1
|
Wang Y, Hao C, Jiang S, Ju Y, Li W, Jia Z. A Comprehensive Review on Chemical Structures and Bioactivities of Ostropomycetidae Lichens. J Fungi (Basel) 2025; 11:369. [PMID: 40422703 DOI: 10.3390/jof11050369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/02/2025] [Accepted: 05/06/2025] [Indexed: 05/28/2025] Open
Abstract
Lichenized fungi, recognized as an ecologically vital and pharmaceutically promising resource, hold substantial value in both environmental conservation and medicinal applications. As the second largest subclass within the lichen-forming fungi of Lecanoromycetes, Ostropomycetidae emerged as a critical reservoir of bioactive secondary metabolites. Current research has revealed that these secondary metabolites demonstrate remarkable bioactivities, positioning them as potential sources for novel pharmaceutical compounds. Despite considerable progress in characterizing chemical constituents and evaluating bioactivities within this subclass, a systematic summary of these discoveries remains absent. This review synthesizes the lichenochemical research progress, providing critical evaluations of 202 structurally characterized compounds from Ostropomycetidae lichen species over recent decades. These Ostropomycetidae-derived compounds cover the phenols, polyketides, fatty acids, terpenoids, steroids, and non-ribosomal peptides, and exhibit diverse bioactivities including antitumor, anti-inflammatory, antibacterial, antifungal, antiviral, antioxidant, anti-angiogenic, anti-neurodegenerative diseases, antitubercular, anti-herbivore, and antitrypanosomal, and so on. The aim of this review is to establish a robust chemodiversity framework and to offer strategic guidance for targeted exploration of lichen-derived drug candidates in the biological resources of Ostropomycetidae lichens.
Collapse
Affiliation(s)
- Yunhui Wang
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252059, China
| | - Chengyue Hao
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252059, China
| | - Shuhao Jiang
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252059, China
| | - Yanhu Ju
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252059, China
| | - Wei Li
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252059, China
| | - Zefeng Jia
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
2
|
Gao Y, Wang J, Meesakul P, Zhou J, Liu J, Liu S, Wang C, Cao S. Cytotoxic Compounds from Marine Fungi: Sources, Structures, and Bioactivity. Mar Drugs 2024; 22:70. [PMID: 38393041 PMCID: PMC10890532 DOI: 10.3390/md22020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Marine fungi, such as species from the Penicillium and Aspergillus genera, are prolific producers of a diversity of natural products with cytotoxic properties. These fungi have been successfully isolated and identified from various marine sources, including sponges, coral, algae, mangroves, sediment, and seawater. The cytotoxic compounds derived from marine fungi can be categorized into five distinct classes: polyketides, peptides, terpenoids and sterols, hybrids, and other miscellaneous compounds. Notably, the pre-eminent group among these compounds comprises polyketides, accounting for 307 out of 642 identified compounds. Particularly, within this collection, 23 out of the 642 compounds exhibit remarkable cytotoxic potency, with IC50 values measured at the nanomolar (nM) or nanogram per milliliter (ng/mL) levels. This review elucidates the originating fungal strains, the sources of isolation, chemical structures, and the noteworthy antitumor activity of the 642 novel natural products isolated from marine fungi. The scope of this review encompasses the period from 1991 to 2023.
Collapse
Affiliation(s)
- Yukang Gao
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Jianjian Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Pornphimon Meesakul
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo, HI 96720, USA;
| | - Jiamin Zhou
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Jinyan Liu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Shuo Liu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Cong Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo, HI 96720, USA;
| |
Collapse
|
3
|
Zhang J, Liu D, Fan A, Huang J, Lin W. Eremophilane-Type Sesquiterpenes from a Marine-Derived Fungus Penicillium Copticola with Antitumor and Neuroprotective Activities. Mar Drugs 2022; 20:712. [PMID: 36421990 PMCID: PMC9698232 DOI: 10.3390/md20110712] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 05/31/2024] Open
Abstract
Chemical examination of a marine sponge-associated Penicillium copticola fungus resulted in the isolation of ten undescribed eremophilanes, namely copteremophilanes A-J (1-10), along with two new glycosides, 5-glycopenostatin F (11) and 5-glucopenostatin I (12). Their structures were determined by extensive spectroscopic data, in association with ECD data and chemical conversions for configurational assignments. Analogs 1, 2, and 10 represent a group of uncommon skeletons of eremophilanes with an aromatic ring and a methyl migration from C-5 to C-9, and analogs 11 and 12 are characteristic of a PKS scaffold bearing a glucose unit. The incorporation of a chlorinated phenylacetic unit in 3-9 is rarely found in nature. Analog 7 showed neuroprotective effect, whereas 8 exhibited selective inhibition against human non-small cell lung cancer cells (A549). This study enriched the chemical diversity of eremophilanes and extended their bioactivities to neuroprotection.
Collapse
Affiliation(s)
- Jianping Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Dong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Aili Fan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Jian Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
- Institute of Ocean Research, Ningbo Institute of Marine Medicine, Peking University, Ningbo 315010, China
| |
Collapse
|
4
|
Tori M. Cumulative Data of 1H and 13C NMR Signals and Specific Rotations of Eremophilane Sesquiterpenoids. 1. Bicyclic Eremophilanes (1). Nat Prod Commun 2022. [DOI: 10.1177/1934578x221109527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
1H and 13C Nuclear Magnetic Resonance (NMR) signals and specific rotations of eremophilane sesquiterpenoids are cumulated as a series of review articles. In the first chapter of this review, 332 bicyclic eremophilanes, namely with no furan or lactone rings (except for epoxides), without 3-OR functionality (except for hydroxy, acetoxy, and carbonyl) are listed in tables. These data may help chemists working in the area of natural products chemistry as well as synthetic scientists.
Collapse
Affiliation(s)
- Motoo Tori
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| |
Collapse
|
5
|
Chen S, Shen H, Deng Y, Guo H, Jiang M, Wu Z, Yin H, Liu L. Roussoelins A and B: two phenols with antioxidant capacity from ascidian-derived fungus Roussoella siamensis SYSU-MS4723. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:69-76. [PMID: 37073392 PMCID: PMC10064353 DOI: 10.1007/s42995-020-00066-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/22/2020] [Indexed: 05/03/2023]
Abstract
Ascidian-derived microorganisms are a significant source of pharmacologically active metabolites with interesting structural properties. When discovering bioactive molecules from ascidian-derived fungi, two new phenols, roussoelins A (1) and B (2), and ten known polyketides (3-12) were isolated from the ascidian-derived fungus Roussoella siamensis SYSU-MS4723. The planar structure of compounds 1 and 2 was established by analysis of HR-ESIMS and NMR data. The conformational analysis of the new compounds was assigned according to coupling constants and selective gradient NOESY experiments, and absolute configurations were completed by the modified Mosher's method. Among the isolated compounds, 1, 2, and 9 showed moderate antioxidant capacity. Graphical abstract
Collapse
Affiliation(s)
- Senhua Chen
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000 China
| | - Hongjie Shen
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Yanlian Deng
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808 China
| | - Heng Guo
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Minghua Jiang
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Zhenger Wu
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Huimin Yin
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000 China
| |
Collapse
|
6
|
Vitale GA, Coppola D, Palma Esposito F, Buonocore C, Ausuri J, Tortorella E, de Pascale D. Antioxidant Molecules from Marine Fungi: Methodologies and Perspectives. Antioxidants (Basel) 2020; 9:E1183. [PMID: 33256101 PMCID: PMC7760651 DOI: 10.3390/antiox9121183] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/31/2022] Open
Abstract
The marine environment represents a prosperous existing resource for bioprospecting, covering 70% of the planet earth, and hosting a huge biodiversity. Advances in the research are progressively uncovering the presence of unknown microorganisms, which have evolved unique metabolic and genetic pathways for the production of uncommon secondary metabolites. Fungi have a leading role in marine bioprospecting since they represent a prolific source of structurally diverse bioactive metabolites. Several bioactive compounds from marine fungi have already been characterized including antibiotics, anticancer, antioxidants and antivirals. Nowadays, the search for natural antioxidant molecules capable of replacing those synthetic currently used, is an aspect that is receiving significant attention. Antioxidants can inactivate reactive oxygen and nitrogen species, preventing the insurgence of several degenerative diseases including cancer, autoimmune disorders, cardiovascular and neurodegenerative diseases. Moreover, they also find applications in different fields, including food preservation, healthcare and cosmetics. This review focuses on the production of antioxidants from marine fungi. We begin by proposing a survey of the available tools suitable for the evaluation of antioxidants, followed by the description of various classes of marine fungi antioxidants together with their extraction strategies. In addition, a view of the future perspectives and trends of these natural products within the "blue economy" is also presented.
Collapse
Affiliation(s)
- Giovanni Andrea Vitale
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy; (G.A.V.); (C.B.); (J.A.); (E.T.)
| | - Daniela Coppola
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (D.C.); (F.P.E.)
- Institute of Biosciences and BioResources (IBBR), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Fortunato Palma Esposito
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (D.C.); (F.P.E.)
| | - Carmine Buonocore
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy; (G.A.V.); (C.B.); (J.A.); (E.T.)
| | - Janardhan Ausuri
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy; (G.A.V.); (C.B.); (J.A.); (E.T.)
| | - Emiliana Tortorella
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy; (G.A.V.); (C.B.); (J.A.); (E.T.)
| | - Donatella de Pascale
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy; (G.A.V.); (C.B.); (J.A.); (E.T.)
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (D.C.); (F.P.E.)
| |
Collapse
|
7
|
Dou X, Dong B. Origins and Bioactivities of Natural Compounds Derived from Marine Ascidians and Their Symbionts. Mar Drugs 2019; 17:md17120670. [PMID: 31795141 PMCID: PMC6950356 DOI: 10.3390/md17120670] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023] Open
Abstract
Marine ascidians are becoming important drug sources that provide abundant secondary metabolites with novel structures and high bioactivities. As one of the most chemically prolific marine animals, more than 1200 inspirational natural products, such as alkaloids, peptides, and polyketides, with intricate and novel chemical structures have been identified from ascidians. Some of them have been successfully developed as lead compounds or highly efficient drugs. Although numerous compounds that exist in ascidians have been structurally and functionally identified, their origins are not clear. Interestingly, growing evidence has shown that these natural products not only come from ascidians, but they also originate from symbiotic microbes. This review classifies the identified natural products from ascidians and the associated symbionts. Then, we discuss the diversity of ascidian symbiotic microbe communities, which synthesize diverse natural products that are beneficial for the hosts. Identification of the complex interactions between the symbiont and the host is a useful approach to discovering ways that direct the biosynthesis of novel bioactive compounds with pharmaceutical potentials.
Collapse
Affiliation(s)
- Xiaoju Dou
- Laboratory of Morphogenesis & Evolution, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
- College of Agricultural Science and Technology, Tibet Vocational Technical College, Lhasa 850030, China
| | - Bo Dong
- Laboratory of Morphogenesis & Evolution, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Correspondence: ; Tel.: +86-0532-82032732
| |
Collapse
|
8
|
Phylogenetic Analysis and Screening of Antimicrobial and Antiproliferative Activities of Culturable Bacteria Associated with the Ascidian Styela clava from the Yellow Sea, China. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7851251. [PMID: 31559313 PMCID: PMC6735190 DOI: 10.1155/2019/7851251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/04/2019] [Accepted: 07/28/2019] [Indexed: 01/01/2023]
Abstract
Over 1,000 compounds, including ecteinascidin-743 and didemnin B, have been isolated from ascidians, with most having bioactive properties such as antimicrobial, antitumor, and enzyme-inhibiting activities. In recent years, direct and indirect evidence has shown that some bioactive compounds isolated from ascidians are not produced by ascidians themselves but by their symbiotic microorganisms. Isolated culturable bacteria associated with ascidians and investigating their potential bioactivity are an important approach for discovering novel compounds. In this study, a total of 269 bacteria were isolated from the ascidian Styela clava collected from the coast of Weihai in the north of the Yellow Sea, China. Phylogenetic relationships among 183 isolates were determined using their 16S rRNA gene sequences. Isolates were tested for antimicrobial activity against seven indicator strains, and an antiproliferative activity assay was performed to test for inhibition of human hepatocellular carcinoma Bel 7402 and human cervical carcinoma HeLa cell proliferation. Our results showed that the isolates belonged to 26 genera from 18 families in four phyla (Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes). Bacillus and Streptomyces were the most dominant genera; 146 strains had potent antimicrobial activities and inhibited at least one of the indicator strains. Crude extracts from 29 strains showed antiproliferative activity against Bel 7402 cells with IC50 values below 500 μg·mL-1, and 53 strains showed antiproliferative activity against HeLa cells, with IC50 values less than 500 μg·mL-1. Our results suggest that culturable bacteria associated with the ascidian Styela clava may be a promising source of novel bioactive compounds.
Collapse
|
9
|
Chen L, Hu JS, Xu JL, Shao CL, Wang GY. Biological and Chemical Diversity of Ascidian-Associated Microorganisms. Mar Drugs 2018; 16:md16100362. [PMID: 30275404 PMCID: PMC6212887 DOI: 10.3390/md16100362] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 09/23/2018] [Accepted: 09/27/2018] [Indexed: 11/16/2022] Open
Abstract
Ascidians are a class of sessile filter-feeding invertebrates, that provide unique and fertile niches harboring various microorganisms, such as bacteria, actinobacteria, cyanobacteria and fungi. Over 1000 natural products, including alkaloids, cyclic peptides, and polyketides, have been isolated from them, which display diverse properties, such as antibacterial, antifungal, antitumor, and anti-inflammatory activities. Strikingly, direct evidence has confirmed that ~8% of natural products from ascidians are actually produced by symbiotic microorganisms. In this review, we present 150 natural products from microorganisms associated with ascidians that have been reported up to 2017.
Collapse
Affiliation(s)
- Lei Chen
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China.
| | - Jin-Shuang Hu
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China.
| | - Jia-Lei Xu
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China.
| | - Chang-Lun Shao
- Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Guang-Yu Wang
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China.
| |
Collapse
|
10
|
Yuyama KT, Fortkamp D, Abraham WR. Eremophilane-type sesquiterpenes from fungi and their medicinal potential. Biol Chem 2017; 399:13-28. [PMID: 28822220 DOI: 10.1515/hsz-2017-0171] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/09/2017] [Indexed: 01/26/2023]
Abstract
Eremophilanes are sesquiterpenes with a rearranged carbon skeleton formed both by plants and fungi, however, almost no plant eremophilanes are found in fungi. These eremophilanes possess mainly phytotoxic, antimicrobial, anticancer and immunomodulatory properties and in this review fungal eremophilanes with bioactivities of potential medicinal applications are reviewed and discussed. A special focus is set on natural products bearing highly functionalized fatty acids at C-1 or C-3 position of the eremophilane backbone. Many of these fatty acids seem to contribute to the bioactivity of the metabolites enhancing the activity of the sesquiterpene moieties. Several approaches for optimization of these natural products for clinical needs and testing of the resulting derivatives are presented and discussed. The combination of identification of bioactive natural products with their subsequent improvement using a variety of genetical or chemical tools and the pharmacokinetic assessment of the products is presented here as a promising approach to new drugs.
Collapse
Affiliation(s)
- Kamila Tomoko Yuyama
- Helmholtz Center for Infection Research, Chemical Microbiology, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | - Diana Fortkamp
- Helmholtz Center for Infection Research, Chemical Microbiology, Inhoffenstrasse 7, D-38124 Braunschweig, Germany.,Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), Department of Exact Sciences, Piracicaba, SP, Brazil
| | - Wolf-Rainer Abraham
- Helmholtz Center for Infection Research, Chemical Microbiology, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| |
Collapse
|
11
|
Shiono Y, Muslihah NI, Suzuki T, Ariefta NR, Anwar C, Nurjanto HH, Aboshi T, Murayama T, Tawaraya K, Koseki T, Yoshida J, Usukhbayar N, Uesugi S, Kimura KI. New eremophilane and dichlororesorcinol derivatives produced by endophytes isolated from Ficus ampelas. J Antibiot (Tokyo) 2017; 70:1133-1137. [PMID: 29066796 DOI: 10.1038/ja.2017.125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/04/2017] [Accepted: 09/07/2017] [Indexed: 11/09/2022]
Abstract
The novel compound, 11-O-methylpetasitol (1), was isolated from Penicillium sp. N-175-1, and two new compounds, cosmochlorins D (5) and E (6), were isolated from Phomopsis sp. N-125. In addition, three known eremophilane sesquiterpenes, sporogen-AO1 (2), petasol (3) and 6-dehydropetasol (4), were isolated from Penicillium sp. N-175-1. The structures of 1, 5 and 6 were elucidated by a combination of extensive spectroscopic analyses, including 2D NMR, high-resolution electrospray ionization time-of-flight mass spectrometry (HRESITOFMS) and chemical reactions. Compounds 2, 3, 5 and 6 exhibited cytotoxicity to HL60 and 2 and 3 to HeLa cells. Furthermore, 2 and 3 showed robust growth-restoring activity of a Saccharomyces cerevisiae (cdc2-1 rad9Δ) mutant strain, whereas 5 and 6 exhibited minor growth-restoring activity in this strain. Thus, these compounds may inhibit the growth of HL60 and HeLa cells by blocking the cell cycle, and they may be utilized as new lead compounds that act as inhibitors of survival signal transduction pathways.
Collapse
Affiliation(s)
- Yoshihito Shiono
- Department of Food, Life, and Environmental Science, Faculty of Agriculture, Yamagata University, Yamagata, Japan
| | - Niken Istikhari Muslihah
- Department of Food, Life, and Environmental Science, Faculty of Agriculture, Yamagata University, Yamagata, Japan.,Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Takuma Suzuki
- Department of Food, Life, and Environmental Science, Faculty of Agriculture, Yamagata University, Yamagata, Japan
| | - Nanang Rudianto Ariefta
- Department of Food, Life, and Environmental Science, Faculty of Agriculture, Yamagata University, Yamagata, Japan.,The United Graduate School of Agricultural Sciences, Iwate University, Iwate, Japan
| | - Chairil Anwar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Handojo Hadi Nurjanto
- Department of Silviculture, Faculty of Forestry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Takako Aboshi
- Department of Food, Life, and Environmental Science, Faculty of Agriculture, Yamagata University, Yamagata, Japan
| | - Tetsuya Murayama
- Department of Food, Life, and Environmental Science, Faculty of Agriculture, Yamagata University, Yamagata, Japan
| | - Keitaro Tawaraya
- Department of Food, Life, and Environmental Science, Faculty of Agriculture, Yamagata University, Yamagata, Japan
| | - Takuya Koseki
- Department of Food, Life, and Environmental Science, Faculty of Agriculture, Yamagata University, Yamagata, Japan
| | - Jun Yoshida
- Center for Liberal Arts and Sciences, Iwate Medical University, Iwate, Japan
| | | | - Shota Uesugi
- The United Graduate School of Agricultural Sciences, Iwate University, Iwate, Japan
| | - Ken-Ichi Kimura
- The United Graduate School of Agricultural Sciences, Iwate University, Iwate, Japan
| |
Collapse
|
12
|
Nonhalogenated Heterotricyclic Sesquiterpenes From Marine Origin I. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63931-8.00007-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Nicoletti R, Trincone A. Bioactive Compounds Produced by Strains of Penicillium and Talaromyces of Marine Origin. Mar Drugs 2016; 14:md14020037. [PMID: 26901206 PMCID: PMC4771990 DOI: 10.3390/md14020037] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 12/14/2022] Open
Abstract
In recent years, the search for novel natural compounds with bioactive properties has received a remarkable boost in view of their possible pharmaceutical exploitation. In this respect the sea is entitled to hold a prominent place, considering the potential of the manifold animals and plants interacting in this ecological context, which becomes even greater when their associated microbes are considered for bioprospecting. This is the case particularly of fungi, which have only recently started to be considered for their fundamental contribution to the biosynthetic potential of other more valued marine organisms. Also in this regard, strains of species which were previously considered typical terrestrial fungi, such as Penicillium and Talaromyces, disclose foreground relevance. This paper offers an overview of data published over the past 25 years concerning the production and biological activities of secondary metabolites of marine strains belonging to these genera, and their relevance as prospective drugs.
Collapse
Affiliation(s)
- Rosario Nicoletti
- Council for Agricultural Research and Agricultural Economy Analysis, Rome 00184, Italy.
| | - Antonio Trincone
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli 80078, Italy.
| |
Collapse
|
14
|
Ma HG, Liu Q, Zhu GL, Liu HS, Zhu WM. Marine natural products sourced from marine-derived Penicillium fungi. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2016; 18:92-115. [PMID: 26880598 DOI: 10.1080/10286020.2015.1127230] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/30/2015] [Indexed: 06/05/2023]
Abstract
Marine micro-organisms have been proven to be a major source of marine natural products (MNPs) in recent years, in which filamentous fungi are a vital source of bioactive natural products for their large metagenomes and more complex genetic backgrounds. This review highlights the 390 new MNPs from marine-derived Penicillium fungi during 1991 to 2014. These new MNPs are categorized based on the environment sources of the fungal hosts and their bioactivities are summarized.
Collapse
Affiliation(s)
- Hong-Guang Ma
- a Key Laboratory of Marine Drugs, Ministry of Education of China , School of Medicine and Pharmacy, Ocean University of China , Qingdao 266003 , China
| | - Qiang Liu
- a Key Laboratory of Marine Drugs, Ministry of Education of China , School of Medicine and Pharmacy, Ocean University of China , Qingdao 266003 , China
| | - Guo-Liang Zhu
- a Key Laboratory of Marine Drugs, Ministry of Education of China , School of Medicine and Pharmacy, Ocean University of China , Qingdao 266003 , China
| | - Hai-Shan Liu
- a Key Laboratory of Marine Drugs, Ministry of Education of China , School of Medicine and Pharmacy, Ocean University of China , Qingdao 266003 , China
| | - Wei-Ming Zhu
- a Key Laboratory of Marine Drugs, Ministry of Education of China , School of Medicine and Pharmacy, Ocean University of China , Qingdao 266003 , China
| |
Collapse
|
15
|
Daengrot C, Rukachaisirikul V, Tansakul C, Thongpanchang T, Phongpaichit S, Bowornwiriyapan K, Sakayaroj J. Eremophilane Sesquiterpenes and Diphenyl Thioethers from the Soil Fungus Penicillium copticola PSU-RSPG138. JOURNAL OF NATURAL PRODUCTS 2015; 78:615-622. [PMID: 25734623 DOI: 10.1021/np5005328] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Four new compounds including two eremophilane sesquiterpenes, penicilleremophilanes A (1) and B (2), as well as two sulfur-containing biphenols, penicillithiophenols A (3) and B (4), were isolated from the soil fungus Penicillium copticola PSU-RSPG138 together with 16 known compounds. Their structures were elucidated by spectroscopic methods. Known sporogen AO-1 exhibited significant antimalarial activity against Plasmodium falciparum with an IC50 value of 1.53 μM and cytotoxic activity to noncancerous (Vero) cell lines with an IC50 value of 4.23 μM. Although compound 1 was approximately half as active against P. falciparum with the IC50 value of 3.45 μM, it showed much weaker cytotoxic activity.
Collapse
Affiliation(s)
- Charuwan Daengrot
- †Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Vatcharin Rukachaisirikul
- †Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Chittreeya Tansakul
- †Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Tienthong Thongpanchang
- ‡Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Souwalak Phongpaichit
- §Natural Products Research Center of Excellence and Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Kawitsara Bowornwiriyapan
- §Natural Products Research Center of Excellence and Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Jariya Sakayaroj
- ⊥National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Khlong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
16
|
Yang Y, Yang F, Zhao L, Duang R, Chen G, Li X, Li Q, Qin S, Ding Z. A new polyoxygenated farnesylcyclohexenone from Fungus Penicillium sp. Nat Prod Res 2015; 30:65-8. [DOI: 10.1080/14786419.2015.1034712] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Yabin Yang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, P.R. China
| | - Fangfang Yang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, P.R. China
| | - Lixing Zhao
- Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, P.R. China
| | - Rongting Duang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, P.R. China
| | - Guangyi Chen
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, P.R. China
| | - Xiaozhan Li
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, P.R. China
| | - Qiling Li
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, P.R. China
| | - Shaohuan Qin
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, P.R. China
| | - Zhongtao Ding
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, P.R. China
| |
Collapse
|
17
|
Abstract
Fungi (Ascomycota and Basidiomycota) are prolific producers of structurally diverse terpenoid compounds. Classes of terpenoids identified in fungi include the sesqui-, di- and triterpenoids. Biosynthetic pathways and enzymes to terpenoids from each of these classes have been described. These typically involve the scaffold generating terpene synthases and cyclases, and scaffold tailoring enzymes such as e.g. cytochrome P450 monoxygenases, NAD(P)+ and flavin dependent oxidoreductases, and various group transferases that generate the final bioactive structures. The biosynthesis of several sesquiterpenoid mycotoxins and bioactive diterpenoids has been well-studied in Ascomycota (e.g. filamentous fungi). Little is known about the terpenoid biosynthetic pathways in Basidiomycota (e.g. mushroom forming fungi), although they produce a huge diversity of terpenoid natural products. Specifically, many trans-humulyl cation derived sesquiterpenoid natural products with potent bioactivities have been isolated. Biosynthetic gene clusters responsible for the production of trans-humulyl cation derived protoilludanes, and other sesquiterpenoids, can be rapidly identified by genome sequencing and bioinformatic methods. Genome mining combined with heterologous biosynthetic pathway refactoring has the potential to facilitate discovery and production of pharmaceutically relevant fungal terpenoids.
Collapse
Affiliation(s)
- Maureen B Quin
- University of Minnesota, Dept. of Biochemistry, Molecular Biology and Biophysics, 1479 Gortner Avenue, St. Paul, MN 55108, USA
| | | | | |
Collapse
|
18
|
Schmidt-Dannert C. Biosynthesis of terpenoid natural products in fungi. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 148:19-61. [PMID: 25414054 DOI: 10.1007/10_2014_283] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tens of thousands of terpenoid natural products have been isolated from plants and microbial sources. Higher fungi (Ascomycota and Basidiomycota) are known to produce an array of well-known terpenoid natural products, including mycotoxins, antibiotics, antitumor compounds, and phytohormones. Except for a few well-studied fungal biosynthetic pathways, the majority of genes and biosynthetic pathways responsible for the biosynthesis of a small number of these secondary metabolites have only been discovered and characterized in the past 5-10 years. This chapter provides a comprehensive overview of the current knowledge on fungal terpenoid biosynthesis from biochemical, genetic, and genomic viewpoints. Enzymes involved in synthesizing, transferring, and cyclizing the prenyl chains that form the hydrocarbon scaffolds of fungal terpenoid natural products are systematically discussed. Genomic information and functional evidence suggest differences between the terpenome of the two major fungal phyla--the Ascomycota and Basidiomycota--which will be illustrated for each group of terpenoid natural products.
Collapse
Affiliation(s)
- Claudia Schmidt-Dannert
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minneapolis, MN, 55108, USA,
| |
Collapse
|
19
|
Le DH, Takenaka Y, Hamada N, Tanahashi T. Eremophilane-type sesquiterpenes from cultured lichen mycobionts of Sarcographa tricosa. PHYTOCHEMISTRY 2013; 91:242-248. [PMID: 22285621 DOI: 10.1016/j.phytochem.2012.01.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 12/29/2011] [Accepted: 01/05/2012] [Indexed: 05/31/2023]
Abstract
Spore-derived mycobionts of the crustose lichen Sarcographa tricosa were cultivated on a malt-yeast extract medium supplemented with 10% sucrose. Chemical investigation of the cultivated colonies led to isolation of three eremophilane-type sesquiterpenes, 3-epi-petasol (1), dihydropetasol (2) and sarcographol (3), together with six known eremophilanes and ergosterol peroxide. These structures were elucidated by spectroscopic and chemical methods. This is the first report of eremophilane-type sesquiterpenes from the cultured mycobionts of lichen.
Collapse
Affiliation(s)
- Duy Hoang Le
- Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, Japan
| | | | | | | |
Collapse
|
20
|
Kawahara T, Itoh M, Izumikawa M, Sakata N, Tsuchida T, Shin-ya K. Three eremophilane derivatives, MBJ-0011, MBJ-0012 and MBJ-0013, from an endophytic fungus Apiognomonia sp. f24023. J Antibiot (Tokyo) 2013; 66:299-302. [DOI: 10.1038/ja.2013.13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Wang M, Hashimoto M, Hashidoko Y. Carot-4-en-9,10-diol, a conidiation-inducing sesquiterpene diol produced by Trichoderma virens PS1-7 upon exposure to chemical stress from highly active iron chelators. Appl Environ Microbiol 2013; 79:1906-14. [PMID: 23315728 PMCID: PMC3592238 DOI: 10.1128/aem.03531-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/06/2013] [Indexed: 12/19/2022] Open
Abstract
To screen biocontrol agents against Burkholderia plantarii, the causative agent of rice seedling blight, we employed catechol, an analog of the virulence factor tropolone, to obtain chemical stress-resistant microorganisms. The fungal isolate PS1-7, identified as a strain of Trichoderma virens, showed the highest resistance to catechol (20 mM) and exhibited efficacy as a biocontrol agent for rice seedling blight. During investigation of metabolic traits of T. virens PS1-7 exposed to catechol, we found a secondary metabolite that was released extracellularly and uniquely accumulated in the culture. The compound induced by chemical stress due to catechol was subsequently isolated and identified as a sesquiterpene diol, carot-4-en-9,10-diol, based on spectroscopic analyses. T. virens PS1-7 produced carot-4-en-9,10-diol as a metabolic response to tropolone at concentrations from 0.05 to 0.2 mM, and the response was enhanced in a dose-dependent manner, similar to its response to catechol at concentrations from 0.1 to 1 mM. Some iron chelators, such as pyrogallol, gallic acid, salicylic acid, and citric acid, at 0.5 mM also showed activation of T. virens PS1-7 production of carot-4-en-9,10-diol. This sesquiterpene diol, formed in response to chemical stress, promoted conidiation of T. virens PS1-7, suggesting that it is involved in an autoregulatory signaling system. In a bioassay of the metabolic and morphological responses of T. virens PS1-7, conidiation in hyphae grown on potato dextrose agar (PDA) plates was either promoted or induced by carot-4-en-9,10-diol. Carot-4-en-9,10-diol can thus be regarded as an autoregulatory signal in T. virens, and our findings demonstrate that intrinsic intracellular signaling regulates conidiation of T. virens.
Collapse
|
22
|
|
23
|
|
24
|
|
25
|
Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep 2010; 28:196-268. [PMID: 21152619 DOI: 10.1039/c005001f] [Citation(s) in RCA: 344] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
26
|
Isolation of 2 new metabolites, JBIR-74 and JBIR-75, from the sponge-derived Aspergillus sp. fS14. J Antibiot (Tokyo) 2010; 63:393-5. [DOI: 10.1038/ja.2010.58] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Oh H, Jensen PR, Murphy BT, Fiorilla C, Sullivan JF, Ramsey T, Fenical W. Cryptosphaerolide, a cytotoxic Mcl-1 inhibitor from a marine-derived ascomycete related to the genus Cryptosphaeria. JOURNAL OF NATURAL PRODUCTS 2010; 73:998-1001. [PMID: 20462271 PMCID: PMC2901504 DOI: 10.1021/np1000889] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Examination of the saline fermentation products from the marine-derived ascomycete fungal strain CNL-523 (Cryptosphaeria sp.) resulted in the isolation of cryptosphaerolide (1). The new compound is an ester-substituted sesquiterpenoid related to the eremophilane class. The structure of the new compound was assigned by spectroscopic and chemical methods. Cryptosphaerolide was found to be an inhibitor of the protein Mcl-1, a cancer drug target involved in apoptosis. It also showed significant cytotoxicity against an HCT-116 human colon carcinoma cell line, indicating that the compound may be of value in exploring the Mcl-1 pathway as a target for cancer chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Timothy Ramsey
- To whom correspondence should be addressed: W. Fenical, Tel: (858) 822-0595. Fax: (858)-558-1318, ; T. Ramsey, Tel: (617) 871-7398, Fax: (617) 871-4081,
| | - William Fenical
- To whom correspondence should be addressed: W. Fenical, Tel: (858) 822-0595. Fax: (858)-558-1318, ; T. Ramsey, Tel: (617) 871-7398, Fax: (617) 871-4081,
| |
Collapse
|
28
|
Motohashi K, Takagi M, Shin-Ya K. Tetracenoquinocin and 5-iminoaranciamycin from a sponge-derived Streptomyces sp. Sp080513GE-26. JOURNAL OF NATURAL PRODUCTS 2010; 73:755-758. [PMID: 20192240 DOI: 10.1021/np9007409] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Two new anthracyclines, tetracenoquinocin (1) and 5-iminoaranciamycin (2), together with the known compounds aranciamycin (3) and antibiotic SM 173B were isolated from the culture of Streptomyces sp. Sp080513GE-26 associated with a marine sponge, Haliclona sp. The structures of 1 and 2 were established on the basis of extensive NMR and MS analyses along with (13)C-labeling experiments. The compounds 1-3 were evaluated for cytotoxicity against two cancer cell lines.
Collapse
Affiliation(s)
- Keiichiro Motohashi
- Biomedicinal Information Research Center (BIRC), Japan Biological Informatics Consortium (JBIC), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | | | | |
Collapse
|
29
|
JBIR-59, a new sorbicillinoid, from a marine-derived fungus Penicillium citrinum SpI080624G1f01. J Antibiot (Tokyo) 2010; 63:203-5. [DOI: 10.1038/ja.2010.19] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
|
31
|
Khan ST, Izumikawa M, Motohashi K, Mukai A, Takagi M, Shin-Ya K. Distribution of the 3-hydroxyl-3-methylglutaryl coenzyme A reductase gene and isoprenoid production in marine-derived Actinobacteria. FEMS Microbiol Lett 2009; 304:89-96. [PMID: 20067528 DOI: 10.1111/j.1574-6968.2009.01886.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
During the course of our screening program to isolate isoprenoids from marine Actinobacteria, 523 actinobacterial strains were isolated from 18 marine sponges, a tunicate, and two marine sediments. These strains belonged to 21 different genera, but most were members of Streptomyces, Nocardia, Rhodococcus, and Micromonospora. Some Actinobacteria have been reported to use the mevalonate pathway for the production of isoprenoids as secondary metabolites. Therefore, we investigated whether these strains possessed the 3-hydroxyl-3-methylglutaryl coenzyme A reductase (hmgr) gene, which indicates the presence of the mevalonate pathway. As a result, six strains belonging to the genera Streptomyces (SpC080624SC-11, SpA080624GE-02, and Sp080513GE-23), Nocardia (Sp080513SC-18), and Micromonospora (Se080624GE-07 and SpC080624GE-05) were found to possess the hmgr gene, and these genes were highly similar to hmgr genes in isoprenoid biosynthetic gene clusters. Among the six strains, the two strains SpC080624SC-11 and SpA080624GE-02 produced the novel isoprenoids, JBIR-46, -47, and -48, which consisted of phenazine chromophores, and Sp080513GE-23 produced a known isoprenoid, fumaquinone. Furthermore, these compounds showed cytotoxic activity against human acute myelogenous leukemia HL-60 cells.
Collapse
Affiliation(s)
- Shams Tabrez Khan
- Biomedicinal Information Research Center, Japan Biological Informatics Consortium,Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Mukai A, Nagai A, Inaba S, Takagi M, Shin-ya K. JBIR-54, a new 4-pyridinone derivative isolated from Penicillium daleae Zaleski fE50. J Antibiot (Tokyo) 2009; 62:705-6. [PMID: 19851351 DOI: 10.1038/ja.2009.101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Akira Mukai
- Biomedicinal Information Research Center (BIRC), Japan Biological Informatics Consortium (JBIC), Tokyo, Japan
| | | | | | | | | |
Collapse
|
33
|
JBIR-15, a new aspochracin derivative, isolated from a sponge-derived fungus, Aspergillus sclerotiorum Huber Sp080903f04. Biosci Biotechnol Biochem 2009; 73:1898-900. [PMID: 19661713 DOI: 10.1271/bbb.90228] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the course of our chemical screening program for novel metabolites by LC-MS monitoring, we isolated a new aspochracin derivative, JBIR-15 (1), together with aspochracin, from the culture broth of a sponge-derived fungus, Aspergillus sclerotiorum Huber Sp080903f04. The structure of 1 was determined to be N-demethyl aspochracin at the alanyl residue on the basis of extensive NMR and MS analyses.
Collapse
|