1
|
Ganesh K, Joshi MB. Neutrophil sub-types in maintaining immune homeostasis during steady state, infections and sterile inflammation. Inflamm Res 2023; 72:1175-1192. [PMID: 37212866 PMCID: PMC10201050 DOI: 10.1007/s00011-023-01737-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/20/2023] [Accepted: 04/28/2023] [Indexed: 05/23/2023] Open
Abstract
INTRODUCTION Neutrophils are component of innate immune system and a) eliminate pathogens b) maintain immune homeostasis by regulating other immune cells and c) contribute to the resolution of inflammation. Neutrophil mediated inflammation has been described in pathogenesis of various diseases. This indicates neutrophils do not represent homogeneous population but perform multiple functions through confined subsets. Hence, in the present review we summarize various studies describing the heterogeneous nature of neutrophils and associated functions during steady state and pathological conditions. METHODOLOGY We performed extensive literature review with key words 'Neutrophil subpopulations' 'Neutrophil subsets', Neutrophil and infections', 'Neutrophil and metabolic disorders', 'Neutrophil heterogeneity' in PUBMED. RESULTS Neutrophil subtypes are characterized based on buoyancy, cell surface markers, localization and maturity. Recent advances in high throughput technologies indicate the existence of functionally diverse subsets of neutrophils in bone marrow, blood and tissues in both steady state and pathological conditions. Further, we found proportions of these subsets significantly vary in pathological conditions. Interestingly, stimulus specific activation of signalling pathways in neutrophils have been demonstrated. CONCLUSION Neutrophil sub-populations differ among diseases and hence, mechanisms regulating formation, sustenance, proportions and functions of these sub-types vary between physiological and pathological conditions. Hence, mechanistic insights of neutrophil subsets in disease specific manner may facilitate development of neutrophil-targeted therapies.
Collapse
Affiliation(s)
- Kailash Ganesh
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576104, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576104, India.
| |
Collapse
|
2
|
Malengier-Devlies B, Metzemaekers M, Wouters C, Proost P, Matthys P. Neutrophil Homeostasis and Emergency Granulopoiesis: The Example of Systemic Juvenile Idiopathic Arthritis. Front Immunol 2021; 12:766620. [PMID: 34966386 PMCID: PMC8710701 DOI: 10.3389/fimmu.2021.766620] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022] Open
Abstract
Neutrophils are key pathogen exterminators of the innate immune system endowed with oxidative and non-oxidative defense mechanisms. More recently, a more complex role for neutrophils as decision shaping cells that instruct other leukocytes to fine-tune innate and adaptive immune responses has come into view. Under homeostatic conditions, neutrophils are short-lived cells that are continuously released from the bone marrow. Their development starts with undifferentiated hematopoietic stem cells that pass through different immature subtypes to eventually become fully equipped, mature neutrophils capable of launching fast and robust immune responses. During severe (systemic) inflammation, there is an increased need for neutrophils. The hematopoietic system rapidly adapts to this increased demand by switching from steady-state blood cell production to emergency granulopoiesis. During emergency granulopoiesis, the de novo production of neutrophils by the bone marrow and at extramedullary sites is augmented, while additional mature neutrophils are rapidly released from the marginated pools. Although neutrophils are indispensable for host protection against microorganisms, excessive activation causes tissue damage in neutrophil-rich diseases. Therefore, tight regulation of neutrophil homeostasis is imperative. In this review, we discuss the kinetics of neutrophil ontogenesis in homeostatic conditions and during emergency myelopoiesis and provide an overview of the different molecular players involved in this regulation. We substantiate this review with the example of an autoinflammatory disease, i.e. systemic juvenile idiopathic arthritis.
Collapse
Affiliation(s)
- Bert Malengier-Devlies
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mieke Metzemaekers
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Carine Wouters
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.,Division of Pediatric Rheumatology, University Hospitals Leuven, Leuven, Belgium.,European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) at University Hospital Leuven, Leuven, Belgium
| | - Paul Proost
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
McKenna E, Mhaonaigh AU, Wubben R, Dwivedi A, Hurley T, Kelly LA, Stevenson NJ, Little MA, Molloy EJ. Neutrophils: Need for Standardized Nomenclature. Front Immunol 2021; 12:602963. [PMID: 33936029 PMCID: PMC8081893 DOI: 10.3389/fimmu.2021.602963] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Neutrophils are the most abundant innate immune cell with critical anti-microbial functions. Since the discovery of granulocytes at the end of the nineteenth century, the cells have been given many names including phagocytes, polymorphonuclear neutrophils (PMN), granulocytic myeloid derived suppressor cells (G-MDSC), low density neutrophils (LDN) and tumor associated neutrophils (TANS). This lack of standardized nomenclature for neutrophils suggest that biologically distinct populations of neutrophils exist, particularly in disease, when in fact these may simply be a manifestation of the plasticity of the neutrophil as opposed to unique populations. In this review, we profile the surface markers and granule expression of each stage of granulopoiesis to offer insight into how each stage of maturity may be identified. We also highlight the remarkable surface marker expression profiles between the supposed neutrophil populations.
Collapse
Affiliation(s)
- Ellen McKenna
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland.,Paediatric Research Laboratory, Trinity Translational Medicine Institute (TTMI), St James' Hospital, Dublin, Ireland
| | | | - Richard Wubben
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Amrita Dwivedi
- Trinity Health Kidney Centre, TTMI, Trinity College, Dublin, Ireland
| | - Tim Hurley
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland.,Paediatric Research Laboratory, Trinity Translational Medicine Institute (TTMI), St James' Hospital, Dublin, Ireland.,Neonatology, Coombe Women and Infant's University Hospital, Dublin, Ireland
| | - Lynne A Kelly
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland.,Paediatric Research Laboratory, Trinity Translational Medicine Institute (TTMI), St James' Hospital, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland
| | - Nigel J Stevenson
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin, Ireland.,Viral Immunology Group, Royal College of Surgeons in Ireland-Medical University of Bahrain, Zallaq, Bahrain
| | - Mark A Little
- Trinity Health Kidney Centre, TTMI, Trinity College, Dublin, Ireland.,Irish Centre for Vascular Biology, Trinity College Dublin, Dublin, Ireland
| | - Eleanor J Molloy
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland.,Paediatric Research Laboratory, Trinity Translational Medicine Institute (TTMI), St James' Hospital, Dublin, Ireland.,Neonatology, Coombe Women and Infant's University Hospital, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland.,Neonatology, Children's Hospital Ireland (CHI) at Crumlin, Dublin, Ireland.,Paediatrics, CHI at Tallaght, Tallaght University Hospital, Dublin, Ireland
| |
Collapse
|
4
|
Chowdhury S, Ghosh S. Next Generation Sequencing and Stem Cells. Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Zhu Y, Wang T, Gu J, Huang K, Zhang T, Zhang Z, Liu H, Tang J, Mai Y, Zhang Y, Li Y, Feng Y, Kang B, Li J, Shan Y, Chen Q, Zhang J, Long B, Wang J, Gao M, Zhang D, Zhou M, Zhong X, Chen J, Pei D, Nie J, Liu B, Pan G. Characterization and generation of human definitive multipotent hematopoietic stem/progenitor cells. Cell Discov 2020; 6:89. [PMID: 33298886 PMCID: PMC7705709 DOI: 10.1038/s41421-020-00213-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/02/2020] [Indexed: 01/03/2023] Open
Abstract
Definitive hematopoiesis generates hematopoietic stem/progenitor cells (HSPCs) that give rise to all mature blood and immune cells, but remains poorly defined in human. Here, we resolve human hematopoietic populations at the earliest hematopoiesis stage by single-cell RNA-seq. We characterize the distinct molecular profiling between early primitive and definitive hematopoiesis in both human embryonic stem cell (hESC) differentiation and early embryonic development. We identify CD44 to specifically discriminate definitive hematopoiesis and generate definitive HSPCs from hESCs. The multipotency of hESCs-derived HSPCs for various blood and immune cells is validated by single-cell clonal assay. Strikingly, these hESCs-derived HSPCs give rise to blood and lymphoid lineages in vivo. Lastly, we characterize gene-expression dynamics in definitive and primitive hematopoiesis and reveal an unreported role of ROCK-inhibition in enhancing human definitive hematopoiesis. Our study provides a prospect for understanding human early hematopoiesis and a firm basis for generating blood and immune cells for clinical purposes.
Collapse
Affiliation(s)
- Yanling Zhu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Tianyu Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Jiaming Gu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke Huang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Tian Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Zhishuai Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - He Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Jun Tang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Yuchan Mai
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Yanqi Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhang Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yashu Feng
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Baoqiang Kang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Jinbing Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongli Shan
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Qianyu Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Jian Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Bing Long
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Junwei Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Minghui Gao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Di Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Zhou
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Xiaofen Zhong
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Jinfu Nie
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Bing Liu
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China. .,Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
6
|
Transcriptomic and Epigenomic Profiling of Histone Deacetylase Inhibitor Treatment Reveals Distinct Gene Regulation Profiles Leading to Impaired Neutrophil Development. Hemasphere 2019; 3:e270. [PMID: 31723844 PMCID: PMC6745919 DOI: 10.1097/hs9.0000000000000270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 01/08/2023] Open
Abstract
Supplemental Digital Content is available in the text The clinical use of histone deacetylase inhibitors (HDACi) for the treatment of bone marrow failure and hematopoietic malignancies has increased dramatically over the last decades. Nonetheless, their effects on normal myelopoiesis remain poorly evaluated. Here, we treated cord blood derived CD34+ progenitor cells with two chemically distinct HDACi inhibitors MS-275 or SAHA and analyzed their effects on the transcriptome (RNA-seq), epigenome (H3K27ac ChIP-seq) and functional and morphological characteristics during neutrophil development. MS-275 (entinostat) selectively inhibits class I HDACs, with a preference for HDAC1, while SAHA (vorinostat) is a non-selective class I/II HDACi. Treatment with individual HDACi resulted in both overlapping and distinct effects on both transcriptome and epigenome, whereas functional effects were relatively similar. Both HDACi resulted in reduced expansion and increased apoptosis in neutrophil progenitor cells. Morphologically, HDACi disrupted normal neutrophil differentiation what was illustrated by decreased percentages of mature neutrophils. In addition, while SAHA treatment clearly showed a block at the promyelocytic stage, MS-275 treatment was characterized by dysplastic features and skewing towards the monocytic lineage. These effects could be mimicked using shRNA-mediated knockdown of HDAC1. Taken together, our data provide novel insights into the effects of HDAC inhibition on normal hematopoietic cells during neutrophil differentiation. These findings should be taken into account when considering the clinical use of MS-275 and SAHA, and can be potentially utilized to tailor more specific, hematopoietic-directed HDACi in the future.
Collapse
|
7
|
Identification of a novel enhancer of CEBPE essential for granulocytic differentiation. Blood 2019; 133:2507-2517. [PMID: 30952671 DOI: 10.1182/blood.2018886077] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/25/2019] [Indexed: 12/22/2022] Open
Abstract
CCAAT/enhancer binding protein ε (CEBPE) is an essential transcription factor for granulocytic differentiation. Mutations of CEBPE occur in individuals with neutrophil-specific granule deficiency (SGD), which is characterized by defects in neutrophil maturation. Cebpe-knockout mice also exhibit defects in terminal differentiation of granulocytes, a phenotype reminiscent of SGD. Analysis of DNase I hypersensitive sites sequencing data revealed an open chromatin region 6 kb downstream of the transcriptional start site of Cebpe in murine myeloid cells. We identified an interaction between this +6-kb region and the core promoter of Cebpe using circular chromosome conformation capture sequencing (4C-seq). To understand the role of this putative enhancer in transcriptional regulation of Cebpe, we targeted it using catalytically inactive Cas9 fused to Krüppel-associated box (KRAB) domain and observed a significant downregulation of transcript and protein levels of CEBPE in cells expressing guide RNA targeting the +6-kb region. To further investigate the role of this novel enhancer further in myelopoiesis, we generated mice with deletion of this region using CRISPR/Cas9 technology. Germline deletion of the +6-kb enhancer resulted in reduced levels of CEBPE and its target genes and caused a severe block in granulocytic differentiation. We also identified binding of CEBPA and CEBPE to the +6-kb enhancer, which suggests their role in regulating the expression of Cebpe In summary, we have identified a novel enhancer crucial for regulating expression of Cebpe and required for normal granulocytic differentiation.
Collapse
|
8
|
Al-Radhawi MA, Kumar NS, Sontag ED, Del Vecchio D. Stochastic multistationarity in a model of the hematopoietic stem cell differentiation network. PROCEEDINGS OF THE ... IEEE CONFERENCE ON DECISION & CONTROL. IEEE CONFERENCE ON DECISION & CONTROL 2019; 2018:1886-1892. [PMID: 32153314 DOI: 10.1109/cdc.2018.8619300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A central issue in the analysis of multi-stable systems is that of controlling the relative size of the basins of attraction of alternative states through suitable choices of system parameters. We are interested here mainly in the stochastic version of this problem, that of shaping the stationary probability distribution of a Markov chain so that various alternative modes become more likely than others. Although many of our results are more general, we were motivated by an important biological question, that of cell differentiation. In the mathematical modeling of cell differentiation, it is common to think of internal states of cells (quanfitied by activation levels of certain genes) as determining the different cell types. Specifically, we study here the "PU.1/GATA-1 circuit" which is involved in the control of the development of mature blood cells from hematopoietic stem cells (HSCs). All mature, specialized blood cells have been shown to be derived from multipotent HSCs. Our first contribution is to introduce a rigorous chemical reaction network model of the PU.1/GATA-1 circuit, which incorporates current biological knowledge. We then find that the resulting ODE model of these biomolecular reactions is incapable of exhibiting multistability, contradicting the fact that differentiation networks have, by definition, alternative stable steady states. When considering instead the stochastic version of this chemical network, we analytically construct the stationary distribution, and are able to show that this distribution is indeed capable of admitting a multiplicity of modes. Finally, we study how a judicious choice of system parameters serves to bias the probabilities towards different stationary states. We remark that certain changes in system parameters can be physically implemented by a biological feedback mechanism; tuning this feedback gives extra degrees of freedom that allow one to assign higher likelihood to some cell types over others.
Collapse
Affiliation(s)
- M Ali Al-Radhawi
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139.,Department of Electrical and Computer Engineering and Department of Bioengineering, Northeastern University, 805 Columbus Ave, Boston, MA 02115, USA
| | - Nithin S Kumar
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Eduardo D Sontag
- Department of Electrical and Computer Engineering and Department of Bioengineering, Northeastern University, 805 Columbus Ave, Boston, MA 02115, USA
| | - Domitilla Del Vecchio
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| |
Collapse
|
9
|
Manso BA, Zhang H, Mikkelson MG, Gwin KA, Secreto CR, Ding W, Parikh SA, Kay NE, Medina KL. Bone marrow hematopoietic dysfunction in untreated chronic lymphocytic leukemia patients. Leukemia 2018; 33:638-652. [PMID: 30291337 DOI: 10.1038/s41375-018-0280-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 08/17/2018] [Accepted: 09/12/2018] [Indexed: 12/16/2022]
Abstract
The consequences of immune dysfunction in B-chronic lymphocytic leukemia (CLL) likely relate to the incidence of serious recurrent infections and second malignancies that plague CLL patients. The well-described immune abnormalities are not able to consistently explain these complications. Here, we report bone marrow (BM) hematopoietic dysfunction in early and late stage untreated CLL patients. Numbers of CD34+ BM hematopoietic progenitors responsive in standard colony-forming unit (CFU) assays, including CFU-GM/GEMM and CFU-E, were significantly reduced. Flow cytometry revealed corresponding reductions in frequencies of all hematopoietic stem and progenitor cell (HSPC) subsets assessed in CLL patient marrow. Consistent with the reduction in HSPCs, BM resident monocytes and natural killer cells were reduced, a deficiency recapitulated in blood. Finally, we report increases in protein levels of the transcriptional regulators HIF-1α, GATA-1, PU.1, and GATA-2 in CLL patient BM, providing molecular insight into the basis of HSPC dysfunction. Importantly, PU.1 and GATA-2 were rapidly increased when healthy HSPCs were exposed in vitro to TNFα, a cytokine constitutively produced by CLL B cells. Together, these findings reveal BM hematopoietic dysfunction in untreated CLL patients that provides new insight into the etiology of the complex immunodeficiency state in CLL.
Collapse
Affiliation(s)
- Bryce A Manso
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Henan Zhang
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Kimberly A Gwin
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Wei Ding
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sameer A Parikh
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Neil E Kay
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kay L Medina
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
10
|
Olariu V, Peterson C. Kinetic models of hematopoietic differentiation. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2018; 11:e1424. [PMID: 29660842 PMCID: PMC6191385 DOI: 10.1002/wsbm.1424] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/13/2018] [Accepted: 03/16/2018] [Indexed: 01/02/2023]
Abstract
As cell and molecular biology is becoming increasingly quantitative, there is an upsurge of interest in mechanistic modeling at different levels of resolution. Such models mostly concern kinetics and include gene and protein interactions as well as cell population dynamics. The final goal of these models is to provide experimental predictions, which is now taking on. However, even without matured predictions, kinetic models serve the purpose of compressing a plurality of experimental results into something that can empower the data interpretation, and importantly, suggesting new experiments by turning "knobs" in silico. Once formulated, kinetic models can be executed in terms of molecular rate equations for concentrations or by stochastic simulations when only a limited number of copies are involved. Developmental processes, in particular those of stem and progenitor cell commitments, are not only topical but also particularly suitable for kinetic modeling due to the finite number of key genes involved in cellular decisions. Stem and progenitor cell commitment processes have been subject to intense experimental studies over the last decade with some emphasis on embryonic and hematopoietic stem cells. Gene and protein interactions governing these processes can be modeled by binary Boolean rules or by continuous-valued models with interactions set by binding strengths. Conceptual insights along with tested predictions have emerged from such kinetic models. Here we review kinetic modeling efforts applied to stem cell developmental systems with focus on hematopoiesis. We highlight the future challenges including multi-scale models integrating cell dynamical and transcriptional models. This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Developmental Biology > Stem Cell Biology and Regeneration.
Collapse
Affiliation(s)
- Victor Olariu
- Department of Computational Biology, Lund University, Lund, Sweden
| | - Carsten Peterson
- Department of Computational Biology, Lund University, Lund, Sweden
| |
Collapse
|
11
|
The Ontogeny of a Neutrophil: Mechanisms of Granulopoiesis and Homeostasis. Microbiol Mol Biol Rev 2018; 82:82/1/e00057-17. [PMID: 29436479 DOI: 10.1128/mmbr.00057-17] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Comprising the majority of leukocytes in humans, neutrophils are the first immune cells to respond to inflammatory or infectious etiologies and are crucial participants in the proper functioning of both innate and adaptive immune responses. From their initial appearance in the liver, thymus, and spleen at around the eighth week of human gestation to their generation in large numbers in the bone marrow at the end of term gestation, the differentiation of the pluripotent hematopoietic stem cell into a mature, segmented neutrophil is a highly controlled process where the transcriptional regulators C/EBP-α and C/EBP-ε play a vital role. Recent advances in neutrophil biology have clarified the life cycle of these cells and revealed striking differences between neonatal and adult neutrophils based on fetal maturation and environmental factors. Here we detail neutrophil ontogeny, granulopoiesis, and neutrophil homeostasis and highlight important differences between neonatal and adult neutrophil populations.
Collapse
|
12
|
Gabel M, Regoes RR, Graw F. More or less-On the influence of labelling strategies to infer cell population dynamics. PLoS One 2017; 12:e0185523. [PMID: 29045427 PMCID: PMC5646766 DOI: 10.1371/journal.pone.0185523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/14/2017] [Indexed: 11/18/2022] Open
Abstract
The adoptive transfer of labelled cell populations has been an essential tool to determine and quantify cellular dynamics. The experimental methods to label and track cells over time range from fluorescent dyes over congenic markers towards single-cell labelling techniques, such as genetic barcodes. While these methods have been widely used to quantify cell differentiation and division dynamics, the extent to which the applied labelling strategy actually affects the quantification of the dynamics has not been determined so far. This is especially important in situations where measurements can only be obtained at a single time point, as e.g. due to organ harvest. To this end, we studied the appropriateness of various labelling strategies as characterised by the number of different labels and the initial number of cells per label to quantify cellular dynamics. We simulated adoptive transfer experiments in systems of various complexity that assumed either homoeostatic cellular turnover or cell expansion dynamics involving various steps of cell differentiation and proliferation. Re-sampling cells at a single time point, we determined the ability of different labelling strategies to recover the underlying kinetics. Our results indicate that cell transition and expansion rates are differently affected by experimental shortcomings, such as loss of cells during transfer or sampling, dependent on the labelling strategy used. Furthermore, uniformly distributed labels in the transferred population generally lead to more robust and less biased results than non-equal label sizes. In addition, our analysis indicates that certain labelling approaches incorporate a systematic bias for the identification of complex cell expansion dynamics.
Collapse
Affiliation(s)
- Michael Gabel
- Center for Modelling and Simulation in the Biosciences, BioQuant-Center, Heidelberg University, 69120 Heidelberg, Germany
- * E-mail: (MG); (FG)
| | - Roland R. Regoes
- Institute for Integrative Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Frederik Graw
- Center for Modelling and Simulation in the Biosciences, BioQuant-Center, Heidelberg University, 69120 Heidelberg, Germany
- * E-mail: (MG); (FG)
| |
Collapse
|
13
|
Berthault C, Ramond C, Burlen-Defranoux O, Soubigou G, Chea S, Golub R, Pereira P, Vieira P, Cumano A. Asynchronous lineage priming determines commitment to T cell and B cell lineages in fetal liver. Nat Immunol 2017; 18:1139-1149. [PMID: 28825702 DOI: 10.1038/ni.3820] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 07/31/2017] [Indexed: 12/15/2022]
Abstract
The molecular events that initiate lymphoid-lineage specification remain unidentified because the stages of differentiation during which lineage commitment occurs are difficult to characterize. We isolated fetal liver progenitor cells undergoing restriction of their differentiation potential toward the T cell-innate lymphoid cell lineage or the B cell lineage. Transcripts that defined the molecular signatures of these two subsets were sequentially upregulated in lympho-myeloid precursor cells and in common lymphoid progenitor cells, respectively, and this preceded lineage restriction; this indicates that T cell-versus-B cell commitment is not a binary fate 'decision'. The T cell-bias and B cell-bias transcriptional programs were frequently co-expressed in common lymphoid progenitor cells and were segregated in subsets biased toward T cell differentiation or B cell differentiation, after interleukin 7 (IL-7) signaling that controlled the number of progenitor cells engaging in T cell differentiation versus B cell differentiation.
Collapse
Affiliation(s)
- Claire Berthault
- Unit for Lymphopoiesis, Pasteur Institute, Paris, France. Immunology department.,INSERM U1223, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Cyrille Ramond
- Unit for Lymphopoiesis, Pasteur Institute, Paris, France. Immunology department.,INSERM U1223, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Odile Burlen-Defranoux
- Unit for Lymphopoiesis, Pasteur Institute, Paris, France. Immunology department.,INSERM U1223, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Guillaume Soubigou
- Département Génomes et Génétique, Plate-forme Transcriptome et Epigénome, Institut Pasteur, Paris, France
| | - Sylvestre Chea
- Unit for Lymphopoiesis, Pasteur Institute, Paris, France. Immunology department.,INSERM U1223, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Rachel Golub
- Unit for Lymphopoiesis, Pasteur Institute, Paris, France. Immunology department.,INSERM U1223, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Pablo Pereira
- Unit for Lymphopoiesis, Pasteur Institute, Paris, France. Immunology department.,INSERM U1223, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Paulo Vieira
- Unit for Lymphopoiesis, Pasteur Institute, Paris, France. Immunology department.,INSERM U1223, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Ana Cumano
- Unit for Lymphopoiesis, Pasteur Institute, Paris, France. Immunology department.,INSERM U1223, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| |
Collapse
|
14
|
Proserpio V, Lönnberg T. Cutting‐edge single‐cell genomics and modelling in immunology. Immunol Cell Biol 2016; 94:224. [DOI: 10.1038/icb.2015.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Valentina Proserpio
- European Bioinformatics Institute (EMBL‐EBI), European Molecular Biology Laboratory, Wellcome Trust Genome Campus Hinxton Cambridge UK
| | - Tapio Lönnberg
- European Bioinformatics Institute (EMBL‐EBI), European Molecular Biology Laboratory, Wellcome Trust Genome Campus Hinxton Cambridge UK
| |
Collapse
|
15
|
Macaulay IC, Svensson V, Labalette C, Ferreira L, Hamey F, Voet T, Teichmann SA, Cvejic A. Single-Cell RNA-Sequencing Reveals a Continuous Spectrum of Differentiation in Hematopoietic Cells. Cell Rep 2016; 14:966-977. [PMID: 26804912 PMCID: PMC4742565 DOI: 10.1016/j.celrep.2015.12.082] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/30/2015] [Accepted: 12/16/2015] [Indexed: 12/21/2022] Open
Abstract
The transcriptional programs that govern hematopoiesis have been investigated primarily by population-level analysis of hematopoietic stem and progenitor cells, which cannot reveal the continuous nature of the differentiation process. Here we applied single-cell RNA-sequencing to a population of hematopoietic cells in zebrafish as they undergo thrombocyte lineage commitment. By reconstructing their developmental chronology computationally, we were able to place each cell along a continuum from stem cell to mature cell, refining the traditional lineage tree. The progression of cells along this continuum is characterized by a highly coordinated transcriptional program, displaying simultaneous suppression of genes involved in cell proliferation and ribosomal biogenesis as the expression of lineage specific genes increases. Within this program, there is substantial heterogeneity in the expression of the key lineage regulators. Overall, the total number of genes expressed, as well as the total mRNA content of the cell, decreases as the cells undergo lineage commitment.
Collapse
Affiliation(s)
- Iain C Macaulay
- Sanger Institute-EBI Single-Cell Genomics Centre, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK
| | - Valentine Svensson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Charlotte Labalette
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0PT, UK
| | - Lauren Ferreira
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0PT, UK
| | - Fiona Hamey
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 1QR, UK
| | - Thierry Voet
- Sanger Institute-EBI Single-Cell Genomics Centre, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK; Department of Human Genetics, University of Leuven, Leuven 3000, Belgium
| | - Sarah A Teichmann
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Ana Cvejic
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0PT, UK; Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 1QR, UK.
| |
Collapse
|