1
|
Lim JS, Hong JH, Lee DY, Li X, Lee DE, Choi JU, Lee KY, Kim KH, Cho YC. 6-Pentyl-α-Pyrone from Trichoderma gamsii Exert Antioxidant and Anti-Inflammatory Properties in Lipopolysaccharide-Stimulated Mouse Macrophages. Antioxidants (Basel) 2023; 12:2028. [PMID: 38136148 PMCID: PMC10741142 DOI: 10.3390/antiox12122028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Filamentous fungi produce several beneficial secondary metabolites, including bioactive compounds, food additives, and biofuels. Trichoderma, which is a teleomorphic Hypocrea that falls under the taxonomic groups Ascomycota and Dikarya, is an extensively studied fungal genus. In an ongoing study that seeks to discover bioactive natural products, we investigated potential bioactive metabolites from the methanolic extract of cultured Trichoderma gamsii. Using liquid chromatography-mass spectrometry (LC-MS), one major compound was isolated and structurally identified as 6-pentyl-α-pyrone (6PP) based on nuclear magnetic resonance data and LC-MS analysis. To determine its antioxidant and anti-inflammatory activity, as well as the underlying mechanisms, we treated lipopolysaccharide (LPS)-stimulated Raw264.7 mouse macrophages with 6PP. We found that 6PP suppresses LPS-induced increase in the levels of nitric oxide, a mediator of oxidative stress and inflammation, and restores LPS-mediated depletion of total glutathione by stabilizing nuclear factor erythroid 2-related factor 2 (Nrf2), an antioxidative factor, and elevating heme oxygenase-1 levels. Furthermore, 6PP inhibited LPS-induced production of proinflammatory cytokines, which are, at least in part, regulated by heme oxygenase-1 (HO-1). 6PP suppressed proinflammatory responses by inhibiting the nuclear localization of nuclear factor kappa B (NF-κB), as well as by dephosphorylating the mitogen-activated protein kinases (MAPKs). These results indicate that 6PP can protect macrophages against oxidative stress and LPS-induced excessive inflammatory responses by activating the Nrf2/HO-1 pathway while inhibiting the proinflammatory, NF-κB, and MAPK pathways.
Collapse
Affiliation(s)
- Jae Sung Lim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (J.S.L.); (D.Y.L.); (X.L.)
| | - Joo-Hyun Hong
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; (J.-H.H.); (D.E.L.)
- Research Laboratories, ILDONG Pharmaceutical Co. Ltd., Hwaseong 18449, Republic of Korea
| | - Da Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (J.S.L.); (D.Y.L.); (X.L.)
| | - Xiangying Li
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (J.S.L.); (D.Y.L.); (X.L.)
| | - Da Eun Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; (J.-H.H.); (D.E.L.)
| | - Jeong Uk Choi
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Kwang Youl Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (J.S.L.); (D.Y.L.); (X.L.)
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; (J.-H.H.); (D.E.L.)
| | - Young-Chang Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (J.S.L.); (D.Y.L.); (X.L.)
| |
Collapse
|
2
|
Characterization of Peptaibols Produced by a Marine Strain of the Fungus Trichoderma endophyticum via Mass Spectrometry, Genome Mining and Phylogeny-Based Prediction. Metabolites 2023; 13:metabo13020221. [PMID: 36837841 PMCID: PMC9961477 DOI: 10.3390/metabo13020221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Trichoderma is recognized as a prolific producer of nonribosomal peptides (NRPs) known as peptaibols, which have remarkable biological properties, such as antimicrobial and anticancer activities, as well as the ability to promote systemic resistance in plants against pathogens. In this study, the sequencing of 11-, 14- and 15-res peptaibols produced by a marine strain of Trichoderma isolated from the ascidian Botrylloides giganteus was performed via liquid chromatography coupled to high-resolution tandem mass spectrometry (LC-MS/MS). Identification, based on multilocus phylogeny, revealed that our isolate belongs to the species T. endophyticum, which has never been reported in marine environments. Through genome sequencing and genome mining, 53 biosynthetic gene clusters (BGCs) were identified as being related to bioactive natural products, including two NRP-synthetases: one responsible for the biosynthesis of 11- and 14-res peptaibols, and another for the biosynthesis of 15-res. Substrate prediction, based on phylogeny of the adenylation domains in combination with molecular networking, permitted extensive annotation of the mass spectra related to two new series of 15-res peptaibols, which are referred to herein as "endophytins". The analyses of synteny revealed that the origin of the 15-module peptaibol synthetase is related to 18, 19 and 20-module peptaibol synthetases, and suggests that the loss of modules may be a mechanism used by Trichoderma species for peptaibol diversification. This study demonstrates the importance of combining genome mining techniques, mass spectrometry analysis and molecular networks for the discovery of new natural products.
Collapse
|
3
|
Gavryushina IA, Georgieva ML, Kuvarina AE, Sadykova VS. Peptaibols as Potential Antifungal and Anticancer Antibiotics: Current and Foreseeable Development (Review). APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821050070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Zhang JL, Tang WL, Huang QR, Li YZ, Wei ML, Jiang LL, Liu C, Yu X, Zhu HW, Chen GZ, Zhang XX. Trichoderma: A Treasure House of Structurally Diverse Secondary Metabolites With Medicinal Importance. Front Microbiol 2021; 12:723828. [PMID: 34367122 PMCID: PMC8342961 DOI: 10.3389/fmicb.2021.723828] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 11/27/2022] Open
Abstract
Fungi play an irreplaceable role in drug discovery in the course of human history, as they possess unique abilities to synthesize diverse specialized metabolites with significant medicinal potential. Trichoderma are well-studied filamentous fungi generally observed in nature, which are widely marketed as biocontrol agents. The secondary metabolites produced by Trichoderma have gained extensive attention since they possess attractive chemical structures with remarkable biological activities. A large number of metabolites have been isolated from Trichoderma species in recent years. A previous review by Reino et al. summarized 186 compounds isolated from Trichoderma as well as their biological activities up to 2008. To update the relevant list of reviews of secondary metabolites produced from Trichoderma sp., we provide a comprehensive overview in regard to the newly described metabolites of Trichoderma from the beginning of 2009 to the end of 2020, with emphasis on their chemistry and various bioactivities. A total of 203 compounds with considerable bioactivities are included in this review, which is worth expecting for the discovery of new drug leads and agrochemicals in the foreseeable future. Moreover, new strategies for discovering secondary metabolites of Trichoderma in recent years are also discussed herein.
Collapse
Affiliation(s)
- Jian-Long Zhang
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Jinan, China
- Shandong Aquaculture Environmental Control Engineering Laboratory, Yantai, China
| | - Wen-Li Tang
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Jinan, China
| | - Qing-Rong Huang
- School of Life Sciences, Ludong University, Yantai, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
| | - You-Zhi Li
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Jinan, China
| | - Mao-Lian Wei
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Jinan, China
| | - Lin-Lin Jiang
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Jinan, China
- Shandong Aquaculture Environmental Control Engineering Laboratory, Yantai, China
- Yantai Research Institute for Replacing Old Growth Drivers with New Ones, Yantai, China
| | - Chong Liu
- School of Life Sciences, Ludong University, Yantai, China
| | - Xin Yu
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Jinan, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
| | - Hong-Wei Zhu
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Jinan, China
- Shandong Aquaculture Environmental Control Engineering Laboratory, Yantai, China
- Yantai Research Institute for Replacing Old Growth Drivers with New Ones, Yantai, China
| | - Guo-Zhong Chen
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Aquaculture Environmental Control Engineering Laboratory, Yantai, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
| | - Xing-Xiao Zhang
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Aquaculture Environmental Control Engineering Laboratory, Yantai, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
| |
Collapse
|
5
|
Kouipou Toghueo RM, Youmbi DY, Boyom FF. Endophytes from Panax species. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2020.101882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
6
|
Marik T, Tyagi C, Racić G, Rakk D, Szekeres A, Vágvölgyi C, Kredics L. New 19-Residue Peptaibols from Trichoderma Clade Viride. Microorganisms 2018; 6:microorganisms6030085. [PMID: 30103563 PMCID: PMC6165201 DOI: 10.3390/microorganisms6030085] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 12/14/2022] Open
Abstract
Trichoderma koningiopsis and T. gamsii belong to clade Viride of Trichoderma, the largest and most diverse group of this genus. They produce a wide range of bioactive secondary metabolites, including peptaibols with antibacterial, antifungal, and antiviral properties. The unusual amino acid residues of peptaibols, i.e., α-aminoisobutyric acid (Aib), isovaline (Iva), and the C-terminal 1,2-amino alcohol make them unique among peptides. In this study, the peptaibiomes of T. koningiopsis and T. gamsii were investigated by HPLC-ESI-MS. The examined strains appeared to produce 19-residue peptaibols, most of which are unknown from literature, but their amino acid sequences are similar to those of trikoningins, tricholongins, trichostrigocins, trichorzianins, and trichorzins. A new group of peptaibols detected in T. koningiopsis are described here under the name “Koningiopsin”. Trikoningin KA V, the closest peptaibol compound to the peptaibols produced by these two strains, was selected for structural investigation by short MD simulation, which revealed that many residues show high preference for left handed helix formation. The bioactivity of the peptaibol mixtures produced by T. koningiopsis and T. gamsii was tested on agar plates against bacteria, yeasts, and filamentous fungi. The results revealed characteristic differences in bioactivities towards the different groups of target microorganisms, which can be explained with the differences in their cell wall structures.
Collapse
Affiliation(s)
- Tamás Marik
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Chetna Tyagi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary.
| | - Gordana Racić
- Faculty of Environmental Protection, Educons University, Vojvode Putnika 87, 21208 Sremska Kamenica, Serbia.
| | - Dávid Rakk
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary.
| | - András Szekeres
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| |
Collapse
|
7
|
Ding LJ, Yuan W, Li YX, Liao XJ, Sun H, Peng Q, Han BN, Lin HW, Li ZY, Yang F, Xu SH. Hypocrol A, a new tyrosol derivative from a sponge-derived strain of the fungus Hypocrea koningii. Nat Prod Res 2016; 30:1633-8. [PMID: 26828743 DOI: 10.1080/14786419.2015.1129333] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Li-Jian Ding
- College of Pharmacy, Jinan University, Guangzhou, PR China
- Department of Chemistry, Jinan University, Guangzhou, PR China
- State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, School of Medicine, Marine Drugs Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, PR China
| | - Wei Yuan
- State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, School of Medicine, Marine Drugs Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, PR China
| | - Ying-Xin Li
- State Key Laboratory of Microbial Metabolism, Marine Biotechnology Laboratory, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xiao-Jian Liao
- Department of Chemistry, Jinan University, Guangzhou, PR China
| | - Huan Sun
- Department of Chemistry, Jinan University, Guangzhou, PR China
| | - Qi Peng
- Department of Chemistry, Jinan University, Guangzhou, PR China
| | - Bing-Nan Han
- State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, School of Medicine, Marine Drugs Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, PR China
| | - Hou-Wen Lin
- State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, School of Medicine, Marine Drugs Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, PR China
| | - Zhi-Yong Li
- State Key Laboratory of Microbial Metabolism, Marine Biotechnology Laboratory, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Fan Yang
- State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, School of Medicine, Marine Drugs Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, PR China
| | - Shi-Hai Xu
- College of Pharmacy, Jinan University, Guangzhou, PR China
- Department of Chemistry, Jinan University, Guangzhou, PR China
| |
Collapse
|