acetyltransferase 6A (KAT6A, a.k.a. MOZ, MYST3). Its clinical symptoms have rarely been reported in newborns from birth up to the first few months after birth. In this study, a newborn was diagnosed with ARTHS based on the clinical symptoms and a mutation c.3937G>A (p.Asp1313Asn) in KAT6A. The clinical manifestations, diagnosis, and treatment of the newborn with ARTHS were recorded during follow-up observations. The main symptoms of the proband at birth were asphyxia, involuntary breathing, low muscle tone, early feeding, movement difficulties, weak crying, weakened muscle tone of the limbs, and embrace reflex, and facial features were not obvious at birth. There was obvious developmental delay, as well as hypotonic and oro-intestinal problems in the first few months after birth. Mouse growth factor was used to nourish the brain nerves, and touching, kneading the back, passive movements of the limbs, and audio−visual stimulation were used for rehabilitation. We hope that this study expands the phenotypic spectrum of this syndrome to newborns and the library of KAT6A mutations that lead to ARTHS. Consequently, the data can be used as a basis for genetic counseling and in clinical and prenatal diagnosis for ARTHS prevention.
Collapse
Affiliation(s)
- Feng Zeng
- Department of Neonatology, Xuancheng Central Hospital, Xuancheng, Anhui, China
| | - Yue Yang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Zhaohui Xu
- Department of Paediatrics, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Ziwen Wang
- Graduate School, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Huan Ke
- Nursing Department, Xuancheng Central Hospital, Xuancheng, Anhui, China
| | - Jianhong Zhang
- Department of Neonatology, Xuancheng Central Hospital, Xuancheng, Anhui, China
| | - Tongtong Dong
- Graduate School, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Wenming Yang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- *Correspondence: Wenming Yang, ; Jiuxiang Wang,
| | - Jiuxiang Wang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- *Correspondence: Wenming Yang, ; Jiuxiang Wang,
| |
Collapse
|
6
|
Gholipour F, Yoshiura KI, Hosseinpourfeizi M, Elmi N, Teimourian S, Safaralizadeh R. Whole exome sequencing reveals pathogenic variants in KL and PUDP genes as the cause of intellectual disability in an Iranian family. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Jiang M, Yang L, Wu J, Xiong F, Li J. A de novo heterozygous variant in KAT6A is associated with a newly named neurodevelopmental disorder Arboleda-Tham syndrome-a case report. Transl Pediatr 2021; 10:1748-1754. [PMID: 34295791 PMCID: PMC8261581 DOI: 10.21037/tp-21-206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/26/2021] [Indexed: 01/21/2023] Open
Abstract
Arboleda-Tham syndrome (OMIM#616268) is a newly named neurodevelopmental disorder, which is an autosomal dominant hereditary disease characterized by genetic variants. The clinical manifestations include global developmental delay, primary microcephaly, and craniofacial dysmorphism, as well as more varied features such as feeding difficulties, cardiac defects, and ocular anomalies. Currently, due to restricted knowledge of Arboleda-Tham syndrome and less specific pathological manifestations, it is difficult to diagnose at the early stages of the disease. Here, we present a case with obvious growth retardation and intellectual disability, accompanied by other manifestations including dysmorphic features of the ears, facial dysmorphism, right cryptorchidism, and inguinal hernia. Routine laboratory tests including blood-urine tandem mass spectrometry, urine gas chromatographic mass spectrometry, karyotype, echocardiography, automatic auditory brainstem responses, serum levels of calcium, phosphorus, vitamin D, creatine kinase (CK), and CK isoenzyme (CK-MB), and brain magnetic resonance imaging showed negative results. A de novo heterozygous variant in KAT6A, c.57delA (p.Val20*), was detected by trio-based whole exome sequencing and subsequent validation by Sanger sequencing in the patient, which was absent in both the parents. The patient received rehabilitation and nutritional intervention. The testis reduction and orchiopexy was scheduled when he was 1 year old. Our report extends the phenotype-genotype map of Arboleda-Tham syndrome, and also expands the mutant spectrum of the KAT6A gene. Moreover, this case emphasizes the timely conduction of whole exome sequencing for the early diagnosis of Arboleda-Tham syndrome, and spares patients from meaningless examinations and ineffective treatments.
Collapse
Affiliation(s)
- Mingyan Jiang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, China
| | - Lianlian Yang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, China
| | - Jinhui Wu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, China
| | - Fei Xiong
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, China
| | - Jinrong Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Shu L, Zhang Q, Tian Q, Yang S, Peng X, Mao X, Yang L, Du J, Wang H. Parental mosaicism in de novo neurodevelopmental diseases. Am J Med Genet A 2021; 185:2119-2125. [PMID: 33851778 DOI: 10.1002/ajmg.a.62174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/28/2021] [Accepted: 02/26/2021] [Indexed: 11/12/2022]
Abstract
Neurodevelopmental diseases are increasingly recognized to be caused by "de novo" variants with the expanding use of next-generation sequencing. The apparent de novo variants may actually be low-level hereditary parental mosaic variants, which could increase the recurrence risk of disease by >50% and is thought to be an underappreciated cause of neurodevelopmental diseases. Our study aimed to investigate the frequency of parental mosaicism in "de novo" neurodevelopmental diseases. A total of 237 patients (and parents) with neurodevelopmental diseases carrying apparent de novo pathogenic or likely pathogenic variants were recruited consecutively. Deep next-generation sequencing was performed on parental samples to identify parental mosaicism. Fourteen parental disease-causing mosaicism variants (3.0%) in 11 genes were detected with alternate allele frequency (AAF) 0.22%-34%. Three parents showed milder clinical phenotypes than their offspring with relatively high AAF (23.33%, 25%, 34% separately). One recurrent variant was identified prenatally. A review of cohort study on parental mosaicism in neurodevelopmental diseases was performed. Our study highlights that identifying the parental mosaic disease-causing variants especially the low-level mosaicism will contribute to improving the accuracy of genetic counseling and prenatal diagnosis for reproductive risks.
Collapse
Affiliation(s)
- Li Shu
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China.,Department of School of Life Sciences, Central South University, Changsha, China
| | - Qianjun Zhang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Department of Medical Genetics, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
| | - Qi Tian
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Sai Yang
- Department of Neurology, Children's Hospital of Hunan Province, Changsha, China
| | - Xingwang Peng
- Marketing Management Center, AmCare Genomics Laboratory, Guangzhou, China
| | - Xiao Mao
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Liming Yang
- Department of Neurology, Children's Hospital of Hunan Province, Changsha, China
| | - Juan Du
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Department of Medical Genetics, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
| | - Hua Wang
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| |
Collapse
|
9
|
Marji FP, Hall JA, Anstadt E, Madan-Khetarpal S, Goldstein JA, Losee JE. A Novel Frameshift Mutation in KAT6A Is Associated with Pancraniosynostosis. J Pediatr Genet 2020; 10:81-84. [PMID: 33552646 DOI: 10.1055/s-0040-1710330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/23/2020] [Indexed: 10/24/2022]
Abstract
De novo heterozygous mutations in the KAT6A gene give rise to a distinct intellectual disability syndrome, with features including speech delay, cardiac anomalies, craniofacial dysmorphisms, and craniosynostosis. Here, we reported a 16-year-old girl with a novel pathogenic variant of the KAT6A gene. She is the first case to possess pancraniosynostosis, a rare suture fusion pattern, affecting all her major cranial sutures. The diagnosis of KAT6A syndrome is established via recognition of its inherent phenotypic features and the utilization of whole exome sequencing. Thorough craniofacial evaluation is imperative, craniosynostosis may require operative intervention, the delay of which may be detrimental.
Collapse
Affiliation(s)
- Fady P Marji
- Department of Plastic Surgery and Reconstructive Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Jennifer A Hall
- Department of Plastic Surgery and Reconstructive Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Erin Anstadt
- Department of Plastic Surgery and Reconstructive Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Suneeta Madan-Khetarpal
- Department of Genetics, Center for Clinical Genetics and Genomics, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Jesse A Goldstein
- Department of Plastic Surgery and Reconstructive Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Joseph E Losee
- Department of Plastic Surgery and Reconstructive Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
10
|
Urreizti R, Lopez-Martin E, Martinez-Monseny A, Pujadas M, Castilla-Vallmanya L, Pérez-Jurado LA, Serrano M, Natera-de Benito D, Martínez-Delgado B, Posada-de-la-Paz M, Alonso J, Marin-Reina P, O'Callaghan M, Grinberg D, Bermejo-Sánchez E, Balcells S. Five new cases of syndromic intellectual disability due to KAT6A mutations: widening the molecular and clinical spectrum. Orphanet J Rare Dis 2020; 15:44. [PMID: 32041641 PMCID: PMC7011274 DOI: 10.1186/s13023-020-1317-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/28/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Pathogenic variants of the lysine acetyltransferase 6A or KAT6A gene are associated with a newly identified neurodevelopmental disorder characterized mainly by intellectual disability of variable severity and speech delay, hypotonia, and heart and eye malformations. Although loss of function (LoF) mutations were initially reported as causing this disorder, missense mutations, to date always involving serine residues, have recently been associated with a form of the disorder without cardiac involvement. RESULTS In this study we present five new patients, four with truncating mutations and one with a missense change and the only one not presenting with cardiac anomalies. The missense change [p.(Gly359Ser)], also predicted to affect splicing by in silico tools, was functionally tested in the patient's lymphocyte RNA revealing a splicing effect for this allele that would lead to a frameshift and premature truncation. CONCLUSIONS An extensive revision of the clinical features of these five patients revealed high concordance with the 80 cases previously reported, including developmental delay with speech delay, feeding difficulties, hypotonia, a high bulbous nose, and recurrent infections. Other features present in some of these five patients, such as cryptorchidism in males, syndactyly, and trigonocephaly, expand the clinical spectrum of this syndrome.
Collapse
Affiliation(s)
- Roser Urreizti
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, IBUB, IRSJD, Barcelona, Spain. .,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain. .,Present address: Neurometabolic Unit, Hospital Sant Joan de Déu, Barcelona, Spain.
| | - Estrella Lopez-Martin
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Institute of Rare Diseases Research (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Antonio Martinez-Monseny
- Department of Genetic and Molecular Medicine and Pediatric Rare Diseases Institute (IPER), Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Déu, Barcelona, Spain
| | - Montse Pujadas
- Genetics Unit, University Pompeu Fabra, Hospital del Mar Research Institute IMIM, Barcelona, Spain
| | - Laura Castilla-Vallmanya
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, IBUB, IRSJD, Barcelona, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Luis Alberto Pérez-Jurado
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Genetics Unit, University Pompeu Fabra, Hospital del Mar Research Institute IMIM, Barcelona, Spain.,Women's and Children's Hospital, South Australian Health and Medical Research Institute and The University of Adelaide, Adelaide, Australia
| | - Mercedes Serrano
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Beatriz Martínez-Delgado
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Institute of Rare Diseases Research (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Manuel Posada-de-la-Paz
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Institute of Rare Diseases Research (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Javier Alonso
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Institute of Rare Diseases Research (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Purificación Marin-Reina
- Dysmorpholgy and Clinical Genetics, Division of Neonatology, Neonatal Research Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Mar O'Callaghan
- Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, IBUB, IRSJD, Barcelona, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Eva Bermejo-Sánchez
- Institute of Rare Diseases Research (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Susanna Balcells
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, IBUB, IRSJD, Barcelona, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
11
|
Kennedy J, Goudie D, Blair E, Chandler K, Joss S, McKay V, Green A, Armstrong R, Lees M, Kamien B, Hopper B, Tan TY, Yap P, Stark Z, Okamoto N, Miyake N, Matsumoto N, Macnamara E, Murphy JL, McCormick E, Hakonarson H, Falk MJ, Li D, Blackburn P, Klee E, Babovic-Vuksanovic D, Schelley S, Hudgins L, Kant S, Isidor B, Cogne B, Bradbury K, Williams M, Patel C, Heussler H, Duff-Farrier C, Lakeman P, Scurr I, Kini U, Elting M, Reijnders M, Schuurs-Hoeijmakers J, Wafik M, Blomhoff A, Ruivenkamp CAL, Nibbeling E, Dingemans AJM, Douine ED, Nelson SF, Hempel M, Bierhals T, Lessel D, Johannsen J, Arboleda VA, Newbury-Ecob R. KAT6A Syndrome: genotype-phenotype correlation in 76 patients with pathogenic KAT6A variants. Genet Med 2019; 21:850-860. [PMID: 30245513 PMCID: PMC6634310 DOI: 10.1038/s41436-018-0259-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/26/2018] [Indexed: 01/27/2023] Open
Abstract
PURPOSE Pathogenic variants in KAT6A have recently been identified as a cause of syndromic developmental delay. Within 2 years, the number of patients identified with pathogenic KAT6A variants has rapidly expanded and the full extent and variability of the clinical phenotype has not been reported. METHODS We obtained data for patients with KAT6A pathogenic variants through three sources: treating clinicians, an online family survey distributed through social media, and a literature review. RESULTS We identified 52 unreported cases, bringing the total number of published cases to 76. Our results expand the genotypic spectrum of pathogenic variants to include missense and splicing mutations. We functionally validated a pathogenic splice-site variant and identified a likely hotspot location for de novo missense variants. The majority of clinical features in KAT6A syndrome have highly variable penetrance. For core features such as intellectual disability, speech delay, microcephaly, cardiac anomalies, and gastrointestinal complications, genotype- phenotype correlations show that late-truncating pathogenic variants (exons 16-17) are significantly more prevalent. We highlight novel associations, including an increased risk of gastrointestinal obstruction. CONCLUSION Our data expand the genotypic and phenotypic spectrum for individuals with genetic pathogenic variants in KAT6A and we outline appropriate clinical management.
Collapse
Affiliation(s)
- Joanna Kennedy
- Clinical Genetics, University Hospitals Bristol, Southwell St, Bristol, UK
- University of Bristol, Bristol, UK
| | - David Goudie
- Clinical Genetics, Ninewells Hospital & Medical School, Dundee, UK
| | - Edward Blair
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Clinical Genetics, Churchill Hospital, Headington, Oxford, UK
| | - Kate Chandler
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Central Manchester Foundation NHS Trust, Manchester Academic Health Science Centre (MAHSC), Manchester, UK
| | - Shelagh Joss
- West of Scotland Genetics Service, Queen Elizabeth University Hospital, Glasgow, UK
| | - Victoria McKay
- Cheshire & Merseyside Regional Genetics Service, Liverpool Women's NHS Foundation Trust, Crown Street, Liverpool, UK
| | - Andrew Green
- Department of Clinical Genetics, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Ruth Armstrong
- East Anglian Medical Genetics Service, Addenbrooke's Hospital, Cambridge, UK
| | - Melissa Lees
- Clinical Genetics, Great Ormond Street Hospital NHS Trust, London, UK
| | | | | | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Patrick Yap
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
- Genetic Health Service New Zealand, Auckland, New Zealand
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Medical Center, Osaka, Japan
- Research Institute for Maternal and Child Health, Osaka Medical Center, Osaka, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ellen Macnamara
- National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | | | - Elizabeth McCormick
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marni J Falk
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dong Li
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Eric Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Dusica Babovic-Vuksanovic
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Susan Schelley
- Division of Medical Genetics, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Louanne Hudgins
- Division of Medical Genetics, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Sarina Kant
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Benjamin Cogne
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - Kimberley Bradbury
- Clinical Genetics Guys and St Thomas' NHS Foundation Trust, Guys Hospital, London, UK
| | - Mark Williams
- Molecular Diagnostics, Mater Group, South Brisbane, Queensland, Australia
| | - Chirag Patel
- Genetic Health Queensland, Herston, Brisbane, Queensland, Australia
| | - Helen Heussler
- Child Development Service, Lady Cilento Children's Hospital, Brisbane, Queensland, Australia
| | | | - Phillis Lakeman
- Academic Medical Center, Department of Clinical Genetics, Amsterdam, The Netherlands
| | - Ingrid Scurr
- Clinical Genetics, University Hospitals Bristol, Southwell St, Bristol, UK
| | - Usha Kini
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Clinical Genetics, Churchill Hospital, Headington, Oxford, UK
| | - Mariet Elting
- Klinisch Geneticus, VU Medisch centrum, Amsterdam, The Netherlands
| | - Margot Reijnders
- Radboud University Medical Center, Department of Human Genetics, Nijmegen, The Netherlands
| | | | - Mohamed Wafik
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Clinical Genetics, Churchill Hospital, Headington, Oxford, UK
| | - Anne Blomhoff
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | | | - Esther Nibbeling
- Department of Genetics, University of Groningen, Groningen, The Netherlands
| | | | - Emilie D Douine
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Stanley F Nelson
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Jessika Johannsen
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Valerie A Arboleda
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
| | - Ruth Newbury-Ecob
- Clinical Genetics, University Hospitals Bristol, Southwell St, Bristol, UK.
- University of Bristol, Bristol, UK.
| |
Collapse
|