1
|
Ding C, Sun J. The potential contribution of microbial communities to carbon fixation and nitrogen cycle in the Eastern Indian Ocean. MARINE ENVIRONMENTAL RESEARCH 2025; 207:107056. [PMID: 40054424 DOI: 10.1016/j.marenvres.2025.107056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/26/2025] [Accepted: 03/02/2025] [Indexed: 04/01/2025]
Abstract
This study investigated the diversity and metabolic potential of microbial communities in the Eastern Indian Ocean (EIO) through 16S rDNA gene sequencing and metagenomics analyses. Water samples were collected from the surface waters (5 m depth) and 150 m depth layer in the EIO between March 20th and June 6th, 2019. This study reveals microbial-driven biogeochemical dynamics in the oligotrophic Eastern Indian Ocean, where vertically stratified communities (Cyanobacteria/Proteobacteria-dominated surface vs. diversified Proteobacteria at 150 m) and latitudinal diversity gradients reflect nutrient limitations. Metagenomics identified four carbon fixation strategies: the Calvin cycle dominated epipelagic CO2 assimilation, while the 3-hydroxypropionate bicycle showed elevated surface activity, alongside reductive citrate and Wood-Ljungdahl pathways involving novel Actinobacteria. Nitrogen cycling exhibited spatial heterogeneity: nifH-dominated nitrogen fixation in the surface waters, prevalent narGHI nitrate reduction, and divergent nirS/nirK/nosZ distributions tied to nutrient gradients. Proteobacteria and Actinobacteria were key nitrogen fixers, with novel Actinobacteriota diazotrophs expanding known diversity. Elevated nosZ abundance in the Bay of Bengal underscored regional nitrous oxide consumption hotspots. These findings underscore microbial mediation of carbon-nitrogen fluxes in oligotrophic systems, providing genomic insights into ecosystem responses to climate-driven ocean changes.
Collapse
Affiliation(s)
- Changling Ding
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China; Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China; Tianjin Key Laboratory of Marine Resources and Chemistry (Tianjin University of Science & Technology), Tianjin, 300457, China
| | - Jun Sun
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China; Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China; Tianjin Key Laboratory of Marine Resources and Chemistry (Tianjin University of Science & Technology), Tianjin, 300457, China; College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan, Hubei, 430074, China.
| |
Collapse
|
2
|
Hiraoka S, Ijichi M, Takeshima H, Kumagai Y, Yang C, Makabe‐Kobayashi Y, Fukuda H, Yoshizawa S, Iwasaki W, Kogure K, Shiozaki T. Probe Capture Enrichment Sequencing of amoA Genes Improves the Detection of Diverse Ammonia-Oxidising Archaeal and Bacterial Populations. Mol Ecol Resour 2025; 25:e14042. [PMID: 39552505 PMCID: PMC11887609 DOI: 10.1111/1755-0998.14042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/18/2024] [Accepted: 10/01/2024] [Indexed: 11/19/2024]
Abstract
The ammonia monooxygenase subunit A (amoA) gene has been used to investigate the phylogenetic diversity, spatial distribution and activity of ammonia-oxidising archaeal (AOA) and bacterial (AOB), which contribute significantly to the nitrogen cycle in various ecosystems. Amplicon sequencing of amoA is a widely used method; however, it produces inaccurate results owing to the lack of a 'universal' primer set. Moreover, currently available primer sets suffer from amplification biases, which can lead to severe misinterpretation. Although shotgun metagenomic and metatranscriptomic analyses are alternative approaches without amplification bias, the low abundance of target genes in heterogeneous environmental DNA restricts a comprehensive analysis to a realisable sequencing depth. In this study, we developed a probe set and bioinformatics workflow for amoA enrichment sequencing using a hybridisation capture technique. Using metagenomic mock community samples, our approach effectively enriched amoA genes with low compositional changes, outperforming amplification and meta-omics sequencing analyses. Following the analysis of metatranscriptomic marine samples, we predicted 80 operational taxonomic units (OTUs) assigned to either AOA or AOB, of which 30 OTUs were unidentified using simple metatranscriptomic or amoA gene amplicon sequencing. Mapped read ratios to all the detected OTUs were significantly higher for the capture samples (50.4 ± 27.2%) than for non-capture samples (0.05 ± 0.02%), demonstrating the high enrichment efficiency of the method. The analysis also revealed the spatial diversity of AOA ecotypes with high sensitivity and phylogenetic resolution, which are difficult to examine using conventional approaches.
Collapse
Affiliation(s)
- Satoshi Hiraoka
- Research Center for Bioscience and Nanoscience (CeBN)Japan Agency for Marine‐Earth Science and Technology (JAMSTEC)YokosukaKanagawaJapan
| | - Minoru Ijichi
- Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaChibaJapan
| | - Hirohiko Takeshima
- Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaChibaJapan
| | - Yohei Kumagai
- Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaChibaJapan
| | - Ching‐Chia Yang
- Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaChibaJapan
| | | | - Hideki Fukuda
- Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaChibaJapan
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaChibaJapan
| | - Wataru Iwasaki
- Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaChibaJapan
- Department of Integrated Biosciences, Graduate School of Frontier SciencesThe University of TokyoKashiwaChibaJapan
| | - Kazuhiro Kogure
- Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaChibaJapan
| | - Takuhei Shiozaki
- Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaChibaJapan
| |
Collapse
|
3
|
Sun J, Zhou H, Cheng H, Chen Z, Wang Y. Archaea show different geographical distribution patterns compared to bacteria and fungi in Arctic marine sediments. MLIFE 2025; 4:205-218. [PMID: 40313972 PMCID: PMC12042116 DOI: 10.1002/mlf2.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/16/2024] [Accepted: 01/13/2025] [Indexed: 05/03/2025]
Abstract
Microorganisms dominate marine environments in the polar oceans and are known to harbor greater diversity and abundance than was once thought, and yet, little is known about their biogeographic distribution patterns in marine sediments at a broad spatial scale. In this study, we conducted extensive sampling of marine sediments along a latitudinal transect spanning 2500 km from the Bering Sea to the Arctic Ocean to investigate the geographical distribution patterns of bacteria, archaea, and fungi. Our findings revealed that the community similarities of bacteria and fungi decay at similar rates with increasing geographical distance (slope: -0.005 and -0.002), which are much lower than the decay rate of archaeal communities (slope: -0.012). Notably, microbial richness and community composition showed significant differences in the region of 75-80°N compared to other regions in 60-75°N. Salinity, temperature, pH, ammonium nitrogen, and total organic carbon are key factors that significantly affect microbial community variations. Furthermore, bacterial co-occurrence networks showed more complex interactions but lower modularity than fungal counterparts. This study provides crucial insights into the spatial distribution patterns of bacteria, archaea, and fungi in the Arctic marine sediments and will be critical for a better understanding of microbial global distribution and ecological functions.
Collapse
Affiliation(s)
- Jianxing Sun
- School of Minerals Processing and BioengineeringCentral South UniversityChangshaChina
| | - Hongbo Zhou
- School of Minerals Processing and BioengineeringCentral South UniversityChangshaChina
- Key Laboratory of Biohydrometallurgy of Ministry of EducationChangshaChina
| | - Haina Cheng
- School of Minerals Processing and BioengineeringCentral South UniversityChangshaChina
- Key Laboratory of Biohydrometallurgy of Ministry of EducationChangshaChina
| | - Zhu Chen
- School of Minerals Processing and BioengineeringCentral South UniversityChangshaChina
- Key Laboratory of Biohydrometallurgy of Ministry of EducationChangshaChina
| | - Yuguang Wang
- School of Minerals Processing and BioengineeringCentral South UniversityChangshaChina
- Key Laboratory of Biohydrometallurgy of Ministry of EducationChangshaChina
| |
Collapse
|
4
|
Lv N, Gong P, Sun H, Sun X, Liu Z, Xie X, Xue Y, Song Y, Wu K, Wang T, Wu Z, Zhang L. Agricultural ecosystems rather than fertilization strategies drives structure and composition of the ureolytic microbial functional guilds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123148. [PMID: 39566206 DOI: 10.1016/j.jenvman.2024.123148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024]
Abstract
Ureolytic microorganisms are significant in the transformation of soil nitrogen as they secrete urease to hydrolyze urea. This study aimed to investigate the effects of different fertilization regimes on ureolytic microbial functional guilds (bacteria, fungi, and archaea) in various agricultural ecosystems. Soil samples were collected from a long-term agricultural field experiment involving paddy and dryland soils. The experiment consisted of four fertilization treatments: nitrogen fertilizer (N), nitrogen fertilizer combined with composite urease/nitrification inhibitor (NI), nitrogen fertilizer combined with straw (NS), and nitrogen fertilizer combined with manure (NO). A metagenomic sequencing technique was used to assess the composition of ureolytic microbial functional guilds using the target ureC gene, along with the evaluation of soil physicochemical properties, the abundance of ureC genes from different microbial guilds, and the urease activity. The results showed that the NI treatment significantly increased the abundance of ureC genes from different microbial guilds in the two agricultural ecosystems compared with other fertilization treatments. In dryland soil, the abundance of ureC genes was positively correlated with urease activity. The ureolytic bacterial functional guild exhibits greater dominance at all taxonomic levels compared to the ureolytic fungal and archaeal functional guilds. The alpha diversity of ureolytic microbial functional guilds was greater in dryland soil than in paddy soil. Principal coordinate analysis showed that the structure of the ureolytic microbial functional guilds could be separated into two groups based on agricultural ecosystems. Phosphorus is a key environmental factor affecting the ureolytic microbial functional guilds in two agricultural ecosystems, and the structure of the ureolytic bacteria functional guild is more susceptible to pH. The results suggest that the structure of ureolytic microbial functional guilds is primarily determined by agricultural ecosystems rather than by fertilization treatments. Additionally, fertilization treatments across different agricultural ecosystems significantly impacted the community composition of ureolytic bacteria, fungi, and archaea microorganism.
Collapse
Affiliation(s)
- Na Lv
- Engineering Laboratory for Green Fertilizers, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Gong
- Engineering Laboratory for Green Fertilizers, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Hao Sun
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Xiangxin Sun
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhiguang Liu
- College of Resources and Environmental Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xueshi Xie
- Stanley Agriculture Group Co. Ltd., Linshu, Shandong, 276700, China
| | - Yan Xue
- Engineering Laboratory for Green Fertilizers, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yuchao Song
- Engineering Laboratory for Green Fertilizers, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Kaikuo Wu
- Engineering Laboratory for Green Fertilizers, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Tingting Wang
- Stanley Agriculture Group Co. Ltd., Linshu, Shandong, 276700, China
| | - Zhijie Wu
- Engineering Laboratory for Green Fertilizers, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Lili Zhang
- Engineering Laboratory for Green Fertilizers, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
5
|
Liu B, Zheng Y, Wang X, Qi L, Zhou J, An Z, Wu L, Chen F, Lin Z, Yin G, Dong H, Li X, Liang X, Han P, Liu M, Hou L. Active dark carbon fixation evidenced by 14C isotope assimilation and metagenomic data across the estuarine-coastal continuum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169833. [PMID: 38190922 DOI: 10.1016/j.scitotenv.2023.169833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/24/2023] [Accepted: 12/30/2023] [Indexed: 01/10/2024]
Abstract
Estuaries, as important land-ocean transitional zones across the Earth's surface, are hotspots of microbially driven dark carbon fixation (DCF), yet understanding of DCF process remains limited across the estuarine-coastal continuum. This study explored DCF activities and associated chemoautotrophs along the estuarine and coastal environmental gradients, using radiocarbon labelling and molecular techniques. Significantly higher DCF rates were observed at middle- and high-salinity regions (0.65-2.31 and 0.66-2.82 mmol C m-2 d-1, respectively), compared to low-salinity zone (0.07-0.19 mmol C m-2 d-1). Metagenomic analysis revealed relatively stable DCF pathways along the estuarine-coastal continuum, primarily dominated by Calvin-Benson-Bassham (CBB) cycle and Wood-Ljungdahl (WL) pathway. Nevertheless, chemoautotrophic communities driving DCF exhibited significant spatial variations. It is worth noting that although CBB cycle played an important role in DCF in estuarine sediments, WL pathway might play a more significant role, which has not been previously recognized. Overall, this study highlights that DCF activities coincide with the genetic potential of chemoautotrophy and the availability of reductive substrates across the estuarine-coastal continuum, and provides an important scientific basis for accurate quantitative assessment of global estuarine carbon sink.
Collapse
Affiliation(s)
- Bolin Liu
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yanling Zheng
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| | - Xinyu Wang
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lin Qi
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jie Zhou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zhirui An
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Li Wu
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Feiyang Chen
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zhuke Lin
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Guoyu Yin
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xiaofei Li
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Ping Han
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Min Liu
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| |
Collapse
|
6
|
Mao Y, Wu J, Yang R, Ma Y, Ye J, Zhong J, Deng N, He X, Hong Y. Novel database for accA gene revealed a vertical variability pattern of autotrophic carbon fixation potential of ammonia oxidizing archaea in a permeable subterranean estuary. MARINE ENVIRONMENTAL RESEARCH 2024; 194:106342. [PMID: 38185001 DOI: 10.1016/j.marenvres.2024.106342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
The autotrophic carbon fixation pathway of ammonia-oxidizing archaea (AOA) was the 3-hydroxypropionate/4-hydroxybutyrate (3-HP/4-HB) cycle, of which the acetyl-CoA carboxylase α-submit (accA) gene is widely recognized as the indicator. To date, there is no reference database or suitable cut-off value for operational taxonomic unit (OTU) clustering to analyze the diversity of AOA based on the accA gene. In this study, a reference database with 489 sequences was constructed, all the accA gene sequences was obtained from the AOA enrichment culture, pure culture and environmental samples. Additionally, the 79% was determined as the cut-off value for OTU clustering by comparing the similarity between the accA gene and the 16S rRNA gene. The developed method was verified by analyzing samples from the subterranean estuary and a vertical variation pattern of autotrophic carbon fixation potential of AOA was revealed. This study provided an effective method to analyze the diversity and autotrophic carbon fixation potential of AOA based on accA gene.
Collapse
Affiliation(s)
- Yixiang Mao
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Ruotong Yang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yuexi Ma
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Jiaqi Ye
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Jiarui Zhong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Nanling Deng
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Xiang He
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Arandia-Gorostidi N, Jaffe AL, Parada AE, Kapili BJ, Casciotti KL, Salcedo RSR, Baumas CMJ, Dekas AE. Urea assimilation and oxidation support activity of phylogenetically diverse microbial communities of the dark ocean. THE ISME JOURNAL 2024; 18:wrae230. [PMID: 39530358 PMCID: PMC11697164 DOI: 10.1093/ismejo/wrae230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/10/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
Urea is hypothesized to be an important source of nitrogen and chemical energy to microorganisms in the deep sea; however, direct evidence for urea use below the epipelagic ocean is lacking. Here, we explore urea utilization from 50 to 4000 meters depth in the northeastern Pacific Ocean using metagenomics, nitrification rates, and single-cell stable-isotope-uptake measurements with nanoscale secondary ion mass spectrometry. We find that on average 25% of deep-sea cells assimilated urea-derived N (60% of detectably active cells), and that cell-specific nitrogen-incorporation rates from urea were higher than that from ammonium. Both urea concentrations and assimilation rates relative to ammonium generally increased below the euphotic zone. We detected ammonia- and urea-based nitrification at all depths at one of two sites analyzed, demonstrating their potential to support chemoautotrophy in the mesopelagic and bathypelagic regions. Using newly generated metagenomes we find that the ureC gene, encoding the catalytic subunit of urease, is found within 39% of deep-sea cells in this region, including the Nitrososphaeria (syn., Thaumarchaeota; likely for nitrification) as well as members of thirteen other phyla such as Proteobacteria, Verrucomicrobia, Plantomycetota, Nitrospinota, and Chloroflexota (likely for assimilation). Analysis of public metagenomes estimated ureC within 10-46% of deep-sea cells around the world, with higher prevalence below the photic zone, suggesting urea is widely available to the deep-sea microbiome globally. Our results demonstrate that urea is a nitrogen source to abundant and diverse microorganisms in the dark ocean, as well as a significant contributor to deep-sea nitrification and therefore fuel for chemoautotrophy.
Collapse
Affiliation(s)
- Nestor Arandia-Gorostidi
- Department of Earth System Science, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSIC, Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
| | - Alexander L Jaffe
- Department of Earth System Science, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
| | - Alma E Parada
- Department of Earth System Science, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
| | - Bennett J Kapili
- Department of Earth System Science, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
| | - Karen L Casciotti
- Department of Earth System Science, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
- Oceans Department, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
| | - Rebecca S R Salcedo
- Department of Earth System Science, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
| | - Chloé M J Baumas
- Department of Earth System Science, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
| | - Anne E Dekas
- Department of Earth System Science, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
| |
Collapse
|
8
|
Mugge RL, Moseley RD, Hamdan LJ. Substrate Specificity of Biofilms Proximate to Historic Shipwrecks. Microorganisms 2023; 11:2416. [PMID: 37894074 PMCID: PMC10608953 DOI: 10.3390/microorganisms11102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The number of built structures on the seabed, such as shipwrecks, energy platforms, and pipelines, is increasing in coastal and offshore regions. These structures, typically composed of steel or wood, are substrates for microbial attachment and biofilm formation. The success of biofilm growth depends on substrate characteristics and local environmental conditions, though it is unclear which feature is dominant in shaping biofilm microbiomes. The goal of this study was to understand the substrate- and site-specific impacts of built structures on short-term biofilm composition and functional potential. Seafloor experiments were conducted wherein steel and wood surfaces were deployed for four months at distances extending up to 115 m away from three historic (>50 years old) shipwrecks in the Gulf of Mexico. DNA from biofilms on the steel and wood was extracted, and metagenomes were sequenced on an Illumina NextSeq. A bioinformatics analysis revealed that the taxonomic composition was significantly different between substrates and sites, with substrate being the primary determining factor. Regardless of site, the steel biofilms had a higher abundance of genes related to biofilm formation, and sulfur, iron, and nitrogen cycling, while the wood biofilms showed a higher abundance of manganese cycling and methanol oxidation genes. This study demonstrates how substrate composition shapes biofilm microbiomes and suggests that marine biofilms may contribute to nutrient cycling at depth. Analyzing the marine biofilm microbiome provides insight into the ecological impact of anthropogenic structures on the seabed.
Collapse
Affiliation(s)
- Rachel L. Mugge
- U.S. Naval Research Laboratory, Ocean Sciences Division, Stennis Space Center, MS 39529, USA;
| | - Rachel D. Moseley
- School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS 39564, USA
| | - Leila J. Hamdan
- School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS 39564, USA
| |
Collapse
|
9
|
Qi L, Zheng Y, Hou L, Liu B, Zhou J, An Z, Wu L, Chen F, Lin Z, Yin G, Dong H, Li X, Liang X, Liu M. Potential response of dark carbon fixation to global warming in estuarine and coastal waters. GLOBAL CHANGE BIOLOGY 2023; 29:3821-3832. [PMID: 37021604 DOI: 10.1111/gcb.16702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/02/2023] [Indexed: 06/06/2023]
Abstract
Dark carbon fixation (DCF), through which chemoautotrophs convert inorganic carbon to organic carbon, is recognized as a vital process of global carbon biogeochemical cycle. However, little is known about the response of DCF processes in estuarine and coastal waters to global warming. Using radiocarbon labelling method, the effects of temperature on the activity of chemoautotrophs were investigated in benthic water of the Yangtze estuarine and coastal areas. A dome-shaped thermal response pattern was observed for DCF rates (i.e., reduced rates at lower or higher temperatures), with the optimum temperature (Topt ) varying from about 21.9 to 32.0°C. Offshore sites showed lower Topt values and were more vulnerable to global warming compared with nearshore sites. Based on temperature seasonality of the study area, it was estimated that warming would accelerate DCF rate in winter and spring but inhibit DCF activity in summer and fall. However, at an annual scale, warming showed an overall promoting effect on DCF rates. Metagenomic analysis revealed that the dominant chemoautotrophic carbon fixation pathways in the nearshore area were Calvin-Benson-Bassham (CBB) cycle, while the offshore sites were co-dominated by CBB and 3-hydroxypropionate/4-hydroxybutyrate cycles, which may explain the differential temperature response of DCF along the estuarine and coastal gradients. Our findings highlight the importance of incorporating DCF thermal response into biogeochemical models to accurately estimate the carbon sink potential of estuarine and coastal ecosystems in the context of global warming.
Collapse
Affiliation(s)
- Lin Qi
- School of Geographic Sciences, East China Normal University, Shanghai, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, China
| | - Yanling Zheng
- School of Geographic Sciences, East China Normal University, Shanghai, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, China
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai, China
- Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai, China
| | - Bolin Liu
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai, China
| | - Jie Zhou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai, China
| | - Zhirui An
- School of Geographic Sciences, East China Normal University, Shanghai, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, China
| | - Li Wu
- School of Geographic Sciences, East China Normal University, Shanghai, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, China
| | - Feiyang Chen
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai, China
| | - Zhuke Lin
- School of Geographic Sciences, East China Normal University, Shanghai, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, China
| | - Guoyu Yin
- School of Geographic Sciences, East China Normal University, Shanghai, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, China
- Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai, China
| | - Xiaofei Li
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai, China
| | - Min Liu
- School of Geographic Sciences, East China Normal University, Shanghai, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, China
- Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, China
| |
Collapse
|
10
|
Jia Y, Lahm M, Chen Q, Powers L, Gonsior M, Chen F. The Predominance of Ammonia-Oxidizing Archaea in an Oceanic Microbial Community Amended with Cyanobacterial Lysate. Microbiol Spectr 2023; 11:e0240522. [PMID: 36622233 PMCID: PMC9927567 DOI: 10.1128/spectrum.02405-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
When the oligotrophic microbial community was amended with Synechococcus-derived dissolved organic matter (SDOM) and incubated under the dark condition, archaea relative abundance was initially very low but made up more than 60% of the prokaryotic community on day 60, and remained dominant for at least 9 months. The archaeal sequences were dominated by Candidatus Nitrosopumilus, the Group I.1a Thaumarchaeota. The increase of Thaumarchaeota in the dark incubation corresponded to the period of delayed ammonium oxidation upon an initially steady increase in ammonia, supporting the remarkable competency of Thaumarchaeota in energy utilization and fixation of inorganic carbon in the ocean. IMPORTANCE Thaumarchaeota, which are ammonia-oxidizing archaea (AOA), are mainly chemolithoautotrophs that can fix inorganic carbon to produce organic matter in the dark. Their distinctive physiological traits and high abundance in the water column indicate the significant ecological roles they play in the open ocean. In our study, we found predominant Thaumarchaeota in the microbial community amended with cyanobacteria-derived lysate under the dark condition. Furthermore, Thaumarchaeota remained dominant in the microbial community even after 1 year of incubation. Through the ammonification process, dissolved organic matter (DOM) from cyanobacterial lysate was converted to ammonium which was used as an energy source for Thaumarchaeota to fix inorganic carbon into biomass. Our study further advocates the important roles of Thaumarchaeota in the ocean's biogeochemical cycle.
Collapse
Affiliation(s)
- Yufeng Jia
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, USA
| | - Madeline Lahm
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland, USA
| | - Qi Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, USA
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Leanne Powers
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland, USA
- State University of New York College of Environmental Science and Forestry, Department of Chemistry, Syracuse, New York, USA
| | - Michael Gonsior
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland, USA
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Li W, Wang B, Liu N, Yang M, Liu CQ, Xu S. River damming enhances ecological functional stability of planktonic microorganisms. Front Microbiol 2022; 13:1049120. [PMID: 36532475 PMCID: PMC9749135 DOI: 10.3389/fmicb.2022.1049120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/07/2022] [Indexed: 11/14/2023] Open
Abstract
Planktonic microorganisms play an important role in maintaining the ecological functions in aquatic ecosystems, but how their structure and function interrelate and respond to environmental changes is still not very clear. Damming interrupts the river continuum and alters river nutrient biogeochemical cycling and biological succession. Considering that river damming decreases the irregular hydrological fluctuation, we hypothesized that it can enhance the ecological functional stability (EFS) of planktonic microorganisms. Therefore, the community composition of planktonic bacteria and archaea, functional genes related to carbon, nitrogen, sulfur, and phosphorus cycling, and relevant environmental factors of four cascade reservoirs in the Pearl River, Southern China, were investigated to understand the impact of damming on microbial community structure and function and verify the above hypothesis. Here, the ratio of function to taxa (F:T) based on Euclidean distance matrix analysis was first proposed to characterize the microbial EFS; the smaller the ratio, the more stable the ecological functions. The results showed that the reservoirs created by river damming had seasonal thermal and chemical stratifications with an increasing hydraulic retention time, which significantly changed the microbial structure and function. The river microbial F:T was significantly higher than that of the reservoirs, indicating that river damming enhances the EFS of the planktonic microorganisms. Structural equation modeling demonstrated that water temperature was an important factor influencing the relationship between the microbial structure and function and thus affected their EFS. In addition, reservoir hydraulic load was found a main factor regulating the seasonal difference in microbial EFS among the reservoirs. This study will help to deepen the understanding of the relationship between microbial structure and function and provide a theoretical basis of assessing the ecological function change after the construction of river damming.
Collapse
Affiliation(s)
- Wanzhu Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Baoli Wang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
- Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin, China
| | - Na Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Meiling Yang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
- Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin, China
| | - Sheng Xu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| |
Collapse
|
12
|
Liu B, Hou L, Zheng Y, Zhang Z, Tang X, Mao T, Du J, Bi Q, Dong H, Yin G, Han P, Liang X, Liu M. Dark carbon fixation in intertidal sediments: Controlling factors and driving microorganisms. WATER RESEARCH 2022; 216:118381. [PMID: 35381430 DOI: 10.1016/j.watres.2022.118381] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Dark carbon fixation (DCF) contributes approximately 0.77 Pg C y-1 to oceanic primary production and the global carbon budget. It is estimated that nearly half of the DCF in marine sediments occurs in estuarine and coastal regions, but the environmental factors controlling DCF and the microorganisms responsible for its production remain under exploration. In this study, we investigated DCF rates and the active chemoautotrophic microorganisms in intertidal sediments of the Yangtze Estuary, using 14C-labeling and DNA-stable isotope probing (DNA-SIP) techniques. The measured DCF rates ranged from 0.27 to 3.37 mmol C m-2 day-1 in intertidal surface sediments. The rates of DCF were closely related to sediment sulfide content, demonstrating that the availability of reductive substrates may be the dominant factor controlling DCF in the intertidal sediments. A significant positive correlation was also observed between the DCF rates and abundance of the cbbM gene. DNA-stable isotope probing (DNA-SIP) results further confirmed that cbbM-harboring bacteria, rather than cbbL-harboring bacteria, played a dominant role in DCF in intertidal sediments. Phylogenetic analysis showed that the predominant cbbM-harboring bacteria were affiliated with Burkholderia, including Sulfuricella denitrificans, Sulfuriferula, Acidihalobacter, Thiobacillus, and Sulfurivermis fontis. Moreover, metagenome analyses indicated that most of the potential dark-carbon-fixing bacteria detected in intertidal sediments also harbor genes for sulfur oxidation, denitrification, or dissimilatory nitrate reduction to ammonium (DNRA), indicating that these chemoautotrophic microorganisms may play important roles in coupled carbon, nitrogen, and sulfur cycles. These results shed light on the ecological importance and the underlying mechanisms of the DCF process driven by chemoautotrophic microorganisms in intertidal wetlands.
Collapse
Affiliation(s)
- Bolin Liu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| | - Yanling Zheng
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| | - Zongxiao Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xiufeng Tang
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Tieqiang Mao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jinzhou Du
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Qianqian Bi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Guoyu Yin
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Ping Han
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Min Liu
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
13
|
Wu J, Hong Y, He X, Liu X, Ye J, Jiao L, Li Y, Wang Y, Ye F, Yang Y, Du J. Niche differentiation of ammonia-oxidizing archaea and related autotrophic carbon fixation potential in the water column of the South China Sea. iScience 2022; 25:104333. [PMID: 35602962 PMCID: PMC9118673 DOI: 10.1016/j.isci.2022.104333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/12/2022] [Accepted: 04/26/2022] [Indexed: 11/07/2022] Open
Abstract
The significant primary production by ammonia-oxidizing archaea (AOA) in the ocean was reported, but the carbon fixation process of AOA and its community composition along the water depth remain unclear. Here, we investigated the abundance, community composition, and potential carbon fixation of AOA in water columns of the South China Sea. Higher abundances of the amoA and accA genes of AOA were found below the euphotic zone. Similarly, higher carbon fixation potential of AOA, evaluated by the ratios of amoA to accA gene, was also observed below euphotic zone and the ratios increased with increasing water depth. The vertical niche differentiation of AOA was further evidenced, with the dominant genus shifting from Nitrosopelagicus in the epipelagic zone to uncultured genus in the meso- and bathypelagic zones. Our findings highlight the higher carbon fixation potential of AOA in deep water and the significance of AOA to the ocean carbon budget.
Collapse
Affiliation(s)
- Jiapeng Wu
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiang He
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiaohan Liu
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jiaqi Ye
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Lijing Jiao
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yiben Li
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yu Wang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Fei Ye
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yunhua Yang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Juan Du
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
14
|
Wang B, Liu N, Yang M, Wang L, Liang X, Liu CQ. Co-occurrence of planktonic bacteria and archaea affects their biogeographic patterns in China's coastal wetlands. ENVIRONMENTAL MICROBIOME 2021; 16:19. [PMID: 34666825 PMCID: PMC8527667 DOI: 10.1186/s40793-021-00388-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/01/2021] [Indexed: 05/26/2023]
Abstract
Planktonic bacteria and archaea play a key role in maintaining ecological functions in aquatic ecosystems; however, their biogeographic patterns and underlying mechanisms have not been well known in coastal wetlands including multiple types and at a large space scale. Therefore, planktonic bacteria and archaea and related environmental factors were investigated in twenty-one wetlands along China's coast to understand the above concerns. The results indicated that planktonic bacteria had different biogeographic pattern from planktonic archaea, and both patterns were not dependent on the wetland's types. Deterministic selection shapes the former's community structure, whereas stochastic processes regulate the latter's, being consistent with the fact that planktonic archaea have a larger niche breadth than planktonic bacteria. Planktonic bacteria and archaea co-occur, and their co-occurrence rather than salinity is more important in shaping their community structure although salinity is found to be a main environmental deterministic factor in the coastal wetland waters. This study highlights the role of planktonic bacteria-archaea co-occurrence on their biogeographic patterns, and thus provides a new insight into studying underlying mechanisms of microbial biogeography in coastal wetlands.
Collapse
Affiliation(s)
- Baoli Wang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China.
- Critical Zone Observatory of Bohai Coastal Region, Tianjin University, Tianjin, 300072, China.
| | - Na Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Meiling Yang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China.
| | - Lijia Wang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200244, China
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
- Critical Zone Observatory of Bohai Coastal Region, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
15
|
Acinas SG, Sánchez P, Salazar G, Cornejo-Castillo FM, Sebastián M, Logares R, Royo-Llonch M, Paoli L, Sunagawa S, Hingamp P, Ogata H, Lima-Mendez G, Roux S, González JM, Arrieta JM, Alam IS, Kamau A, Bowler C, Raes J, Pesant S, Bork P, Agustí S, Gojobori T, Vaqué D, Sullivan MB, Pedrós-Alió C, Massana R, Duarte CM, Gasol JM. Deep ocean metagenomes provide insight into the metabolic architecture of bathypelagic microbial communities. Commun Biol 2021; 4:604. [PMID: 34021239 PMCID: PMC8139981 DOI: 10.1038/s42003-021-02112-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 04/16/2021] [Indexed: 02/04/2023] Open
Abstract
The deep sea, the largest ocean's compartment, drives planetary-scale biogeochemical cycling. Yet, the functional exploration of its microbial communities lags far behind other environments. Here we analyze 58 metagenomes from tropical and subtropical deep oceans to generate the Malaspina Gene Database. Free-living or particle-attached lifestyles drive functional differences in bathypelagic prokaryotic communities, regardless of their biogeography. Ammonia and CO oxidation pathways are enriched in the free-living microbial communities and dissimilatory nitrate reduction to ammonium and H2 oxidation pathways in the particle-attached, while the Calvin Benson-Bassham cycle is the most prevalent inorganic carbon fixation pathway in both size fractions. Reconstruction of the Malaspina Deep Metagenome-Assembled Genomes reveals unique non-cyanobacterial diazotrophic bacteria and chemolithoautotrophic prokaryotes. The widespread potential to grow both autotrophically and heterotrophically suggests that mixotrophy is an ecologically relevant trait in the deep ocean. These results expand our understanding of the functional microbial structure and metabolic capabilities of the largest Earth aquatic ecosystem.
Collapse
Affiliation(s)
- Silvia G Acinas
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain.
| | - Pablo Sánchez
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | - Guillem Salazar
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Francisco M Cornejo-Castillo
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
- Department of Ocean Sciences, University of California, Santa Cruz, CA, USA
| | - Marta Sebastián
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, ULPGC, Gran Canaria, Spain
| | - Ramiro Logares
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | - Marta Royo-Llonch
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | - Lucas Paoli
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Pascal Hingamp
- Aix Marseille Univ., Université de Toulon, CNRS, Marseille, France
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Japan
| | - Gipsi Lima-Mendez
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Brussels, Belgium
- Interuniversity Institute for Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium
| | - Simon Roux
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- U.S. Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - José M González
- Department of Microbiology, University of La Laguna, La Laguna, Spain
| | - Jesús M Arrieta
- Spanish Institute of Oceanography (IEO), Oceanographic Center of The Canary Islands, Dársena Pesquera, Santa Cruz de Tenerife, Spain
| | - Intikhab S Alam
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Allan Kamau
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Chris Bowler
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, Paris, France
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB Center for Microbiology, Leuven, Belgium
| | - Stéphane Pesant
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- PANGAEA, Data Publisher for Earth and Environmental Science, University of Bremen, Bremen, Germany
| | - Peer Bork
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Susana Agustí
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal, Saudi Arabia
| | - Takashi Gojobori
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Dolors Vaqué
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | - Matthew B Sullivan
- Department of Microbiology and Civil Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - Carlos Pedrós-Alió
- Department of Systems Biology, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - Ramon Massana
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | - Carlos M Duarte
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Josep M Gasol
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
- Centre for Marine Ecosystems Research, School of Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
16
|
Dang H. Grand Challenges in Microbe-Driven Marine Carbon Cycling Research. Front Microbiol 2020; 11:1039. [PMID: 32655507 PMCID: PMC7324536 DOI: 10.3389/fmicb.2020.01039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/27/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hongyue Dang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Frontiers Science Center for Ocean Carbon Sink and Climate Change, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| |
Collapse
|
17
|
Manna V, Malfatti F, Banchi E, Cerino F, De Pascale F, Franzo A, Schiavon R, Vezzi A, Del Negro P, Celussi M. Prokaryotic Response to Phytodetritus-Derived Organic Material in Epi- and Mesopelagic Antarctic Waters. Front Microbiol 2020; 11:1242. [PMID: 32582131 PMCID: PMC7296054 DOI: 10.3389/fmicb.2020.01242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/14/2020] [Indexed: 12/31/2022] Open
Abstract
Particulate organic matter (POM) export represents the underlying principle of the biological carbon pump, driving the carbon flux from the sunlit to the dark ocean. The efficiency of this process is tightly linked to the prokaryotic community, as >70% of POM respiration is carried out by particle-associated prokaryotes. In the Ross Sea, one of the most productive areas of the Southern Ocean, up to 50% of the surface primary production is exported to the mesopelagic ocean as POM. Recent evidence suggests that a significant fraction of the POM in this area is composed of intact phytoplankton cells. During austral summer 2017, we set up bottle enrichment experiments in which we amended free-living surface and deep prokaryotic communities with organic matter pools generated from native microplankton, mimicking the particle export that may derive from mild (1 μg of Chlorophyll a L-1) and intense (10 μg of Chlorophyll a L-1) phytoplankton bloom. Over a course of 4 days, we followed free-living and particle-attached prokaryotes' abundance, the degradation rates of polysaccharides, proteins and lipids, heterotrophic production as well as inorganic carbon utilization and prokaryotic community structure dynamics. Our results showed that several rare or undetected taxa in the initial community became dominant during the time course of the incubations and that different phytodetritus-derived organic matter sources induced specific changes in microbial communities, selecting for peculiar degradation and utilization processes spectra. Moreover, the features of the supplied detritus (in terms of microplankton taxa composition) determined different colonization dynamics and organic matter processing modes. Our study provides insights into the mechanisms underlying the prokaryotic utilization of phytodetritus, a significant pool of organic matter in the dark ocean.
Collapse
Affiliation(s)
- Vincenzo Manna
- Oceanography Division, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, Trieste, Italy
- Department of Life Sciences, Università degli Studi di Trieste, Trieste, Italy
| | - Francesca Malfatti
- Oceanography Division, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, Trieste, Italy
- Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA, United States
| | - Elisa Banchi
- Oceanography Division, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, Trieste, Italy
| | - Federica Cerino
- Oceanography Division, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, Trieste, Italy
| | - Fabio De Pascale
- Department of Biology, Università degli Studi di Padova, Padua, Italy
| | - Annalisa Franzo
- Oceanography Division, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, Trieste, Italy
| | - Riccardo Schiavon
- Department of Biology, Università degli Studi di Padova, Padua, Italy
| | - Alessandro Vezzi
- Department of Biology, Università degli Studi di Padova, Padua, Italy
| | - Paola Del Negro
- Oceanography Division, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, Trieste, Italy
| | - Mauro Celussi
- Oceanography Division, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, Trieste, Italy
| |
Collapse
|
18
|
Zhong H, Lehtovirta-Morley L, Liu J, Zheng Y, Lin H, Song D, Todd JD, Tian J, Zhang XH. Novel insights into the Thaumarchaeota in the deepest oceans: their metabolism and potential adaptation mechanisms. MICROBIOME 2020; 8:78. [PMID: 32482169 PMCID: PMC7265257 DOI: 10.1186/s40168-020-00849-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/27/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Marine Group I (MGI) Thaumarchaeota, which play key roles in the global biogeochemical cycling of nitrogen and carbon (ammonia oxidizers), thrive in the aphotic deep sea with massive populations. Recent studies have revealed that MGI Thaumarchaeota were present in the deepest part of oceans-the hadal zone (depth > 6000 m, consisting almost entirely of trenches), with the predominant phylotype being distinct from that in the "shallower" deep sea. However, little is known about the metabolism and distribution of these ammonia oxidizers in the hadal water. RESULTS In this study, metagenomic data were obtained from 0-10,500 m deep seawater samples from the Mariana Trench. The distribution patterns of Thaumarchaeota derived from metagenomics and 16S rRNA gene sequencing were in line with that reported in previous studies: abundance of Thaumarchaeota peaked in bathypelagic zone (depth 1000-4000 m) and the predominant clade shifted in the hadal zone. Several metagenome-assembled thaumarchaeotal genomes were recovered, including a near-complete one representing the dominant hadal phylotype of MGI. Using comparative genomics, we predict that unexpected genes involved in bioenergetics, including two distinct ATP synthase genes (predicted to be coupled with H+ and Na+ respectively), and genes horizontally transferred from other extremophiles, such as those encoding putative di-myo-inositol-phosphate (DIP) synthases, might significantly contribute to the success of this hadal clade under the extreme condition. We also found that hadal MGI have the genetic potential to import a far higher range of organic compounds than their shallower water counterparts. Despite this trait, hadal MDI ammonia oxidation and carbon fixation genes are highly transcribed providing evidence they are likely autotrophic, contributing to the primary production in the aphotic deep sea. CONCLUSIONS Our study reveals potentially novel adaptation mechanisms of deep-sea thaumarchaeotal clades and suggests key functions of deep-sea Thaumarchaeota in carbon and nitrogen cycling. Video Abstract.
Collapse
Affiliation(s)
- Haohui Zhong
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Laura Lehtovirta-Morley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK
| | - Jiwen Liu
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yanfen Zheng
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Heyu Lin
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Delei Song
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK
| | - Jiwei Tian
- Key Laboratory of Physical Oceanography, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
19
|
Quero GM, Celussi M, Relitti F, Kovačević V, Del Negro P, Luna GM. Inorganic and Organic Carbon Uptake Processes and Their Connection to Microbial Diversity in Meso- and Bathypelagic Arctic Waters (Eastern Fram Strait). MICROBIAL ECOLOGY 2020; 79:823-839. [PMID: 31728602 DOI: 10.1007/s00248-019-01451-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
The deep Arctic Ocean is increasingly vulnerable to climate change effects, yet our understanding of its microbial processes is limited. We collected samples from shelf waters, mesopelagic Atlantic Waters (AW) and bathypelagic Norwegian Sea Deep Waters (NSDW) in the eastern Fram Strait, along coast-to-offshore transects off Svalbard during boreal summer. We measured community respiration, heterotrophic carbon production (HCP), and dissolved inorganic carbon utilization (DICu) together with prokaryotic abundance, diversity, and metagenomic predictions. In deep samples, HCP was significantly faster in AW than in NSDW, while we observed no differences in DICu rates. Organic carbon uptake was higher than its inorganic counterpart, suggesting a major reliance of deep microbial Arctic communities on heterotrophic metabolism. Community structure and spatial distribution followed the hydrography of water masses. Distinct from other oceans, the most abundant OTU in our deep samples was represented by the archaeal MG-II. To address the potential biogeochemical role of each water mass-specific microbial community, as well as their link with the measured rates, PICRUSt-based predicted metagenomes were built. The results showed that pathways of auto- and heterotrophic carbon utilization differed between the deep water masses, although this was not reflected in measured DICu rates. Our findings provide new insights to understand microbial processes and diversity in the dark Arctic Ocean and to progress toward a better comprehension of the biogeochemical cycles and their trends in light of climate changes.
Collapse
Affiliation(s)
- Grazia Marina Quero
- Stazione Zoologica Anton Dohrn, Integrative Marine Ecology Department, Napoli, Italy
- Istituto per le Risorse Biologiche e le Biotecnologie Marine (CNR-IRBIM), Consiglio Nazionale delle Ricerche, Ancona, Italy
| | - Mauro Celussi
- Oceanography Division, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS, Trieste, Italy.
| | - Federica Relitti
- Oceanography Division, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS, Trieste, Italy
| | - Vedrana Kovačević
- Oceanography Division, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS, Trieste, Italy
| | - Paola Del Negro
- Oceanography Division, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS, Trieste, Italy
| | - Gian Marco Luna
- Istituto per le Risorse Biologiche e le Biotecnologie Marine (CNR-IRBIM), Consiglio Nazionale delle Ricerche, Ancona, Italy
| |
Collapse
|
20
|
Alfreider A, Grimus V, Luger M, Ekblad A, Salcher MM, Summerer M. Autotrophic carbon fixation strategies used by nitrifying prokaryotes in freshwater lakes. FEMS Microbiol Ecol 2019; 94:5076030. [PMID: 30137292 PMCID: PMC6118323 DOI: 10.1093/femsec/fiy163] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/02/2022] Open
Abstract
Niche specialization of nitrifying prokaryotes is usually studied with tools targeting molecules involved in the oxidation of ammonia and nitrite. The ecological significance of diverse CO2 fixation strategies used by nitrifiers is, however, mostly unexplored. By analyzing autotrophy-related genes in combination with amoA marker genes based on droplet digitial PCR and CARD-FISH counts targeting rRNA, we quantified the distribution of nitrifiers in eight stratified lakes. Ammonia oxidizing (AO) Thaumarchaeota using the 3-hydroxypropionate/4-hydroxybutyrate pathway dominated deep and oligotrophic lakes, whereas Nitrosomonas-related taxa employing the Calvin cycle were important AO bacteria in smaller lakes. The occurrence of nitrite oxidizing Nitrospira, assimilating CO2 with the reductive TCA cycle, was strongly correlated with the distribution of Thaumarchaeota. Recently discovered complete ammonia-oxidizing bacteria (comammox) belonging to Nitrospira accounted only for a very small fraction of ammonia oxidizers (AOs) present at the study sites. Altogether, this study gives a first insight on how physicochemical characteristics in lakes are associated to the distribution of nitrifying prokaryotes with different CO2 fixation strategies. Our investigations also evaluate the suitability of functional genes associated with individual CO2 assimilation pathways to study niche preferences of different guilds of nitrifying microorganisms based on an autotrophic perspective.
Collapse
Affiliation(s)
- Albin Alfreider
- Institute of Ecology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Victoria Grimus
- Institute of Ecology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Martin Luger
- Institute for Water Ecology, Fisheries Biology and Lake Research, Federal Agency for Water Management, Scharfling 18, 5310 Mondsee, Austria
| | - Anja Ekblad
- Institute of Ecology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Michaela M Salcher
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách, 702/7370 05 Ceské Budejovice, Czech Republic
| | - Monika Summerer
- Institute of Ecology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
21
|
Abstract
Archaea are ubiquitous and abundant members of the marine plankton. Once thought of as rare organisms found in exotic extremes of temperature, pressure, or salinity, archaea are now known in nearly every marine environment. Though frequently referred to collectively, the planktonic archaea actually comprise four major phylogenetic groups, each with its own distinct physiology and ecology. Only one group-the marine Thaumarchaeota-has cultivated representatives, making marine archaea an attractive focus point for the latest developments in cultivation-independent molecular methods. Here, we review the ecology, physiology, and biogeochemical impact of the four archaeal groups using recent insights from cultures and large-scale environmental sequencing studies. We highlight key gaps in our knowledge about the ecological roles of marine archaea in carbon flow and food web interactions. We emphasize the incredible uncultivated diversity within each of the four groups, suggesting there is much more to be done.
Collapse
Affiliation(s)
- Alyson E Santoro
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California 93106, USA;
| | | | | |
Collapse
|
22
|
Sollai M, Villanueva L, Hopmans EC, Reichart G, Sinninghe Damsté JS. A combined lipidomic and 16S rRNA gene amplicon sequencing approach reveals archaeal sources of intact polar lipids in the stratified Black Sea water column. GEOBIOLOGY 2019; 17:91-109. [PMID: 30281902 PMCID: PMC6586073 DOI: 10.1111/gbi.12316] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/02/2018] [Accepted: 08/21/2018] [Indexed: 05/25/2023]
Abstract
Archaea are important players in marine biogeochemical cycles, and their membrane lipids are useful biomarkers in environmental and geobiological studies. However, many archaeal groups remain uncultured and their lipid composition unknown. Here, we aim to expand the knowledge on archaeal lipid biomarkers and determine the potential sources of those lipids in the water column of the euxinic Black Sea. The archaeal community was evaluated by 16S rRNA gene amplicon sequencing and by quantitative PCR. The archaeal intact polar lipids (IPLs) were investigated by ultra-high-pressure liquid chromatography coupled to high-resolution mass spectrometry. Our study revealed both a complex archaeal community and large changes with water depth in the IPL assemblages. In the oxic/upper suboxic waters (<105 m), the archaeal community was dominated by marine group (MG) I Thaumarchaeota, coinciding with a higher relative abundance of hexose phosphohexose crenarchaeol, a known marker for Thaumarchaeota. In the suboxic waters (80-110 m), MGI Nitrosopumilus sp. dominated and produced predominantly monohexose glycerol dibiphytanyl glycerol tetraethers (GDGTs) and hydroxy-GDGTs. Two clades of MGII Euryarchaeota were present in the oxic and upper suboxic zones in much lower abundances, preventing the detection of their specific IPLs. In the deep sulfidic waters (>110 m), archaea belonging to the DPANN Woesearchaeota, Bathyarchaeota, and ANME-1b clades dominated. Correlation analyses suggest that the IPLs GDGT-0, GDGT-1, and GDGT-2 with two phosphatidylglycerol (PG) head groups and archaeol with a PG, phosphatidylethanolamine, and phosphatidylserine head groups were produced by ANME-1b archaea. Bathyarchaeota represented 55% of the archaea in the deeper part of the euxinic zone and likely produces archaeol with phospho-dihexose and hexose-glucuronic acid head groups.
Collapse
Affiliation(s)
- Martina Sollai
- Departments of Marine Microbiology and Biogeochemistry and Ocean SystemsNIOZ Royal Netherlands Institute for Sea Researchand Utrecht UniversityDen BurgThe Netherlands
| | - Laura Villanueva
- Departments of Marine Microbiology and Biogeochemistry and Ocean SystemsNIOZ Royal Netherlands Institute for Sea Researchand Utrecht UniversityDen BurgThe Netherlands
| | - Ellen C. Hopmans
- Departments of Marine Microbiology and Biogeochemistry and Ocean SystemsNIOZ Royal Netherlands Institute for Sea Researchand Utrecht UniversityDen BurgThe Netherlands
| | - Gert‐Jan Reichart
- Departments of Marine Microbiology and Biogeochemistry and Ocean SystemsNIOZ Royal Netherlands Institute for Sea Researchand Utrecht UniversityDen BurgThe Netherlands
- Department of Earth SciencesFaculty of GeosciencesUniversity of UtrechtUtrechtThe Netherlands
| | - Jaap S. Sinninghe Damsté
- Departments of Marine Microbiology and Biogeochemistry and Ocean SystemsNIOZ Royal Netherlands Institute for Sea Researchand Utrecht UniversityDen BurgThe Netherlands
- Department of Earth SciencesFaculty of GeosciencesUniversity of UtrechtUtrechtThe Netherlands
| |
Collapse
|
23
|
Fan X, Yin C, Yan G, Cui P, Shen Q, Wang Q, Chen H, Zhang N, Ye M, Zhao Y, Li T, Liang Y. The contrasting effects of N-(n-butyl) thiophosphoric triamide (NBPT) on N 2O emissions in arable soils differing in pH are underlain by complex microbial mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 642:155-167. [PMID: 29894875 DOI: 10.1016/j.scitotenv.2018.05.356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
The urease inhibitor, N-(n-butyl) thiophosphoric triamide (NBPT), has been proposed to reduce synthetic fertilizer-N losses, including nitrous oxide (N2O) emissions from agricultural soils. However, the response of N2O emission to NBPT amendment is inconsistent across soils and associated microbial mechanisms remain largely unknown. Here we performed a meta-analysis of the effects of NBPT on N2O emissions and found NBPT significantly reduced N2O emissions in alkaline soils whereas no obvious effects exhibited in acid soils. Based on the finding of meta-analysis that pH was a key modifier in regulating the effect of NBPT on N2O emissions, we selected two arable soils differing in pH and conducted a microcosm study. In conjunction with measurement of N2O emission, community structure and abundance of functional guilds were assessed using T-RFLP and qPCR. Our results showed NBPT retarded urea hydrolysis and inhibited nitrification, but stimulated N2O emission in alkaline soil, whereas it exhibited no remarkable effects in acid soil, thereby only partly confirming the results of meta-analysis. Abundances of AOB and ureC-containing bacteria decreased, while abundance of AOA increased in both soils with NBPT addition. For acid soil, N2O emissions were significantly correlated with both abundances and community structures of AOA and ureC-containing bacteria, as well as abundance of AOB; for alkaline soil, abundances and community structures of AOB were correlated with N2O emission, as well as community structures of ureC-containing bacteria and archaea, indicating an inconsistent response pattern of community traits of N2O emissions-related functional guilds to NBPT between alkaline soil and acid soil. Our findings suggest that (i) efficacy of NBPT in N2O emission was mainly influenced by soil pH and (ii) variable effects of NBPT on N2O emission might originate not only from the direct effect of NBPT on community traits of urease-positive microbes, but from the indirect effect on ammonia oxidizers.
Collapse
Affiliation(s)
- Xiaoping Fan
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chang Yin
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guochao Yan
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peiyuan Cui
- Jiangsu Key Laboratory of Crop Genetics and Physiology & Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Qi Shen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qun Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Chen
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nan Zhang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mujun Ye
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuhua Zhao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tingqiang Li
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
24
|
Carini P, Dupont CL, Santoro AE. Patterns of thaumarchaeal gene expression in culture and diverse marine environments. Environ Microbiol 2018; 20:2112-2124. [PMID: 29626379 DOI: 10.1111/1462-2920.14107] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 03/15/2018] [Indexed: 11/28/2022]
Abstract
Thaumarchaea are ubiquitous in marine habitats where they participate in carbon and nitrogen cycling. Although metatranscriptomes suggest thaumarchaea are active microbes in marine waters, we understand little about how thaumarchaeal gene expression patterns relate to substrate utilization and activity. Here, we report the global transcriptional response of the marine ammonia-oxidizing thaumarchaeon 'Candidatus Nitrosopelagicus brevis' str. CN25 to ammonia limitation using RNA-Seq. We further describe the genome and transcriptome of Ca. N. brevis str. U25, a new strain capable of urea utilization. Ammonia limitation in CN25 resulted in reduced expression of transcripts coding for ammonia oxidation proteins, and increased expression of a gene coding an Hsp20-like chaperone. Despite significantly different transcript abundances across treatments, two ammonia monooxygenase subunits (amoAB), a nitrite reductase (nirK) and both ammonium transporter genes were always among the most abundant transcripts, regardless of growth state. Ca. N. brevis str. U25 cells expressed a urea transporter 139-fold more than the urease catalytic subunit ureC. Gene coexpression networks derived from culture transcriptomes and 10 thaumarchaea-enriched metatranscriptomes revealed a high degree of correlated gene expression across disparate environmental conditions and identified a module of coexpressed genes, including amoABC and nirK, that we hypothesize to represent the core ammonia oxidation machinery.
Collapse
Affiliation(s)
- Paul Carini
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD, 21613, USA
| | | | - Alyson E Santoro
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD, 21613, USA
| |
Collapse
|
25
|
Techtman SM, Mahmoudi N, Whitt KT, Campa MF, Fortney JL, Joyner DC, Hazen TC. Comparison of Thaumarchaeotal populations from four deep sea basins. FEMS Microbiol Ecol 2018; 93:4331633. [PMID: 29029137 PMCID: PMC5812500 DOI: 10.1093/femsec/fix128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 09/29/2017] [Indexed: 11/13/2022] Open
Abstract
The nitrogen cycle in the marine environment is strongly affected by ammonia-oxidizing Thaumarchaeota. In some marine settings, Thaumarchaeotes can comprise a large percentage of the prokaryotic population. To better understand the biogeographic patterns of Thaumarchaeotes, we sought to investigate differences in their abundance and phylogenetic diversity between geographically distinct basins. Samples were collected from four marine basins (The Caspian Sea, the Great Australian Bight, and the Central and Eastern Mediterranean). The concentration of bacterial and archaeal 16S rRNA genes and archaeal amoA genes were assessed using qPCR. Minimum entropy decomposition was used to elucidate the fine-scale diversity of Thaumarchaeotes. We demonstrated that there were significant differences in the abundance and diversity of Thaumarchaeotes between these four basins. The diversity of Thaumarchaeotal oligotypes differed between basins with many oligotypes only present in one of the four basins, which suggests that their distribution showed biogeographic patterning. There were also significant differences in Thaumarchaeotal community structure between these basins. This would suggest that geographically distant, yet geochemically similar basins may house distinct Thaumarchaeaotal populations. These findings suggest that Thaumarchaeota are very diverse and that biogeography in part contributes in determining the diversity and distribution of Thaumarchaeotes.
Collapse
Affiliation(s)
- Stephen M Techtman
- Department of Biological Sciences, Michigan Technological University, Houghton MI 49931-1295, USA
| | - Nagissa Mahmoudi
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Kendall T Whitt
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Maria Fernanda Campa
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996, USA.,Bredesen Center, University of Tennessee, Knoxville, TN 37996, USA
| | - Julian L Fortney
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA.,Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996, USA
| | - Dominique C Joyner
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA.,Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996, USA
| | - Terry C Hazen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA.,Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996, USA.,Bredesen Center, University of Tennessee, Knoxville, TN 37996, USA.,Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.,Department of Microbiology, University of Tennessee, Knoxville, TN 37916, USA.,Institute for a Secure and Sustainable Environment, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
26
|
La Cono V, Ruggeri G, Azzaro M, Crisafi F, Decembrini F, Denaro R, La Spada G, Maimone G, Monticelli LS, Smedile F, Giuliano L, Yakimov MM. Contribution of Bicarbonate Assimilation to Carbon Pool Dynamics in the Deep Mediterranean Sea and Cultivation of Actively Nitrifying and CO 2-Fixing Bathypelagic Prokaryotic Consortia. Front Microbiol 2018; 9:3. [PMID: 29403458 PMCID: PMC5780414 DOI: 10.3389/fmicb.2018.00003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/03/2018] [Indexed: 11/16/2022] Open
Abstract
Covering two-thirds of our planet, the global deep ocean plays a central role in supporting life on Earth. Among other processes, this biggest ecosystem buffers the rise of atmospheric CO2. Despite carbon sequestration in the deep ocean has been known for a long time, microbial activity in the meso- and bathypelagic realm via the "assimilation of bicarbonate in the dark" (ABD) has only recently been described in more details. Based on recent findings, this process seems primarily the result of chemosynthetic and anaplerotic reactions driven by different groups of deep-sea prokaryoplankton. We quantified bicarbonate assimilation in relation to total prokaryotic abundance, prokaryotic heterotrophic production and respiration in the meso- and bathypelagic Mediterranean Sea. The measured ABD values, ranging from 133 to 370 μg C m-3 d-1, were among the highest ones reported worldwide for similar depths, likely due to the elevated temperature of the deep Mediterranean Sea (13-14°C also at abyssal depths). Integrated over the dark water column (≥200 m depth), bicarbonate assimilation in the deep-sea ranged from 396 to 873 mg C m-2 d-1. This quantity of produced de novo organic carbon amounts to about 85-424% of the phytoplankton primary production and covers up to 62% of deep-sea prokaryotic total carbon demand. Hence, the ABD process in the meso- and bathypelagic Mediterranean Sea might substantially contribute to the inorganic and organic pool and significantly sustain the deep-sea microbial food web. To elucidate the ABD key-players, we established three actively nitrifying and CO2-fixing prokaryotic enrichments. Consortia were characterized by the co-occurrence of chemolithoautotrophic Thaumarchaeota and chemoheterotrophic proteobacteria. One of the enrichments, originated from Ionian bathypelagic waters (3,000 m depth) and supplemented with low concentrations of ammonia, was dominated by the Thaumarchaeota "low-ammonia-concentration" deep-sea ecotype, an enigmatic and ecologically important group of organisms, uncultured until this study.
Collapse
Affiliation(s)
- Violetta La Cono
- Institute for Coastal Marine Environment, National Research Council, Messina, Italy
| | - Gioachino Ruggeri
- Institute for Coastal Marine Environment, National Research Council, Messina, Italy
| | - Maurizio Azzaro
- Institute for Coastal Marine Environment, National Research Council, Messina, Italy
| | - Francesca Crisafi
- Institute for Coastal Marine Environment, National Research Council, Messina, Italy
| | - Franco Decembrini
- Institute for Coastal Marine Environment, National Research Council, Messina, Italy
| | - Renata Denaro
- Institute for Coastal Marine Environment, National Research Council, Messina, Italy
| | - Gina La Spada
- Institute for Coastal Marine Environment, National Research Council, Messina, Italy
| | - Giovanna Maimone
- Institute for Coastal Marine Environment, National Research Council, Messina, Italy
| | - Luis S. Monticelli
- Institute for Coastal Marine Environment, National Research Council, Messina, Italy
| | - Francesco Smedile
- Institute for Coastal Marine Environment, National Research Council, Messina, Italy
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, United States
| | - Laura Giuliano
- Mediterranean Science Commission (CIESM), Monaco, Monaco
| | - Michail M. Yakimov
- Institute for Coastal Marine Environment, National Research Council, Messina, Italy
- Institute of Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| |
Collapse
|
27
|
Dang H, Chen CTA. Ecological Energetic Perspectives on Responses of Nitrogen-Transforming Chemolithoautotrophic Microbiota to Changes in the Marine Environment. Front Microbiol 2017; 8:1246. [PMID: 28769878 PMCID: PMC5509916 DOI: 10.3389/fmicb.2017.01246] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 06/20/2017] [Indexed: 11/15/2022] Open
Abstract
Transformation and mobilization of bioessential elements in the biosphere, lithosphere, atmosphere, and hydrosphere constitute the Earth’s biogeochemical cycles, which are driven mainly by microorganisms through their energy and material metabolic processes. Without microbial energy harvesting from sources of light and inorganic chemical bonds for autotrophic fixation of inorganic carbon, there would not be sustainable ecosystems in the vast ocean. Although ecological energetics (eco-energetics) has been emphasized as a core aspect of ecosystem analyses and microorganisms largely control the flow of matter and energy in marine ecosystems, marine microbial communities are rarely studied from the eco-energetic perspective. The diverse bioenergetic pathways and eco-energetic strategies of the microorganisms are essentially the outcome of biosphere-geosphere interactions over evolutionary times. The biogeochemical cycles are intimately interconnected with energy fluxes across the biosphere and the capacity of the ocean to fix inorganic carbon is generally constrained by the availability of nutrients and energy. The understanding of how microbial eco-energetic processes influence the structure and function of marine ecosystems and how they interact with the changing environment is thus fundamental to a mechanistic and predictive understanding of the marine carbon and nitrogen cycles and the trends in global change. By using major groups of chemolithoautotrophic microorganisms that participate in the marine nitrogen cycle as examples, this article examines their eco-energetic strategies, contributions to carbon cycling, and putative responses to and impacts on the various global change processes associated with global warming, ocean acidification, eutrophication, deoxygenation, and pollution. We conclude that knowledge gaps remain despite decades of tremendous research efforts. The advent of new techniques may bring the dawn to scientific breakthroughs that necessitate the multidisciplinary combination of eco-energetic, biogeochemical and “omics” studies in this field.
Collapse
Affiliation(s)
- Hongyue Dang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen UniversityXiamen, China
| | - Chen-Tung A Chen
- Department of Oceanography, National Sun Yat-sen UniversityKaohsiung, Taiwan
| |
Collapse
|
28
|
Alfreider A, Baumer A, Bogensperger T, Posch T, Salcher MM, Summerer M. CO 2 assimilation strategies in stratified lakes: Diversity and distribution patterns of chemolithoautotrophs. Environ Microbiol 2017; 19:2754-2768. [PMID: 28474482 PMCID: PMC5619642 DOI: 10.1111/1462-2920.13786] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 11/23/2022]
Abstract
While mechanisms of different carbon dioxide (CO2) assimilation pathways in chemolithoautotrohic prokaryotes are well understood for many isolates under laboratory conditions, the ecological significance of diverse CO2 fixation strategies in the environment is mostly unexplored. Six stratified freshwater lakes were chosen to study the distribution and diversity of the Calvin-Benson-Bassham (CBB) cycle, the reductive tricarboxylic acid (rTCA) cycle, and the recently discovered archaeal 3-hydroxypropionate/4-hydroxybutyrate (HP/HB) pathway. Eleven primer sets were used to amplify and sequence genes coding for selected key enzymes in the three pathways. Whereas the CBB pathway with different forms of RubisCO (IA, IC and II) was ubiquitous and related to diverse bacterial taxa, encompassing a wide range of potential physiologies, the rTCA cycle in Epsilonproteobacteria and Chloribi was exclusively detected in anoxic water layers. Nitrifiying Nitrosospira and Thaumarchaeota, using the rTCA and HP/HB cycle respectively, are important residents in the aphotic and (micro-)oxic zone of deep lakes. Both taxa were of minor importance in surface waters and in smaller lakes characterized by an anoxic hypolimnion. Overall, this study provides a first insight on how different CO2 fixation strategies and chemical gradients in lakes are associated to the distribution of chemoautotrophic prokaryotes with different functional traits.
Collapse
Affiliation(s)
- Albin Alfreider
- Institute for Ecology, University of Innsbruck, Innsbruck, Austria
| | - Andreas Baumer
- Institute for Ecology, University of Innsbruck, Innsbruck, Austria
| | | | - Thomas Posch
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Michaela M Salcher
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland.,Institute of Hydrobiology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Monika Summerer
- Institute for Ecology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
29
|
Rasigraf O, Schmitt J, Jetten MSM, Lüke C. Metagenomic potential for and diversity of N-cycle driving microorganisms in the Bothnian Sea sediment. Microbiologyopen 2017; 6. [PMID: 28544522 PMCID: PMC5552932 DOI: 10.1002/mbo3.475] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 02/13/2017] [Accepted: 02/22/2017] [Indexed: 11/10/2022] Open
Abstract
The biological nitrogen cycle is driven by a plethora of reactions transforming nitrogen compounds between various redox states. Here, we investigated the metagenomic potential for nitrogen cycle of the in situ microbial community in an oligotrophic, brackish environment of the Bothnian Sea sediment. Total DNA from three sediment depths was isolated and sequenced. The characterization of the total community was performed based on 16S rRNA gene inventory using SILVA database as reference. The diversity of diagnostic functional genes coding for nitrate reductases (napA;narG), nitrite:nitrate oxidoreductase (nxrA), nitrite reductases (nirK;nirS;nrfA), nitric oxide reductase (nor), nitrous oxide reductase (nosZ), hydrazine synthase (hzsA), ammonia monooxygenase (amoA), hydroxylamine oxidoreductase (hao), and nitrogenase (nifH) was analyzed by blastx against curated reference databases. In addition, Polymerase chain reaction (PCR)‐based amplification was performed on the hzsA gene of anammox bacteria. Our results reveal high genomic potential for full denitrification to N2, but minor importance of anaerobic ammonium oxidation and dissimilatory nitrite reduction to ammonium. Genomic potential for aerobic ammonia oxidation was dominated by Thaumarchaeota. A higher diversity of anammox bacteria was detected in metagenomes than with PCR‐based technique. The results reveal the importance of various N‐cycle driving processes and highlight the advantage of metagenomics in detection of novel microbial key players.
Collapse
Affiliation(s)
- Olivia Rasigraf
- Department of Microbiology, IWWR, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Julia Schmitt
- DVGW-Forschungsstelle TUHH, Hamburg University of Technology, Hamburg, Germany
| | - Mike S M Jetten
- Department of Microbiology, IWWR, Radboud University Nijmegen, Nijmegen, Netherlands.,Department of Biotechnology, Delft University of Technology, Delft, Netherlands.,Soehngen Institute of Anaerobic Microbiology, Nijmegen, Netherlands
| | - Claudia Lüke
- Department of Microbiology, IWWR, Radboud University Nijmegen, Nijmegen, Netherlands
| |
Collapse
|
30
|
Celussi M, Malfatti F, Ziveri P, Giani M, Del Negro P. Uptake-release dynamics of the inorganic and organic carbon pool mediated by planktonic prokaryotes in the deep Mediterranean Sea. Environ Microbiol 2016; 19:1163-1175. [PMID: 28026100 DOI: 10.1111/1462-2920.13641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/25/2016] [Accepted: 12/03/2016] [Indexed: 11/28/2022]
Abstract
Understanding the ecosystem functioning in the dark portion of the ocean is a challenge that microbial ecologists are still facing. Due to the large volume, the global deep Ocean plays a central role in the regulation of climate, possibly buffering the rise of atmospheric carbon dioxide if processes of CO2 fixation compensate for respiration. We investigated the rates of several prokaryotic activities (dissolved and particulate primary production, heterotrophic carbon production and respiration) in meso- and bathypelagic waters of the Mediterranean Sea, covering all sub-basins. Chemosynthesis was the main process for C uptake. The rates of organic C (OC) excretion (or viral-induced cell lysis) inferred from the dissolved primary production measurements were noteworthy, being comparable to particulate primary production, and possibly contributing to the formation of non-sinking particulate organic matter. Inorganic C fixation rates were significantly higher than those reported for other deep-sea systems, probably as a consequence of the persistently higher temperature of dark Mediterranean waters or to phylogenetically diverse communities involved in the process. Primary production was negatively correlated with dissolved organic carbon concentration and showed an inverse pattern to heterotrophic carbon production, indicating a niche partitioning between heterotrophs and autotrophs. In sum, the deep Mediterranean Sea harbors active autotrophic communities able to fix inorganic carbon faster than the heterotrophic carbon production rates.
Collapse
Affiliation(s)
- Mauro Celussi
- OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale), Oceanography Division, via A. Piccard 54, Trieste, 34151, Italy
| | - Francesca Malfatti
- OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale), Oceanography Division, via A. Piccard 54, Trieste, 34151, Italy
| | - Patrizia Ziveri
- Institute of Environmental Science and Technology, Autonomous University of Barcelona (UAB), Bellaterra, 08193, Spain.,ICREA, Pg. Lluis Companys 23, Barcelona, 08010, Spain
| | - Michele Giani
- OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale), Oceanography Division, via A. Piccard 54, Trieste, 34151, Italy
| | - Paola Del Negro
- OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale), Oceanography Division, via A. Piccard 54, Trieste, 34151, Italy
| |
Collapse
|
31
|
Tolar BB, Wallsgrove NJ, Popp BN, Hollibaugh JT. Oxidation of urea-derived nitrogen by thaumarchaeota-dominated marine nitrifying communities. Environ Microbiol 2016; 19:4838-4850. [PMID: 27422798 DOI: 10.1111/1462-2920.13457] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Urea nitrogen has been proposed to contribute significantly to nitrification by marine thaumarchaeotes. These inferences are based on distributions of thaumarchaeote urease genes rather than activity measurements. We found that ammonia oxidation rates were always higher than oxidation rates of urea-derived N in samples from coastal Georgia, USA (means ± SEM: 382 ± 35 versus 73 ± 24 nmol L-1 d-1 , Mann-Whitney U-test p < 0.0001), and the South Atlantic Bight (20 ± 8.8 versus 2.2 ± 1.7 nmol L-1 d-1 , p = 0.026) but not the Gulf of Alaska (8.8 ± 4.0 versus 1.5 ± 0.6, p > 0.05). Urea-derived N was relatively more important in samples from Antarctic continental shelf waters, though the difference was not statistically significant (19.4 ± 4.8 versus 12.0 ± 2.7 nmol L-1 d-1 , p > 0.05). We found only weak correlations between oxidation rates of urea-derived N and the abundance or transcription of putative Thaumarchaeota ureC genes. Dependence on urea-derived N does not appear to be directly related to pH or ammonium concentrations. Competition experiments and release of 15 NH3 suggest that urea is hydrolyzed to ammonia intracellularly, then a portion is lost to the dissolved pool. The contribution of urea-derived N to nitrification appears to be minor in temperate coastal waters, but may represent a significant portion of the nitrification flux in Antarctic coastal waters.
Collapse
Affiliation(s)
- Bradley B Tolar
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA.,Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | - Natalie J Wallsgrove
- Department of Geology and Geophysics, University of Hawai'i, Honolulu, HI, 96822, USA
| | - Brian N Popp
- Department of Geology and Geophysics, University of Hawai'i, Honolulu, HI, 96822, USA
| | - James T Hollibaugh
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
32
|
Contribution of ammonia oxidation to chemoautotrophy in Antarctic coastal waters. ISME JOURNAL 2016; 10:2605-2619. [PMID: 27187795 PMCID: PMC5113851 DOI: 10.1038/ismej.2016.61] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 02/04/2016] [Accepted: 03/22/2016] [Indexed: 11/09/2022]
Abstract
There are few measurements of nitrification in polar regions, yet geochemical evidence suggests that it is significant, and chemoautotrophy supported by nitrification has been suggested as an important contribution to prokaryotic production during the polar winter. This study reports seasonal ammonia oxidation (AO) rates, gene and transcript abundance in continental shelf waters west of the Antarctic Peninsula, where Thaumarchaeota strongly dominate populations of ammonia-oxidizing organisms. Higher AO rates were observed in the late winter surface mixed layer compared with the same water mass sampled during summer (mean±s.e.: 62±16 versus 13±2.8 nm per day, t-test P<0.0005). AO rates in the circumpolar deep water did not differ between seasons (21±5.7 versus 24±6.6 nm per day; P=0.83), despite 5- to 20-fold greater Thaumarchaeota abundance during summer. AO rates correlated with concentrations of Archaea ammonia monooxygenase (amoA) genes during summer, but not with concentrations of Archaea amoA transcripts, or with ratios of Archaea amoA transcripts per gene, or with concentrations of Betaproteobacterial amoA genes or transcripts. The AO rates we report (<0.1–220 nm per day) are ~10-fold greater than reported previously for Antarctic waters and suggest that inclusion of Antarctic coastal waters in global estimates of oceanic nitrification could increase global rate estimates by ~9%. Chemoautotrophic carbon fixation supported by AO was 3–6% of annualized phytoplankton primary production and production of Thaumarchaeota biomass supported by AO could account for ~9% of the bacterioplankton production measured in winter. Growth rates of thaumarchaeote populations inferred from AO rates averaged 0.3 per day and ranged from 0.01 to 2.1 per day.
Collapse
|
33
|
Microbial Surface Colonization and Biofilm Development in Marine Environments. Microbiol Mol Biol Rev 2015; 80:91-138. [PMID: 26700108 DOI: 10.1128/mmbr.00037-15] [Citation(s) in RCA: 539] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Biotic and abiotic surfaces in marine waters are rapidly colonized by microorganisms. Surface colonization and subsequent biofilm formation and development provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. Microbial surface association also contributes to deleterious effects such as biofouling, biocorrosion, and the persistence and transmission of harmful or pathogenic microorganisms and their genetic determinants. The processes and mechanisms of colonization as well as key players among the surface-associated microbiota have been studied for several decades. Accumulating evidence indicates that specific cell-surface, cell-cell, and interpopulation interactions shape the composition, structure, spatiotemporal dynamics, and functions of surface-associated microbial communities. Several key microbial processes and mechanisms, including (i) surface, population, and community sensing and signaling, (ii) intraspecies and interspecies communication and interaction, and (iii) the regulatory balance between cooperation and competition, have been identified as critical for the microbial surface association lifestyle. In this review, recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed. Major gaps in our knowledge remain. We pose questions for targeted investigation of surface-specific community-level microbial features, answers to which would advance our understanding of surface-associated microbial community ecology and the biogeochemical functions of these communities at levels from molecular mechanistic details through systems biological integration.
Collapse
|
34
|
Variations in Microbial Community Structure through the Stratified Water Column in the Tyrrhenian Sea (Central Mediterranean). JOURNAL OF MARINE SCIENCE AND ENGINEERING 2015. [DOI: 10.3390/jmse3030845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
35
|
La Cono V, Smedile F, La Spada G, Arcadi E, Genovese M, Ruggeri G, Genovese L, Giuliano L, Yakimov MM. Shifts in the meso- and bathypelagic archaea communities composition during recovery and short-term handling of decompressed deep-sea samples. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:450-459. [PMID: 25682761 DOI: 10.1111/1758-2229.12272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 02/10/2015] [Indexed: 06/04/2023]
Abstract
Dark ocean microbial communities are actively involved in chemoautotrophic and anaplerotic fixation of bicarbonate. Thus, aphotic pelagic realm of the ocean might represent a significant sink of CO2 and source of primary production. However, the estimated metabolic activities in the dark ocean are fraught with uncertainties. Typically, deep-sea samples are recovered to the sea surface for downstream processing on deck. Shifts in ambient settings, associated with such treatments, can likely change the metabolic activity and community structure of deep-sea adapted autochthonous microbial populations. To estimate influence of recovery and short-term handling of deep-sea samples, we monitored the succession of bathypelagic microbial community during its 3 days long on deck incubation. We demonstrated that at the end of exposition, the deep-sea archaeal population decreased threefold, whereas the bacterial fraction doubled in size. As revealed by phylogenetic analyses of amoA gene transcripts, dominance of the active ammonium-oxidizing bathypelagic Thaumarchaeota groups shifted over time very fast. These findings demonstrated the simultaneous existence of various 'deep-sea ecotypes', differentially reacting to the sampling and downstream handling. Our study supports the hypothesis that metabolically active members of meso- and bathypelagic Thaumarchaeota possess the habitat-specific distribution, metabolic complexity and genetic divergence at subpopulation level.
Collapse
Affiliation(s)
- Violetta La Cono
- Institute for Coastal Marine Environment, CNR, Spianata S. Raineri 86, 98122, Messina, Italy
| | - Francesco Smedile
- Institute for Coastal Marine Environment, CNR, Spianata S. Raineri 86, 98122, Messina, Italy
| | - Gina La Spada
- Institute for Coastal Marine Environment, CNR, Spianata S. Raineri 86, 98122, Messina, Italy
| | - Erika Arcadi
- Institute for Coastal Marine Environment, CNR, Spianata S. Raineri 86, 98122, Messina, Italy
| | - Maria Genovese
- Institute for Coastal Marine Environment, CNR, Spianata S. Raineri 86, 98122, Messina, Italy
| | - Gioacchino Ruggeri
- Institute for Coastal Marine Environment, CNR, Spianata S. Raineri 86, 98122, Messina, Italy
| | - Lucrezia Genovese
- Institute for Coastal Marine Environment, CNR, Spianata S. Raineri 86, 98122, Messina, Italy
| | - Laura Giuliano
- Institute for Coastal Marine Environment, CNR, Spianata S. Raineri 86, 98122, Messina, Italy
- Mediterranean Science Commission (CIESM), 16 bd de Suisse, Monte Carlo, 98000, Monaco
| | - Michail M Yakimov
- Institute for Coastal Marine Environment, CNR, Spianata S. Raineri 86, 98122, Messina, Italy
| |
Collapse
|
36
|
Malonic semialdehyde reductase from the archaeon Nitrosopumilus maritimus is involved in the autotrophic 3-hydroxypropionate/4-hydroxybutyrate cycle. Appl Environ Microbiol 2014; 81:1700-7. [PMID: 25548047 DOI: 10.1128/aem.03390-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The recently described ammonia-oxidizing archaea of the phylum Thaumarchaeota are highly abundant in marine, geothermal, and terrestrial environments. All characterized representatives of this phylum are aerobic chemolithoautotrophic ammonia oxidizers assimilating inorganic carbon via a recently described thaumarchaeal version of the 3-hydroxypropionate/4-hydroxybutyrate cycle. Although some genes coding for the enzymes of this cycle have been identified in the genomes of Thaumarchaeota, many other genes of the cycle are not homologous to the characterized enzymes from other species and can therefore not be identified bioinformatically. Here we report the identification and characterization of malonic semialdehyde reductase Nmar_1110 in the cultured marine thaumarchaeon Nitrosopumilus maritimus. This enzyme, which catalyzes the reduction of malonic semialdehyde with NAD(P)H to 3-hydroxypropionate, belongs to the family of iron-containing alcohol dehydrogenases and is not homologous to malonic semialdehyde reductases from Chloroflexus aurantiacus and Metallosphaera sedula. It is highly specific to malonic semialdehyde (Km, 0.11 mM; Vmax, 86.9 μmol min(-1) mg(-1) of protein) and exhibits only low activity with succinic semialdehyde (Km, 4.26 mM; Vmax, 18.5 μmol min(-1) mg(-1) of protein). Homologues of N. maritimus malonic semialdehyde reductase can be found in the genomes of all Thaumarchaeota sequenced so far and form a well-defined cluster in the phylogenetic tree of iron-containing alcohol dehydrogenases. We conclude that malonic semialdehyde reductase can be regarded as a characteristic enzyme for the thaumarchaeal version of the 3-hydroxypropionate/4-hydroxybutyrate cycle.
Collapse
|
37
|
Long A, Song B, Fridey K, Silva A. Detection and diversity of copper containing nitrite reductase genes (nirK) in prokaryotic and fungal communities of agricultural soils. FEMS Microbiol Ecol 2014; 91:1-9. [PMID: 25764542 DOI: 10.1093/femsec/fiu004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Microorganisms are capable of producing N2 and N2O gases as the end products of denitrification. Copper-containing nitrite reductase (NirK), a key enzyme in the microbial N-cycle, has been found in bacteria, archaea and fungi. This study seeks to assess the diversity of nirK genes in the prokaryotic and fungal communities of agricultural soils in the United States. New primers targeting the nirK genes in fungi were developed, while nirK genes in archaea and bacteria were detected using previously published methods. The new primers were able to detect fungal nirK genes as well as bacterial nirK genes from a group that could not be observed with previously published primers. Based on the sequence analyses from three different primer sets, five clades of nirK genes were identified, which were associated with soil archaea, ammonium-oxidizing bacteria, denitrifying bacteria and fungi. The diversity of nirK genes in the two denitrifying bacteria clades was higher than the diversity found in other clades. Using a newly designed primer set, this study showed the detection of fungal nirK genes from environmental samples. The newly designed PCR primers in this study enhance the ability to detect the diversity of nirK-encoding microorganisms in soils.
Collapse
Affiliation(s)
- Andrew Long
- Department of Biology and Marine Biology, University of North Carolina, Wilmington, NC 28403
| | - Bongkeun Song
- Department of Biology and Marine Biology, University of North Carolina, Wilmington, NC 28403 Department of Biological Sciences, Virginia Institute of Marine Sciences, Gloucester Point, VA 23062, USA Department of Life Science, Dongguk University-Seoul, Seoul 100-715, South Korea
| | - Kelly Fridey
- Department of Biology and Marine Biology, University of North Carolina, Wilmington, NC 28403
| | - Amy Silva
- Department of Biology and Marine Biology, University of North Carolina, Wilmington, NC 28403
| |
Collapse
|
38
|
Yakimov MM, La Cono V, Smedile F, Crisafi F, Arcadi E, Leonardi M, Decembrini F, Catalfamo M, Bargiela R, Ferrer M, Golyshin PN, Giuliano L. Heterotrophic bicarbonate assimilation is the main process of de novo organic carbon synthesis in hadal zone of the Hellenic Trench, the deepest part of Mediterranean Sea. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:709-722. [PMID: 25756124 DOI: 10.1111/1758-2229.12192] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ammonium-oxidizing chemoautotrophic members of Thaumarchaea are proposed to be the key players in the assimilation of bicarbonate in the dark (ABD). However, this process may also involve heterotrophic metabolic pathways, such as fixation of carbon dioxide (CO2) via various anaplerotic reactions. We collected samples from the depth of 4900 m at the Matapan-Vavilov Deep (MVD) station (Hellenic Trench, Eastern Mediterranean) and used the multiphasic approach to study the ABD mediators in this deep-sea ecosystem. At this depth, our analysis indicated the occurrence of actively CO2-fixing heterotrophic microbial assemblages dominated by Gammaproteobacteria with virtually no Thaumarchaea present. [14C]-bicarbonate incorporation experiments combined with shotgun [14C]-proteomic analysis identified a series of proteins of gammaproteobacterial origin. More than quarter of them were closely related with Alteromonas macleodii ‘deep ecotype’ AltDE, the predominant organism in the microbial community of MVD. The present study demonstrated that in the aphotic/hadal zone of the Mediterranean Sea, the assimilation of bicarbonate is associated with both chemolithoauto- and heterotrophic ABD. In some deep-sea areas, the latter may predominantly contribute to the de novo synthesis of organic carbon which points at the important and yet underestimated role heterotrophic bacterial populations can play the in global carbon cycle/sink in the ocean interior.
Collapse
|
39
|
Berg C, Vandieken V, Thamdrup B, Jürgens K. Significance of archaeal nitrification in hypoxic waters of the Baltic Sea. ISME JOURNAL 2014; 9:1319-32. [PMID: 25423026 DOI: 10.1038/ismej.2014.218] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/25/2014] [Accepted: 10/03/2014] [Indexed: 11/09/2022]
Abstract
Ammonia-oxidizing archaea (AOA) of the phylum Thaumarchaeota are widespread, and their abundance in many terrestrial and aquatic ecosystems suggests a prominent role in nitrification. AOA also occur in high numbers in oxygen-deficient marine environments, such as the pelagic redox gradients of the central Baltic Sea; however, data on archaeal nitrification rates are scarce and little is known about the factors, for example sulfide, that regulate nitrification in this system. In the present work, we assessed the contribution of AOA to ammonia oxidation rates in Baltic deep basins and elucidated the impact of sulfide on this process. Rate measurements with (15)N-labeled ammonium, CO(2) dark fixation measurements and quantification of AOA by catalyzed reporter deposition-fluorescence in situ hybridization revealed that among the three investigated sites the highest potential nitrification rates (122-884 nmol l(-1)per day) were measured within gradients of decreasing oxygen, where thaumarchaeotal abundance was maximal (2.5-6.9 × 10(5) cells per ml) and CO(2) fixation elevated. In the presence of the archaeal-specific inhibitor GC(7), nitrification was reduced by 86-100%, confirming the assumed dominance of AOA in this process. In samples spiked with sulfide at concentrations similar to those of in situ conditions, nitrification activity was inhibited but persisted at reduced rates. This result together with the substantial nitrification potential detected in sulfidic waters suggests the tolerance of AOA to periodic mixing of anoxic and sulfidic waters. It begs the question of whether the globally distributed Thaumarchaeota respond similarly in other stratified water columns or whether the observed robustness against sulfide is a specific feature of the thaumarchaeotal subcluster present in the Baltic Deeps.
Collapse
Affiliation(s)
- Carlo Berg
- 1] Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany [2] Stockholm University, Science for Life Laboratory, Stockholm, Sweden
| | - Verona Vandieken
- 1] Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany [2] Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Oldenburg, Germany
| | - Bo Thamdrup
- Nordic Center for Earth Evolution (NordCEE) and Department of Biology, University of Southern Denmark (SDU), Odense, Denmark
| | - Klaus Jürgens
- Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
| |
Collapse
|
40
|
Diversity of marine microbes in a changing Mediterranean Sea. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2014. [DOI: 10.1007/s12210-014-0333-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
Lipsewers YA, Bale NJ, Hopmans EC, Schouten S, Sinninghe Damsté JS, Villanueva L. Seasonality and depth distribution of the abundance and activity of ammonia oxidizing microorganisms in marine coastal sediments (North Sea). Front Microbiol 2014; 5:472. [PMID: 25250020 PMCID: PMC4155873 DOI: 10.3389/fmicb.2014.00472] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/20/2014] [Indexed: 11/13/2022] Open
Abstract
Microbial processes such as nitrification and anaerobic ammonium oxidation (anammox) are important for nitrogen cycling in marine sediments. Seasonal variations of archaeal and bacterial ammonia oxidizers (AOA and AOB) and anammox bacteria, as well as the environmental factors affecting these groups, are not well studied. We have examined the seasonal and depth distribution of the abundance and potential activity of these microbial groups in coastal marine sediments of the southern North Sea. This was achieved by quantifying specific intact polar lipids as well as the abundance and gene expression of their 16S rRNA gene, the ammonia monooxygenase subunit A (amoA) gene of AOA and AOB, and the hydrazine synthase (hzsA) gene of anammox bacteria. AOA, AOB, and anammox bacteria were detected and transcriptionally active down to 12 cm sediment depth. In all seasons, the abundance of AOA was higher compared to the AOB abundance suggesting that AOA play a more dominant role in aerobic ammonia oxidation in these sediments. Anammox bacteria were abundant and active even in oxygenated and bioturbated parts of the sediment. The abundance of AOA and AOB was relatively stable with depth and over the seasonal cycle, while anammox bacteria abundance and transcriptional activity were highest in August. North Sea sediments thus seem to provide a common, stable, ecological niche for AOA, AOB, and anammox bacteria.
Collapse
Affiliation(s)
- Yvonne A Lipsewers
- Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research Den Burg, Netherlands
| | - Nicole J Bale
- Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research Den Burg, Netherlands
| | - Ellen C Hopmans
- Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research Den Burg, Netherlands
| | - Stefan Schouten
- Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research Den Burg, Netherlands
| | - Jaap S Sinninghe Damsté
- Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research Den Burg, Netherlands
| | - Laura Villanueva
- Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research Den Burg, Netherlands
| |
Collapse
|
42
|
Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. Proc Natl Acad Sci U S A 2014; 111:12504-9. [PMID: 25114236 DOI: 10.1073/pnas.1324115111] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ammonia-oxidizing archaea (AOA) are now implicated in exerting significant control over the form and availability of reactive nitrogen species in marine environments. Detailed studies of specific metabolic traits and physicochemical factors controlling their activities and distribution have not been well constrained in part due to the scarcity of isolated AOA strains. Here, we report the isolation of two new coastal marine AOA, strains PS0 and HCA1. Comparison of the new strains to Nitrosopumilus maritimus strain SCM1, the only marine AOA in pure culture thus far, demonstrated distinct adaptations to pH, salinity, organic carbon, temperature, and light. Strain PS0 sustained nearly 80% of ammonia oxidation activity at a pH as low as 5.9, indicating that coastal strains may be less sensitive to the ongoing reduction in ocean pH. Notably, the two novel isolates are obligate mixotrophs that rely on uptake and assimilation of organic carbon compounds, suggesting a direct coupling between chemolithotrophy and organic matter assimilation in marine food webs. All three isolates showed only minor photoinhibition at 15 µE ⋅ m(-2) ⋅ s(-1) and rapid recovery of ammonia oxidation in the dark, consistent with an AOA contribution to the primary nitrite maximum and the plausibility of a diurnal cycle of archaeal ammonia oxidation activity in the euphotic zone. Together, these findings highlight an unexpected adaptive capacity within closely related marine group I Archaea and provide new understanding of the physiological basis of the remarkable ecological success reflected by their generally high abundance in marine environments.
Collapse
|
43
|
Urea uptake and carbon fixation by marine pelagic bacteria and archaea during the Arctic summer and winter seasons. Appl Environ Microbiol 2014; 80:6013-22. [PMID: 25063662 DOI: 10.1128/aem.01431-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
How Arctic climate change might translate into alterations of biogeochemical cycles of carbon (C) and nitrogen (N) with respect to inorganic and organic N utilization is not well understood. This study combined 15N uptake rate measurements for ammonium, nitrate, and urea with 15N- and 13C-based DNA stable-isotope probing (SIP). The objective was to identify active bacterial and archeal plankton and their role in N and C uptake during the Arctic summer and winter seasons. We hypothesized that bacteria and archaea would successfully compete for nitrate and urea during the Arctic winter but not during the summer, when phytoplankton dominate the uptake of these nitrogen sources. Samples were collected at a coastal station near Barrow, AK, during August and January. During both seasons, ammonium uptake rates were greater than those for nitrate or urea, and nitrate uptake rates remained lower than those for ammonium or urea. SIP experiments indicated a strong seasonal shift of bacterial and archaeal N utilization from ammonium during the summer to urea during the winter but did not support a similar seasonal pattern of nitrate utilization. Analysis of 16S rRNA gene sequences obtained from each SIP fraction implicated marine group I Crenarchaeota (MGIC) as well as Betaproteobacteria, Firmicutes, SAR11, and SAR324 in N uptake from urea during the winter. Similarly, 13C SIP data suggested dark carbon fixation for MGIC, as well as for several proteobacterial lineages and the Firmicutes. These data are consistent with urea-fueled nitrification by polar archaea and bacteria, which may be advantageous under dark conditions.
Collapse
|
44
|
Smedile F, Messina E, La Cono V, Yakimov MM. Comparative analysis of deep-sea bacterioplankton OMICS revealed the occurrence of habitat-specific genomic attributes. Mar Genomics 2014; 17:1-8. [PMID: 24937756 DOI: 10.1016/j.margen.2014.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/23/2014] [Accepted: 06/03/2014] [Indexed: 01/20/2023]
Abstract
Bathyal aphotic ocean represents the largest biotope on our planet, which sustains highly diverse but low-density microbial communities, with yet untapped genomic attributes, potentially useful for discovery of new biomolecules, industrial enzymes and pathways. In the last two decades, culture-independent approaches of high-throughput sequencing have provided new insights into structure and function of marine bacterioplankton, leading to unprecedented opportunities to accurately characterize microbial communities and their interactions with the environments. In the present review we focused on the analysis of relatively few deep-sea OMICS studies, completed thus far, to find the specific genomic patterns determining the lifeway and adaptation mechanisms of prokaryotes thriving in the dark deep ocean below the depth of 1000m. Phylogenomic and omic studies provided clear evidence that the bathyal microbial communities are distinct from the epipelagic counterparts and, along with generally larger genomes, possess their own habitat-specific genomic attributes. The high abundance in the deep ocean OMICS of the systems for environmental sensing, signal transduction and metabolic versatility as compared to the epipelagic counterparts is thought to enable the deep-sea bacterioplankton to rapidly adapt to changing environmental conditions associated with resource scarcity and high diversity of energy and carbon substrates in the bathyal biotopes. Together with a versatile heterotrophy, mixotrophy and anaplerosis are thought to enable the deep-sea bacterioplankton to cope with these environmental conditions.
Collapse
Affiliation(s)
- Francesco Smedile
- Institute for Coastal Marine Environment, CNR, Spianata S.Raineri 86, 98122 Messina, Italy
| | - Enzo Messina
- Institute for Coastal Marine Environment, CNR, Spianata S.Raineri 86, 98122 Messina, Italy
| | - Violetta La Cono
- Institute for Coastal Marine Environment, CNR, Spianata S.Raineri 86, 98122 Messina, Italy
| | - Michail M Yakimov
- Institute for Coastal Marine Environment, CNR, Spianata S.Raineri 86, 98122 Messina, Italy.
| |
Collapse
|
45
|
Villanueva L, Schouten S, Sinninghe Damsté JS. Depth-related distribution of a key gene of the tetraether lipid biosynthetic pathway in marine Thaumarchaeota. Environ Microbiol 2014; 17:3527-39. [PMID: 24813867 DOI: 10.1111/1462-2920.12508] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 05/07/2014] [Indexed: 11/28/2022]
Abstract
The distribution of isoprenoid glycerol dialkyl glycerol tetraethers (GDGT) lipids synthesized by Thaumarchaeota has been shown to be temperature-dependent in world oceans. Depth-related differences in the ammonia monooxygenase (amoA) of Thaumarchaeota have led to the classification of 'shallow' and 'deep water' clusters, potentially affecting GDGT distributions. Here, we investigate if this classification is also reflected in a key gene of the thaumarchaeotal lipid biosynthetic pathway coding for geranylgeranylglyceryl phosphate (GGGP) synthase. We investigated metagenomic databases, suspended particulate matter and surface sediment of the Arabian Sea oxygen minimum zone. These revealed significant differences in amoA and GGGP synthase between 'shallow' and 'deep water' Thaumarchaeota. Intriguingly, amoA and GGGP synthase sequences of benthic Thaumarchaeota clustered with the 'shallow water' rather than with 'deep water' Thaumarchaeota. This suggests that pressure and temperature are unlikely factors that drive the differentiation, and suggests an important role of ammonia concentration that is higher in benthic and 'shallow water' niches. Analysis of the relative abundance of GDGTs in the Arabian Sea and in globally distributed surface sediments showed differences in GDGT distributions from subsurface to deep waters that may be explained by differences in the GGGP synthase, suggesting a genetic control on GDGT distributions.
Collapse
Affiliation(s)
- Laura Villanueva
- Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, AB, Den Burg, NL-1790, The Netherlands
| | - Stefan Schouten
- Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, AB, Den Burg, NL-1790, The Netherlands
| | - Jaap S Sinninghe Damsté
- Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, AB, Den Burg, NL-1790, The Netherlands
| |
Collapse
|
46
|
Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation. Proc Natl Acad Sci U S A 2014; 111:8239-44. [PMID: 24843170 DOI: 10.1073/pnas.1402028111] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Archaea of the phylum Thaumarchaeota are among the most abundant prokaryotes on Earth and are widely distributed in marine, terrestrial, and geothermal environments. All studied Thaumarchaeota couple the oxidation of ammonia at extremely low concentrations with carbon fixation. As the predominant nitrifiers in the ocean and in various soils, ammonia-oxidizing archaea contribute significantly to the global nitrogen and carbon cycles. Here we provide biochemical evidence that thaumarchaeal ammonia oxidizers assimilate inorganic carbon via a modified version of the autotrophic hydroxypropionate/hydroxybutyrate cycle of Crenarchaeota that is far more energy efficient than any other aerobic autotrophic pathway. The identified genes of this cycle were found in the genomes of all sequenced representatives of the phylum Thaumarchaeota, indicating the environmental significance of this efficient CO2-fixation pathway. Comparative phylogenetic analysis of proteins of this pathway suggests that the hydroxypropionate/hydroxybutyrate cycle emerged independently in Crenarchaeota and Thaumarchaeota, thus supporting the hypothesis of an early evolutionary separation of both archaeal phyla. We conclude that high efficiency of anabolism exemplified by this autotrophic cycle perfectly suits the lifestyle of ammonia-oxidizing archaea, which thrive at a constantly low energy supply, thus offering a biochemical explanation for their ecological success in nutrient-limited environments.
Collapse
|
47
|
Swan BK, Chaffin MD, Martinez-Garcia M, Morrison HG, Field EK, Poulton NJ, Masland EDP, Harris CC, Sczyrba A, Chain PSG, Koren S, Woyke T, Stepanauskas R. Genomic and metabolic diversity of Marine Group I Thaumarchaeota in the mesopelagic of two subtropical gyres. PLoS One 2014; 9:e95380. [PMID: 24743558 PMCID: PMC3990693 DOI: 10.1371/journal.pone.0095380] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/26/2014] [Indexed: 11/18/2022] Open
Abstract
Marine Group I (MGI) Thaumarchaeota are one of the most abundant and cosmopolitan chemoautotrophs within the global dark ocean. To date, no representatives of this archaeal group retrieved from the dark ocean have been successfully cultured. We used single cell genomics to investigate the genomic and metabolic diversity of thaumarchaea within the mesopelagic of the subtropical North Pacific and South Atlantic Ocean. Phylogenetic and metagenomic recruitment analysis revealed that MGI single amplified genomes (SAGs) are genetically and biogeographically distinct from existing thaumarchaea cultures obtained from surface waters. Confirming prior studies, we found genes encoding proteins for aerobic ammonia oxidation and the hydrolysis of urea, which may be used for energy production, as well as genes involved in 3-hydroxypropionate/4-hydroxybutyrate and oxidative tricarboxylic acid pathways. A large proportion of protein sequences identified in MGI SAGs were absent in the marine cultures Cenarchaeum symbiosum and Nitrosopumilus maritimus, thus expanding the predicted protein space for this archaeal group. Identifiable genes located on genomic islands with low metagenome recruitment capacity were enriched in cellular defense functions, likely in response to viral infections or grazing. We show that MGI Thaumarchaeota in the dark ocean may have more flexibility in potential energy sources and adaptations to biotic interactions than the existing, surface-ocean cultures.
Collapse
Affiliation(s)
- Brandon K. Swan
- Single Cell Genomics Center, Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, United States of America
| | - Mark D. Chaffin
- Single Cell Genomics Center, Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, United States of America
- Department of Biology, Colby College, Waterville, Maine, United States of America
| | - Manuel Martinez-Garcia
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Hilary G. Morrison
- Josephine Bay Paul Center for Molecular Biology and Evolution, Marine Biological Laboratory, Massachusetts, United States of America
| | - Erin K. Field
- Single Cell Genomics Center, Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, United States of America
| | - Nicole J. Poulton
- Single Cell Genomics Center, Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, United States of America
| | - E. Dashiell P. Masland
- Single Cell Genomics Center, Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, United States of America
| | - Christopher C. Harris
- Single Cell Genomics Center, Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, United States of America
| | | | - Patrick S. G. Chain
- Genome Science Group, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Joint Genome Institute, Walnut Creek, California, United States of America
| | - Sergey Koren
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
- National Biodefense Analysis and Countermeasures Center, Frederick, Maryland, United States of America
| | - Tanja Woyke
- Joint Genome Institute, Walnut Creek, California, United States of America
| | - Ramunas Stepanauskas
- Single Cell Genomics Center, Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, United States of America
- * E-mail:
| |
Collapse
|
48
|
Archaeal amoA and ureC genes and their transcriptional activity in the Arctic Ocean. Sci Rep 2014; 4:4661. [PMID: 24722490 PMCID: PMC3983602 DOI: 10.1038/srep04661] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/26/2014] [Indexed: 12/01/2022] Open
Abstract
Thaumarchaeota and the gene encoding for a subunit of ammonia monooxygenase (amoA) are ubiquitous in Polar Seas, and some Thaumarchaeota also have a gene coding for ureC, diagnostic for urease. Using quantitative PCR we investigated the occurrence of genes and transcripts of ureC and amoA in Arctic samples from winter, spring and summer. AmoA genes, ureC genes and amoA transcripts were always present, but ureC transcripts were rarely detected. Over a 48 h light manipulation experiment amoA transcripts persisted under light and dark conditions, but not ureC transcripts. In addition, maxima for amoA transcript were nearer the surface compared to amoA genes. Clone libraries using DNA template recovered shallow and deep amoA clades but only the shallow clade was recovered from cDNA (from RNA). These results imply environmental control of amoA expression with direct or indirect light effects, and rare ureC expression despite its widespread occurrence in the Arctic Ocean.
Collapse
|
49
|
Werner J, Ferrer M, Michel G, Mann AJ, Huang S, Juarez S, Ciordia S, Albar JP, Alcaide M, La Cono V, Yakimov MM, Antunes A, Taborda M, da Costa MS, Hai T, Glöckner FO, Golyshina OV, Golyshin PN, Teeling H. Halorhabdus tiamatea: proteogenomics and glycosidase activity measurements identify the first cultivated euryarchaeon from a deep-sea anoxic brine lake as potential polysaccharide degrader. Environ Microbiol 2014; 16:2525-37. [PMID: 24428220 PMCID: PMC4257568 DOI: 10.1111/1462-2920.12393] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 01/05/2014] [Indexed: 11/28/2022]
Abstract
Euryarchaea from the genus Halorhabdus have been found in hypersaline habitats worldwide, yet are represented by only two isolates: Halorhabdus utahensis AX-2(T) from the shallow Great Salt Lake of Utah, and Halorhabdus tiamatea SARL4B(T) from the Shaban deep-sea hypersaline anoxic lake (DHAL) in the Red Sea. We sequenced the H. tiamatea genome to elucidate its niche adaptations. Among sequenced archaea, H. tiamatea features the highest number of glycoside hydrolases, the majority of which were expressed in proteome experiments. Annotations and glycosidase activity measurements suggested an adaptation towards recalcitrant algal and plant-derived hemicelluloses. Glycosidase activities were higher at 2% than at 0% or 5% oxygen, supporting a preference for low-oxygen conditions. Likewise, proteomics indicated quinone-mediated electron transport at 2% oxygen, but a notable stress response at 5% oxygen. Halorhabdus tiamatea furthermore encodes proteins characteristic for thermophiles and light-dependent enzymes (e.g. bacteriorhodopsin), suggesting that H. tiamatea evolution was mostly not governed by a cold, dark, anoxic deep-sea habitat. Using enrichment and metagenomics, we could demonstrate presence of similar glycoside hydrolase-rich Halorhabdus members in the Mediterranean DHAL Medee, which supports that Halorhabdus species can occupy a distinct niche as polysaccharide degraders in hypersaline environments.
Collapse
Affiliation(s)
- Johannes Werner
- Max Planck Institute for Marine Microbiology, Bremen, Germany; Jacobs University Bremen gGmbH, Bremen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Differential contributions of archaeal ammonia oxidizer ecotypes to nitrification in coastal surface waters. ISME JOURNAL 2014; 8:1704-14. [PMID: 24553472 DOI: 10.1038/ismej.2014.11] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 12/21/2013] [Accepted: 01/06/2014] [Indexed: 11/09/2022]
Abstract
The occurrence of nitrification in the oceanic water column has implications extending from local effects on the structure and activity of phytoplankton communities to broader impacts on the speciation of nitrogenous nutrients and production of nitrous oxide. The ammonia-oxidizing archaea, responsible for carrying out the majority of nitrification in the sea, are present in the marine water column as two taxonomically distinct groups. Water column group A (WCA) organisms are detected at all depths, whereas Water column group B (WCB) are present primarily below the photic zone. An open question in marine biogeochemistry is whether the taxonomic definition of WCA and WCB organisms and their observed distributions correspond to distinct ecological and biogeochemical niches. We used the natural gradients in physicochemical and biological properties that upwelling establishes in surface waters to study their roles in nitrification, and how their activity--ascertained from quantification of ecotype-specific ammonia monooxygenase (amoA) genes and transcripts--varies in response to environmental fluctuations. Our results indicate a role for both ecotypes in nitrification in Monterey Bay surface waters. However, their respective contributions vary, due to their different sensitivities to surface water conditions. WCA organisms exhibited a remarkably consistent level of activity and their contribution to nitrification appears to be related to community size. WCB activity was less consistent and primarily constrained to colder, high nutrient and low chlorophyll waters. Overall, the results of our characterization yielded a strong, potentially predictive, relationship between archaeal amoA gene abundance and the rate of nitrification.
Collapse
|