1
|
Munteanu C, Mârza SM, Papuc I. The immunomodulatory effects of vitamins in cancer. Front Immunol 2024; 15:1464329. [PMID: 39434876 PMCID: PMC11491384 DOI: 10.3389/fimmu.2024.1464329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
Nutrition may affect animal health due to the strong link between them. Also, diets improve the healing process in various disease states. Cancer is a disease, where the harmful consequences of tumors severely impair the body. The information regarding the evolution of this disease is extrapolated from human to animal because there are few specific studies regarding nutritional needs in animals with cancer. Thus, this paper aims to review the literature regarding the immunomodulatory effects of vitamins in mammal cancer. An adequate understanding of the metabolism and requirements of nutrients for mammals is essential to ensuring their optimal growth, development, and health, regardless of their food sources. According to these: 1) Some species are highly dependent on vitamin D from food, so special attention must be paid to this aspect. Calcitriol/VDR signaling can activate pro-apoptotic proteins and suppress anti-apoptotic ones. 2) Nitric oxide (NO) production is modulated by vitamin E through inhibiting transcription nuclear factor kappa B (NF-κB) activation. 3) Thiamine supplementation could be responsible for the stimulation of tumor cell proliferation, survival, and resistance to chemotherapy. 4) Also, it was found that the treatment with NO-Cbl in dogs is a viable anti-cancer therapy that capitalizes on the tumor-specific properties of the vitamin B12 receptor. Therefore, diets should contain the appropriate class of compounds in adequate proportions. Also, the limitations of this paper are that some vitamins are intensively studied and at the same time regarding others, there is a lack of information, especially in animals. Therefore, some subsections are longer and more heavily debated than others.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, ;Romania
| | - Sorin Marian Mârza
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, Cluj-Napoca, ;Romania
| | - Ionel Papuc
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, Cluj-Napoca, ;Romania
| |
Collapse
|
2
|
Guo Y, Xu Y, Wang D, Yang S, Song Z, Li R, He X. Dietary silymarin improves performance by altering hepatic lipid metabolism and cecal microbiota function and its metabolites in late laying hens. J Anim Sci Biotechnol 2024; 15:100. [PMID: 38997768 PMCID: PMC11245868 DOI: 10.1186/s40104-024-01057-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/28/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Liver lipid dysregulation is one of the major factors in the decline of production performance in late-stage laying hens. Silymarin (SIL), a natural flavonolignan extracted from milk thistle, is known for its hepatoprotective and lipid-lowering properties in humans. This study evaluates whether SIL can provide similar benefits to late-stage laying hens. A total of 480 68-week-old Lohmann Pink laying hens were randomly assigned into 5 groups, each group consisting of 6 replicates with 16 hens each. The birds received a basal diet either without silymarin (control) or supplemented with silymarin at concentrations of 250, 500, 750, or 1,000 mg/kg (SIL250, SIL500, SIL750, SIL1000) over a 12-week period. RESULTS The CON group exhibited a significant decline in laying rates from weeks 9 to 12 compared to the initial 4 weeks (P = 0.042), while SIL supplementation maintained consistent laying rates throughout the study (P > 0.05). Notably, the SIL500 and SIL750 groups showed higher average egg weight than the CON group during weeks 5 to 8 (P = 0.049). The SIL750 group had a significantly higher average daily feed intake across the study period (P < 0.05), and the SIL500 group saw a marked decrease in the feed-to-egg ratio from weeks 5 to 8 (P = 0.003). Furthermore, the SIL500 group demonstrated significant reductions in serum ALT and AST levels (P < 0.05) and a significant decrease in serum triglycerides and total cholesterol at week 12 with increasing doses of SIL (P < 0.05). SIL also positively influenced liver enzyme expression (FASN, ACC, Apo-VLDL II, FXR, and CYP7A1; P < 0.05) and altered the cecal microbiota composition, enhancing species linked to secondary bile acid synthesis. Targeted metabolomics identified 9 metabolites predominantly involved in thiamin metabolism that were significantly different in the SIL groups (P < 0.05). CONCLUSIONS Our study demonstrated that dietary SIL supplementation could ameliorate egg production rate in late stage laying hens, mechanistically, this effect was via improving hepatic lipid metabolism and cecal microbiota function to achieve. Revealed the potentially of SIL as a feed supplementation to regulate hepatic lipid metabolism dysregulation. Overall, dietary 500 mg/kg SIL had the best effects.
Collapse
Affiliation(s)
- Yanghao Guo
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, Hunan, 410128, China
- Yuelushan Laboratory, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yudong Xu
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, Hunan, 410128, China
- Yuelushan Laboratory, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Derun Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, Hunan, 410128, China
- Yuelushan Laboratory, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Shihao Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, Hunan, 410128, China
- Yuelushan Laboratory, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zehe Song
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, Hunan, 410128, China
- Yuelushan Laboratory, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Rui Li
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China.
| | - Xi He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China.
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, Hunan, 410128, China.
- Yuelushan Laboratory, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| |
Collapse
|
3
|
Güder H, Eker P. A Retrospective Evaluation of the Laboratory Findings of Dermatology Patients Whose Biotin Levels Were Checked. Cureus 2023; 15:e41482. [PMID: 37551230 PMCID: PMC10404308 DOI: 10.7759/cureus.41482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 08/09/2023] Open
Abstract
Objective Biotin is widely known to be beneficial for the hair, nails, and skin, but there are only a few studies on biotin. We evaluated whether there is a relationship between biotin levels and age, gender, and frequently observed laboratory findings. We also evaluated biotin levels according to the reason for checking biotin levels. Methods One hundred five patients applied to the dermatology outpatient clinic and had their biotin levels checked. Patient files were retrospectively analyzed. Results There were a weak positive (r=0.207) relationship between biotin levels and basophil count, a weak positive (r=0.201) relationship between biotin levels and creatinine, and a weak positive (r=0.314) relationship between biotin levels and cholesterol/triglyceride ratio. There were a weak negative (r=-0.216) relationship between biotin levels and mean platelet volume (MPV) and a moderately negative (r=-0.315) relationship between biotin levels and triglyceride levels. Conclusion Biotin levels do not significantly differ with gender but increase with age. Although a weak correlation was detected between hemogram parameters and biotin levels with basophil percentage and mean platelet volume values, biotin did not significantly change hemogram parameters. The relationship between biotin levels and triglyceride levels was the most critical finding of our study. We recommend examining biotin levels in the patients with high triglyceride levels. When we encounter dermatological side effects related to the use of epidermal growth factor receptor tyrosine kinase inhibitors, we recommend evaluating biotin levels. We recommend that biotin supplementation be made only in the patients with deficiencies and that biotin levels be measured in the follow-up.
Collapse
Affiliation(s)
- Hüsna Güder
- Department of Dermatology, Maltepe University Faculty of Medicine, İstanbul, TUR
| | - Pınar Eker
- Department of Biochemistry, Maltepe University Faculty of Medicine, İstanbul, TUR
| |
Collapse
|
4
|
Dreisbach C, Alhusen J, Prescott S, Dudley D, Trinchieri G, Siega‐Riz AM. Metagenomic characterization of the maternal prenatal gastrointestinal microbiome by pregravid BMI. Obesity (Silver Spring) 2023; 31:412-422. [PMID: 36562201 PMCID: PMC10108029 DOI: 10.1002/oby.23659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/15/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The incidence of women entering into pregnancy with BMI indicating overweight or obesity is rising with concurrent increases in adverse complications such as gestational diabetes. Although several studies have examined the compositional changes to the microbiome across BMI classifications, there has been no investigation regarding changes in microbial function during pregnancy. METHODS A total of 105 gastrointestinal microbiome biospecimens were used in this analysis. Biospecimens were sequenced by using the Illumina NovaSeq 6000 shotgun metagenomics platform. RESULTS Findings indicate an enrichment in microbiota from the phylum Firmicutes across all pregravid BMI groups with a decrease in α diversity in groups with BMI indicating obesity or overweight compared with a group with BMI indicating normal weight (p = 0.02). More specifically, women with BMI indicating obesity or overweight had enrichment in Bifidobacterium bifidum and B. adolescentis. Women with BMI > 25 kg/m2 had a higher abundance of microbiota that support biotin synthesis and regulate epithelial cells in the lower gastrointestinal tract. These epithelial cells are responsible for host adaptability to dietary lipid variation and caloric absorption. CONCLUSIONS Our analysis suggests that there are differences in microbial composition and function between BMI groups. Future research should consider how these changes contribute to specific clinical outcomes during pregnancy.
Collapse
Affiliation(s)
- Caitlin Dreisbach
- School of NursingUniversity of VirginiaCharlottesvilleVirginiaUSA
- Data Science InstituteColumbia UniversityNew YorkNew YorkUSA
- School of NursingUniversity of RochesterNew YorkNew YorkUSA
| | - Jeanne Alhusen
- School of NursingUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Stephanie Prescott
- College of NursingUniversity of South FloridaTampaFloridaUSA
- Center for Cancer ResearchNational Cancer InstituteBethesdaMarylandUSA
| | - Donald Dudley
- Department of Obstetrics and GynecologyUniversity of Virginia Health SystemCharlottesvilleVirginiaUSA
| | | | - Anna Maria Siega‐Riz
- School of Public Health and Health SciencesUniversity of MassachusettsAmherstMassachusettsUSA
| |
Collapse
|
5
|
Belda E, Voland L, Tremaroli V, Falony G, Adriouch S, Assmann KE, Prifti E, Aron-Wisnewsky J, Debédat J, Le Roy T, Nielsen T, Amouyal C, André S, Andreelli F, Blüher M, Chakaroun R, Chilloux J, Coelho LP, Dao MC, Das P, Fellahi S, Forslund S, Galleron N, Hansen TH, Holmes B, Ji B, Krogh Pedersen H, Le P, Le Chatelier E, Lewinter C, Mannerås-Holm L, Marquet F, Myridakis A, Pelloux V, Pons N, Quinquis B, Rouault C, Roume H, Salem JE, Sokolovska N, Søndertoft NB, Touch S, Vieira-Silva S, Galan P, Holst J, Gøtze JP, Køber L, Vestergaard H, Hansen T, Hercberg S, Oppert JM, Nielsen J, Letunic I, Dumas ME, Stumvoll M, Pedersen OB, Bork P, Ehrlich SD, Zucker JD, Bäckhed F, Raes J, Clément K. Impairment of gut microbial biotin metabolism and host biotin status in severe obesity: effect of biotin and prebiotic supplementation on improved metabolism. Gut 2022; 71:2463-2480. [PMID: 35017197 PMCID: PMC9664128 DOI: 10.1136/gutjnl-2021-325753] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/15/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Gut microbiota is a key component in obesity and type 2 diabetes, yet mechanisms and metabolites central to this interaction remain unclear. We examined the human gut microbiome's functional composition in healthy metabolic state and the most severe states of obesity and type 2 diabetes within the MetaCardis cohort. We focused on the role of B vitamins and B7/B8 biotin for regulation of host metabolic state, as these vitamins influence both microbial function and host metabolism and inflammation. DESIGN We performed metagenomic analyses in 1545 subjects from the MetaCardis cohorts and different murine experiments, including germ-free and antibiotic treated animals, faecal microbiota transfer, bariatric surgery and supplementation with biotin and prebiotics in mice. RESULTS Severe obesity is associated with an absolute deficiency in bacterial biotin producers and transporters, whose abundances correlate with host metabolic and inflammatory phenotypes. We found suboptimal circulating biotin levels in severe obesity and altered expression of biotin-associated genes in human adipose tissue. In mice, the absence or depletion of gut microbiota by antibiotics confirmed the microbial contribution to host biotin levels. Bariatric surgery, which improves metabolism and inflammation, associates with increased bacterial biotin producers and improved host systemic biotin in humans and mice. Finally, supplementing high-fat diet-fed mice with fructo-oligosaccharides and biotin improves not only the microbiome diversity, but also the potential of bacterial production of biotin and B vitamins, while limiting weight gain and glycaemic deterioration. CONCLUSION Strategies combining biotin and prebiotic supplementation could help prevent the deterioration of metabolic states in severe obesity. TRIAL REGISTRATION NUMBER NCT02059538.
Collapse
Affiliation(s)
- Eugeni Belda
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France,Integrative Phenomics, Paris, France
| | - Lise Voland
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Valentina Tremaroli
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Goteborg, Sweden
| | - Gwen Falony
- Center for Microbiology, VIB, Leuven, Belgium,Vlaams Instituut voor Biotechnologie, VIB-KU Leuven, Heverlee, Flanders, Belgium
| | - Solia Adriouch
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Karen E Assmann
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Edi Prifti
- Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, Sorbonne Université, IRD, Bondy, France
| | - Judith Aron-Wisnewsky
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France,Department of Nutrition, Pitié-Salpêtrière Hospital, Assistance Publique - Hopitaux de Paris, Paris, France
| | - Jean Debédat
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Tiphaine Le Roy
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Trine Nielsen
- Center for Basic Metabolic Research, Novo Nordisk Foundation, University of Copenhagen, Kobenhavn, Denmark
| | - Chloé Amouyal
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Sébastien André
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Fabrizio Andreelli
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Matthias Blüher
- Medical Department III - Endocrinology, Nephrology, Rheumatology - Medical Center, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Rima Chakaroun
- Medical Department III - Endocrinology, Nephrology, Rheumatology - Medical Center, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Julien Chilloux
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London Faculty of Medicine, London, UK
| | - Luis Pedro Coelho
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Maria Carlota Dao
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Promi Das
- Department of Biology, Chalmers University of Technology, Goteborg, Sweden
| | - Soraya Fellahi
- Functional Unit, Biochemistry and Hormonology Department, enon Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France,Saint-Antoine Research Center, Sorbonne Université, INSERM, Paris, France
| | - Sofia Forslund
- Max Delbrück Center for Molecular Medicine, MDC, Berlin-Buch, Germany
| | - Nathalie Galleron
- MetaGenoPolis, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Tue H Hansen
- Center for Basic Metabolic Research, Novo Nordisk Foundation, University of Copenhagen, Kobenhavn, Denmark
| | - Bridget Holmes
- Centre Daniel Carasso, Global Nutrition Department, Danone Nutricia Research, Palaiseau, France
| | - Boyang Ji
- Department of Biology, Chalmers University of Technology, Goteborg, Sweden
| | - Helle Krogh Pedersen
- Center for Basic Metabolic Research, Novo Nordisk Foundation, University of Copenhagen, Kobenhavn, Denmark
| | - Phuong Le
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | | | | | - Louise Mannerås-Holm
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Goteborg, Sweden
| | - Florian Marquet
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Antonis Myridakis
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Veronique Pelloux
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Nicolas Pons
- MetaGenoPolis, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Benoit Quinquis
- MetaGenoPolis, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Christine Rouault
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Hugo Roume
- MetaGenoPolis, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Joe-Elie Salem
- Department of Pharmacology and CIC-1421, Assistance Publique-Hôpitaux de Paris, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Nataliya Sokolovska
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Nadja B Søndertoft
- Center for Basic Metabolic Research, Novo Nordisk Foundation, University of Copenhagen, Kobenhavn, Denmark
| | - Sothea Touch
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Sara Vieira-Silva
- Center for Microbiology, VIB, Leuven, Belgium,Vlaams Instituut voor Biotechnologie, VIB-KU Leuven, Heverlee, Flanders, Belgium
| | | | - Pilar Galan
- Nutritional Epidemiology Unit, INSERM, INRAE, CNAM, Paris 13 University, Bobigny, France
| | - Jens Holst
- Center for Basic Metabolic Research, Novo Nordisk Foundation, University of Copenhagen, Kobenhavn, Denmark
| | - Jens Peter Gøtze
- Department of Clinical Biochemistry, Rigshospitalet, Kobenhavn, Denmark
| | - Lars Køber
- Department of Cardiology, Rigshospitalet, Kobenhavn, Denmark
| | - Henrik Vestergaard
- Center for Basic Metabolic Research, Novo Nordisk Foundation, University of Copenhagen, Kobenhavn, Denmark,Steno Diabetes Center, Copenhagen, Gentofte, Denmark
| | - Torben Hansen
- Center for Basic Metabolic Research, Novo Nordisk Foundation, University of Copenhagen, Kobenhavn, Denmark,Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Serge Hercberg
- Nutritional Epidemiology Unit, INSERM, INRAE, CNAM, Paris 13 University, Bobigny, France
| | - Jean-Michel Oppert
- Department of Nutrition, Pitié-Salpêtrière Hospital, Assistance Publique - Hopitaux de Paris, Paris, France
| | - Jens Nielsen
- Department of Biology, Chalmers University of Technology, Goteborg, Sweden
| | | | - Marc-Emmanuel Dumas
- Department of Surgery and Cancer, Section of Computational and Systems Medicine, Imperial College London, London, UK,National Heart & Lung Institute, Section of Genomic & Environmental Medicine, Imperial College London, London, UK
| | - Michael Stumvoll
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, University of Leipzig Faculty of Medicine, Leipzig, Germany
| | - Oluf Borbye Pedersen
- Center for Basic Metabolic Research, Novo Nordisk Foundation, University of Copenhagen, Kobenhavn, Denmark
| | - Peer Bork
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Stanislav Dusko Ehrlich
- MetaGenoPolis, Université Paris-Saclay, INRAE, Jouy-en-Josas, France,Center for Host Microbiome Interactions, King's College London Dental Institute, London, UK
| | - Jean-Daniel Zucker
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France,Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, Sorbonne Université, IRD, Bondy, France
| | - Fredrik Bäckhed
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Goteborg, Sweden
| | - Jeroen Raes
- Center for Microbiology, VIB, Leuven, Belgium,Vlaams Instituut voor Biotechnologie, VIB-KU Leuven, Heverlee, Flanders, Belgium
| | - Karine Clément
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France .,Department of Nutrition, Pitié-Salpêtrière Hospital, Assistance Publique - Hopitaux de Paris, Paris, France
| |
Collapse
|
6
|
Preventing White Adipocyte Browning during Differentiation In Vitro: The Effect of Differentiation Protocols on Metabolic and Mitochondrial Phenotypes. Stem Cells Int 2022; 2022:3308194. [PMID: 35422865 PMCID: PMC9005291 DOI: 10.1155/2022/3308194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/01/2022] [Indexed: 11/29/2022] Open
Abstract
Mitochondrial dysfunction in white adipose tissue is strongly associated with obesity and its metabolic complications, which are important health challenges worldwide. Human adipose-derived stromal/stem cells (hASCs) are a promising tool to investigate the underlying mechanisms of such mitochondrial dysfunction and to subsequently provide knowledge for the development of treatments for obesity-related pathologies. A substantial obstacle in using hASCs is that the key compounds for adipogenic differentiation in vitro increase mitochondrial uncoupling, biogenesis, and activity, which are the signature features of brown adipocytes, thus altering the white adipocyte phenotype towards brown-like cells. Additionally, commonly used protocols for hASC adipogenic differentiation exhibit high variation in their composition of media, and a systematic comparison of their effect on mitochondria is missing. Here, we compared the five widely used adipogenic differentiation protocols for their effect on metabolic and mitochondrial phenotypes to identify a protocol that enables in vitro differentiation of white adipocytes and can more faithfully recapitulate the white adipocyte phenotype observed in human adipose tissue. We developed a workflow that included functional assays and morphological analysis of mitochondria and lipid droplets. We observed that triiodothyronine- or indomethacin-containing media and commercially available adipogenic media induced browning during in vitro differentiation of white adipocytes. However, the differentiation protocol containing 1 μM of the peroxisome proliferator-activated receptor gamma (PPARγ) agonist rosiglitazone prevented the browning effect and would be proposed for adipogenic differentiation protocol for hASCs to induce a white adipocyte phenotype. Preserving the white adipocyte phenotype in vitro is a crucial step for the study of obesity and associated metabolic diseases, adipose tissue pathologies, such as lipodystrophies, possible therapeutic compounds, and basic adipose tissue physiology.
Collapse
|
7
|
Voland L, Le Roy T, Debédat J, Clément K. Gut microbiota and vitamin status in persons with obesity: A key interplay. Obes Rev 2022; 23:e13377. [PMID: 34767276 DOI: 10.1111/obr.13377] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/28/2022]
Abstract
There are numerous factors involved in obesity progression and maintenance including systemic low-grade inflammation, adipose tissue dysfunction, or gut microbiota dysbiosis. Recently, a growing interest has arisen for vitamins' role in obesity and related disorders, both at the host and gut bacterial level. Indeed, vitamins are provided mostly by food, but some, from the B and K groups in particular, can be synthesized by the gut bacterial ecosystem and absorbed in the colon. Knowing that vitamin deficiency can alter many important cellular functions and lead to serious health issues, it is important to carefully monitor the vitamin status of patients with obesity and potentially already existing comorbidities as well as to examine the dysbiotic gut microbiota and thus potentially altered bacterial metabolism of vitamins. In this review, we examined both murine and human studies, to assess the prevalence of sub-optimal levels of several vitamins in obesity and metabolic alterations. This review also examines the relationship between vitamins and the gut microbiota in terms of vitamin production and the modulation of the gut bacterial ecosystem in conditions of vitamin shortage or supplementation. Furthermore, some strategies to improve vitamin status of patients with severe obesity are proposed within this review.
Collapse
Affiliation(s)
- Lise Voland
- Inserm, Sorbonne University, Nutrition and obesities: systemic approaches (NutriOmics), Paris, France
| | - Tiphaine Le Roy
- Inserm, Sorbonne University, Nutrition and obesities: systemic approaches (NutriOmics), Paris, France
| | - Jean Debédat
- Inserm, Sorbonne University, Nutrition and obesities: systemic approaches (NutriOmics), Paris, France
| | - Karine Clément
- Inserm, Sorbonne University, Nutrition and obesities: systemic approaches (NutriOmics), Paris, France.,Public hospital of Paris, Nutrition department, Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
8
|
Tsuji A, Ikeda Y, Murakami M, Kitagishi Y, Matsuda S. Reduction of oocyte lipid droplets and meiotic failure due to biotin deficiency was not rescued by restoring the biotin nutritional status. Nutr Res Pract 2022; 16:314-329. [PMID: 35663441 PMCID: PMC9149319 DOI: 10.4162/nrp.2022.16.3.314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/29/2021] [Accepted: 09/09/2021] [Indexed: 11/04/2022] Open
Affiliation(s)
- Ai Tsuji
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women's University, Nara 630-8506, Japan
| | - Yuka Ikeda
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women's University, Nara 630-8506, Japan
| | - Mutsumi Murakami
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women's University, Nara 630-8506, Japan
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women's University, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women's University, Nara 630-8506, Japan
| |
Collapse
|
9
|
Ito N, Takahashi T, Shiiba I, Nagashima S, Inatome R, Yanagi S. MITOL regulates phosphatidic acid-binding activity of RMDN3/PTPIP51. J Biochem 2021; 171:529-541. [PMID: 34964862 DOI: 10.1093/jb/mvab153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/19/2021] [Indexed: 11/12/2022] Open
Abstract
The transfer of phospholipids from the endoplasmic reticulum to mitochondria via the mitochondria-endoplasmic reticulum (ER) contact site (MERCS) is essential for maintaining mitochondrial function and integrity. Here, we identified RMDN3/PTPIP51, possessing phosphatidic acid (PA)-transfer activity, as a neighboring protein of the mitochondrial E3 ubiquitin ligase MITOL/MARCH5 by proximity-dependent biotin labeling using APEX2. We found that MITOL interacts with and ubiquitinates RMDN3. Mutational analysis identified lysine residue 89 in RMDN3 as a site of ubiquitination by MITOL. Loss of MITOL or the substitution of lysine 89 to arginine in RMDN3 significantly reduced the PA-binding activity of RMDN3, suggesting that MITOL regulates the transport of PA to mitochondria by activating RMDN3. Our findings imply that ubiquitin signaling regulates phospholipid transport at the MERCS.
Collapse
Affiliation(s)
- Naoki Ito
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.,Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo 171-8588, Japan
| | - Takara Takahashi
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.,Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo 171-8588, Japan
| | - Isshin Shiiba
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.,Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo 171-8588, Japan
| | - Shun Nagashima
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Ryoko Inatome
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo 171-8588, Japan
| | - Shigeru Yanagi
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo 171-8588, Japan
| |
Collapse
|
10
|
Liang C, Zhou XH, Jiao YH, Guo MJ, Meng L, Gong PM, Lyu LZ, Niu HY, Wu YF, Chen SW, Han X, Zhang LW. Ligilactobacillus Salivarius LCK11 Prevents Obesity by Promoting PYY Secretion to Inhibit Appetite and Regulating Gut Microbiota in C57BL/6J Mice. Mol Nutr Food Res 2021; 65:e2100136. [PMID: 34272917 DOI: 10.1002/mnfr.202100136] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/26/2021] [Indexed: 12/17/2022]
Abstract
SCOPE Obesity is a common disease worldwide and there is an urgent need for strategies to preventing obesity. METHODS AND RESULTS The anti-obesity effect and mechanism of Ligilactobacillus salivarius LCK11 (LCK11) is studied using a C57BL/6J male mouse model in which obesity is induced by a high-fat diet (HFD). Results show that LCK11 can prevent HFD-induced obesity, reflected as inhibited body weight gain, abdominal and liver fat accumulation and dyslipidemia. Analysis of its mechanism shows that on the one hand, LCK11 can inhibit food intake through significantly improving the transcriptional and translational levels of peptide YY (PYY) in the rectum, in addition to the eventual serum PYY level; this is attributed to the activation of the toll-like receptor 2/nuclear factor-κB signaling pathway in enteroendocrine L cells by the peptidoglycan of LCK11. On the other hand, LCK11 supplementation effectively reduces the Firmicutes/Bacteroidetes ratio and shifts the overall structure of the HFD-disrupted gut microbiota toward that of mice fed on a low-fat diet; this also contributes to preventing obesity. CONCLUSION LCK11 shows the potential to be used as a novel probiotic for preventing obesity by both promoting PYY secretion to inhibit food intake and regulating gut microbiota.
Collapse
Affiliation(s)
- Cong Liang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | | | - Yue-Hua Jiao
- Drug safety evaluation center, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Mei-Jie Guo
- Department of Adolescent Medical Clinic, Harbin Children's Hospital, Harbin, 150010, China
| | - Li Meng
- Engineering Research Center of Agricultural Microbiology Technology, Heilongjiang University, Harbin, 150500, China
| | - Pi-Min Gong
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Lin-Zheng Lyu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Hai-Yue Niu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Yi-Fan Wu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Shi-Wei Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Xue Han
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Lan-Wei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
11
|
Chen C, Fang S, Wei H, He M, Fu H, Xiong X, Zhou Y, Wu J, Gao J, Yang H, Huang L. Prevotella copri increases fat accumulation in pigs fed with formula diets. MICROBIOME 2021; 9:175. [PMID: 34419147 PMCID: PMC8380364 DOI: 10.1186/s40168-021-01110-0] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/03/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Excessive fat accumulation of pigs is undesirable, as it severely affects economic returns in the modern pig industry. Studies in humans and mice have examined the role of the gut microbiome in host energy metabolism. Commercial Duroc pigs are often fed formula diets with high energy and protein contents. Whether and how the gut microbiome under this type of diet regulates swine fat accumulation is largely unknown. RESULTS In the present study, we systematically investigated the correlation of gut microbiome with pig lean meat percentage (LMP) in 698 commercial Duroc pigs and found that Prevotella copri was significantly associated with fat accumulation of pigs. Fat pigs had significantly higher abundance of P. copri in the gut. High abundance of P. copri was correlated with increased concentrations of serum metabolites associated with obesity, e.g., lipopolysaccharides, branched chain amino acids, aromatic amino acids, and the metabolites of arachidonic acid. Host intestinal barrier permeability and chronic inflammation response were increased. A gavage experiment using germ-free mice confirmed that the P. copri isolated from experimental pigs was a causal species increasing host fat accumulation and altering serum metabolites. Colon, adipose tissue, and muscle transcriptomes in P. copri-gavaged mice indicated that P. copri colonization activated host chronic inflammatory responses through the TLR4 and mTOR signaling pathways and significantly upregulated the expression of the genes related to lipogenesis and fat accumulation, but attenuated the genes associated with lipolysis, lipid transport, and muscle growth. CONCLUSIONS Taken together, the results proposed that P. copri in the gut microbial communities of pigs fed with commercial formula diets activates host chronic inflammatory responses by the metabolites through the TLR4 and mTOR signaling pathways, and increases host fat deposition significantly. The results provide fundamental knowledge for reducing fat accumulation in pigs through regulating the gut microbial composition. Video Abstract.
Collapse
Affiliation(s)
- Congying Chen
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045 People’s Republic of China
| | - Shaoming Fang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045 People’s Republic of China
| | - Hong Wei
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Maozhang He
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045 People’s Republic of China
| | - Hao Fu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045 People’s Republic of China
| | - Xinwei Xiong
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045 People’s Republic of China
| | - Yunyan Zhou
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045 People’s Republic of China
| | - Jinyuan Wu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045 People’s Republic of China
| | - Jun Gao
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045 People’s Republic of China
| | - Hui Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045 People’s Republic of China
| | - Lusheng Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045 People’s Republic of China
| |
Collapse
|
12
|
Li Q, Chen J, Liu GH, Xu X, Zhang Q, Wang Y, Yuan J, Li Y, Qi L, Wang H. Effects of biotin on promoting anammox bacterial activity. Sci Rep 2021; 11:2038. [PMID: 33479480 PMCID: PMC7820308 DOI: 10.1038/s41598-021-81738-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/11/2021] [Indexed: 11/09/2022] Open
Abstract
Anaerobic ammonium oxidation (anammox) bacteria significantly improve the efficiency and reduce cost of nitrogen removal in wastewater treatment plants. However, their slow growth and vulnerable activity limit the application of anammox technology. In this paper, the enhancement of biotin on the nitrogen removal activity of anammox bacteria in short-term batch experiments was studied. We found that biotin played a significant role in promoting anammox activity within a biotin concentration range of 0.1-1.5 mg/L. At a biotin concentration of 1.0 mg/L, the total nitrogen removal rate (NRR) increased by 112%, extracellular polymeric substance (EPS) secretion and heme production significantly improved, and anammox bacterial biomass increased to maximum levels. Moreover, the predominant genus of anammox bacteria was Candidatus Brocadia.
Collapse
Affiliation(s)
- Qinyu Li
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Jinhui Chen
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Guo-Hua Liu
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China.
| | - Xianglong Xu
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China.
| | - Qian Zhang
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Yijin Wang
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Junli Yuan
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Yinghao Li
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Lu Qi
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Hongchen Wang
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China
| |
Collapse
|
13
|
B Vitamins and Their Role in Immune Regulation and Cancer. Nutrients 2020; 12:nu12113380. [PMID: 33158037 PMCID: PMC7693142 DOI: 10.3390/nu12113380] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
B group vitamins represent essential micronutrients for myriad metabolic and regulatory processes required for human health, serving as cofactors used by hundreds of enzymes that carry out essential functions such as energy metabolism, DNA and protein synthesis and other critical functions. B vitamins and their corresponding vitamers are universally essential for all cellular life forms, from bacteria to humans. Humans are unable to synthesize most B vitamins and are therefore dependent on their diet for these essential micronutrients. More recently, another source of B vitamins has been identified which is derived from portions of the 1013 bacterial cells inhabiting the gastrointestinal tract. Here we review the expanding literature examining the relationship between B vitamins and the immune system and diverse cancers. Evidence of B vitamin’s role in immune cell regulation has accumulated in recent years and may help to clarify the disparate findings of numerous studies attempting to link B vitamins to cancer development. Much work remains to be carried out to fully clarify these relationships as the complexity of B vitamins’ essential functions complicates an unequivocal assessment of their beneficial or detrimental effects in inflammation and cancers.
Collapse
|
14
|
Anand RS, Ganesan D, Selvam S, Rajasekaran S, Jayavelu T. Distinct utilization of biotin in and between adipose and brain during aging is associated with a lipogenic shift in Wistar rat brain. Nutr Res 2020; 79:68-76. [PMID: 32650222 DOI: 10.1016/j.nutres.2020.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/12/2020] [Accepted: 06/02/2020] [Indexed: 11/25/2022]
Abstract
Tissue-specific metabolism determines their functions that collectively sense and respond to numerous stress cues to achieve systemic homeostasis. Chronic stress skews such metabolic profiles and leads to failure of organs as evidenced by a bias towards lipid synthesis and storage in the aging brain, muscle, and liver under Alzheimer's disease, sarcopenia, and non-alcoholic fatty liver disease, respectively. In contrast, the tissue destined for lipid synthesis and storage, such as adipose, limits its threshold and develops diabetes mellitus. However, the underlying factors that contribute to this lipogenic shift between organs are unknown. From this perspective, differential biotin utilization between lipid-rich tissues such as adipose and brain during aging was hypothesized owing to the established role of biotin in lipogenesis. The same was tested using young and aged Wistar rats. We found that adipose-specific biotin content was much higher than the brain irrespective of aging status, as well as its associated cues. However, within tissues, the adipose fails to maintain its biotinylation levels during aging whereas the brain seizes more biotin and exhibits lipid accumulation. Furthermore, mimicking the age-related stress cues in vitro such as high glucose and endoplasmic reticulum stress deprive the astroglial biotin content, but not that of adipocytes. Lipid accumulation in the aging brain was also correlated with increased S-adenosylmethionine levels and biotin utilization by astrocytes. In summary, differential biotin utilization between adipose and brain under aging and their respective cell types like adipocytes and astrocytes under age-associated stress cues connects well with the lipogenic shift in rat brain.
Collapse
|
15
|
Taleban R, Heidari-Beni M, Qorbani M, Esmaeil Motlagh M, Fazel-Tabar Malekshah A, Moafi M, Hani-Tabaei Zavareh N, Kelishadi R. Is dietary vitamin B intake associated with weight disorders in children and adolescents? The weight disorders survey of the CASPIAN-IV Study. Health Promot Perspect 2019; 9:299-306. [PMID: 31777710 PMCID: PMC6875549 DOI: 10.15171/hpp.2019.41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/22/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Weight disorders are highly prevalent at the global level. Vitamin B groups are clearly involved in intracellular mechanisms, energy equation, and weight gain. The present study aims to evaluate the association of dietary vitamin B intake and obesity in a large pediatric population. Methods: This cross-sectional study was conducted among children and adolescents, aged 6-18years, living in urban and rural areas of 30 provinces of Iran. The BMI-for-age classifications were as follow: percentile <0.1, (emaciated), 0.1 ≤percentile <2.35 (thin), 2.35 ≤percentile≤84.1 (normal), 84.1 <percentile ≤97.7 (overweight), 97.1 <percentile (obese). A valid 168-item semi-quantitative Food Frequency Questionnaire (FFQ) was used to assess the usual dietary intake including vitamin B. Results: Out of 5606 children and adolescents participated (mean age: 11.62, SD: 3.32),46.8% were girls. The intake of thiamin, pyridoxine, niacin and pantothenic acid increased the likelihood of obesity, compared with the normal-weight group. Odds ratios (ORs) (95% CI) of obesity for vitamin B1, B3, B5, and B6 were 1.32 (1.14-1.53), 1.01 (1.00-1.02), 1.04 (1.00-1.08),and 1.20 (1.04-1.38), respectively. Riboflavin, cyanocobalamin, biotin and folic acid did not have any significant association with weight disorders (B2: OR=1.09, 95% CI =0.99-1.20); B12:OR=1.00, 95% CI=0.98-1.03; B8: OR=1.00, 95% CI=0.99-1.00 B9: OR=1.00, 95% CI=1.00-1.00). Conclusion: The current study showed a significant correlation between consumption of vitamin B group and increased risk of excess weight.
Collapse
Affiliation(s)
- Roya Taleban
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Diseases, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Motahar Heidari-Beni
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Diseases, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mostafa Qorbani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | | | - Mohammad Moafi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Diseases, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Diseases, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
16
|
Liu Y, Yuan Z, Song C. Methylcrotonoyl-CoA carboxylase 2 overexpression predicts an unfavorable prognosis and promotes cell proliferation in breast cancer. Biomark Med 2019; 13:427-436. [PMID: 30895811 DOI: 10.2217/bmm-2018-0475] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: Methylcrotonoyl-CoA carboxylase 2 (MCCC2), a subunit of 3-Methylcrotonyl-CoA carboxylase (MCC), is reported to be involved in tumor formation and development. However, the role of MCCC2 in breast cancer is unknown. Materials & methods: MCCC2 expression was examined in 138 cases of breast cancer and matched adjacent normal tissues by quantitative reverse transcription PCR and immunohistochemistry. The influence of MCCC2 expression on cell proliferation was evaluated by CCK-8 and colony formation assay. Results: Quantitative reverse transcription PCR results show MCCC2 mRNA levels were significantly greater in breast cancer tissues than normal tissues (p < 0.05). Immunohistochemistry analysis revealed that MCCC2 overexpression was significantly associated with Tumor, Node, Metastasis stage and lymph node metastasis and predicted an unfavorable prognosis (p < 0.05). CCK-8 and colony formation assay indicated that MCCC2 overexpression significantly promoted cell proliferation. Discussion & conclusion: These data indicate MCCC2 overexpression predicts an unfavorable prognosis and promotes cell proliferation in breast cancer, which may serve as a potential prognostic biomarker.
Collapse
Affiliation(s)
- Yu Liu
- Heze Municipal Hospital, Heze City, Shandong Province 276800, PR China
| | - Zonghuai Yuan
- People's Hospital of Rizhao, Rizhao City, Shandong Province 276800, PR China
| | - Chuanwei Song
- Heze Municipal Hospital, Heze City, Shandong Province 276800, PR China
| |
Collapse
|
17
|
Souho T, Lamboni L, Xiao L, Yang G. Cancer hallmarks and malignancy features: Gateway for improved targeted drug delivery. Biotechnol Adv 2018; 36:1928-1945. [DOI: 10.1016/j.biotechadv.2018.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 07/22/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022]
|