1
|
Teli B, Wani MM, Jan S, Bhat HR, Bhat BA. Micelle-mediated synthesis of quinoxaline, 1,4-benzoxazine and 1,4-benzothiazine scaffolds from styrenes. Org Biomol Chem 2024; 22:6593-6604. [PMID: 39086328 DOI: 10.1039/d4ob00928b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
A range of heterocycles based on quinoxalines, 1,4-benzoxazines and 1,4-benzothiazines have been accessed from styrenes by reacting them with benzene-1,2-diamine, 2-aminophenol and 2-aminothiophenol respectively in micellar medium. This reaction occurring in a less explored cetylpyridinium bromide (CPB) micellar medium operates in the presence of NBS through a tandem hydrobromination-oxidation cascade, converting styrenes to phenacyl bromides. Its subsequent nucleophilic addition with aromatic 1,2-dinucleophiles and further transformations led to the formation of heterocyclic constructs. The locus of the reaction site was confirmed through NMR studies and the types of interactions between the CPB and solubilizates were established by DFT calculations.
Collapse
Affiliation(s)
- Bisma Teli
- CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar-190005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Mohmad Muzafar Wani
- CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar-190005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Shafia Jan
- CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar-190005, India.
| | - Haamid Rasool Bhat
- CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar-190005, India.
| | - Bilal A Bhat
- CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar-190005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
2
|
Zhao X, Yang F, Zou SY, Zhou QQ, Chen ZS, Ji K. Cu-Catalyzed Intermolecular γ-Site C–H Amination of Cyclohexenone Derivatives: The Benefit of Bifunctional Ligands. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xin Zhao
- College of Chemistry and Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, Shaanxi, P. R. China
- School of Pharmacy, Baotou Medical College, Baotou 014060, Inner Mongolia, P. R. China
| | - Fang Yang
- College of Chemistry and Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, Shaanxi, P. R. China
| | - Shao-Yu Zou
- College of Chemistry and Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, Shaanxi, P. R. China
| | - Qian-Qian Zhou
- College of Chemistry and Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, Shaanxi, P. R. China
| | - Zi-Sheng Chen
- College of Chemistry and Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, Shaanxi, P. R. China
| | - Kegong Ji
- College of Chemistry and Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, Shaanxi, P. R. China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
3
|
Teli B, Waseem MA, Rashid S, Ganaie BA, Bhat BA. Catalyst free synthesis of
2‐Aryl‐2
H
‐benzo[
b
][1,4]oxazines and
3‐Aryl‐2H
‐benzo[
b
][1,4]thiazin‐2‐ones: An ultrasonication‐assisted strategy. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bisma Teli
- Natural Products and Medicinal Chemistry CSIR‐Indian Institute of Integrative Medicine Jammu & Kashmir India
- Academy of Scientific & Innovative Research (AcSIR) Ghaziabad India
| | - Malik Abdul Waseem
- Natural Products and Medicinal Chemistry CSIR‐Indian Institute of Integrative Medicine Jammu & Kashmir India
| | - Showkat Rashid
- Natural Products and Medicinal Chemistry CSIR‐Indian Institute of Integrative Medicine Jammu & Kashmir India
| | - Bilal Ahmad Ganaie
- Natural Products and Medicinal Chemistry CSIR‐Indian Institute of Integrative Medicine Jammu & Kashmir India
| | - Bilal A. Bhat
- Natural Products and Medicinal Chemistry CSIR‐Indian Institute of Integrative Medicine Jammu & Kashmir India
- Academy of Scientific & Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
4
|
Zaid ASA, Aleissawy AE, Yahia IS, Yassien MA, Hassouna NA, Aboshanab KM. Streptomyces griseus KJ623766: A Natural Producer of Two Anthracycline Cytotoxic Metabolites β- and γ-Rhodomycinone. Molecules 2021; 26:molecules26134009. [PMID: 34209170 PMCID: PMC8271628 DOI: 10.3390/molecules26134009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Background: This study aimed to produce, purify, structurally elucidate, and explore the biological activities of metabolites produced by Streptomyces (S.) griseus isolate KJ623766, a recovered soil bacterium previously screened in our lab that showed promising cytotoxic activities against various cancer cell lines. Methods: Production of cytotoxic metabolites from S. griseus isolate KJ623766 was carried out in a 14L laboratory fermenter under specified optimum conditions. Using a 3-(4,5-dimethylthazol-2-yl)-2,5-diphenyl tetrazolium-bromide assay, the cytotoxic activity of the ethyl acetate extract against Caco2 and Hela cancer cell lines was determined. Bioassay-guided fractionation of the ethyl acetate extract using different chromatographic techniques was used for cytotoxic metabolite purification. Chemical structures of the purified metabolites were identified using mass, 1D, and 2D NMR spectroscopic analysis. Results: Bioassay-guided fractionation of the ethyl acetate extract led to the purification of two cytotoxic metabolites, R1 and R2, of reproducible amounts of 5 and 1.5 mg/L, respectively. The structures of R1 and R2 metabolites were identified as β- and γ-rhodomycinone with CD50 of 6.3, 9.45, 64.8 and 9.11, 9.35, 67.3 µg/mL against Caco2, Hela and Vero cell lines, respectively. Values were comparable to those of the positive control doxorubicin. Conclusions: This is the first report about the production of β- and γ-rhodomycinone, two important scaffolds for synthesis of anticancer drugs, from S. griseus.
Collapse
Affiliation(s)
- Ahmed S. Abu Zaid
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St, Abbassia, Cairo P.O. Box 11566, Egypt; (A.S.A.Z.); (M.A.Y.); (N.A.H.)
| | - Ahmed E. Aleissawy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St, Abbassia, Cairo P.O. Box 11566, Egypt;
| | - Ibrahim S. Yahia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha P.O. Box 9004, Saudi Arabia;
- Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, Abha P.O. Box 9004, Saudi Arabia
- Nanoscience Laboratory for Environmental and Bio-Medical Applications (NLEBA), Semiconductor Lab., Physics Department, Faculty of Education, Ain Shams University, Cairo P.O. Box 11757, Egypt
| | - Mahmoud A. Yassien
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St, Abbassia, Cairo P.O. Box 11566, Egypt; (A.S.A.Z.); (M.A.Y.); (N.A.H.)
| | - Nadia A. Hassouna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St, Abbassia, Cairo P.O. Box 11566, Egypt; (A.S.A.Z.); (M.A.Y.); (N.A.H.)
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St, Abbassia, Cairo P.O. Box 11566, Egypt; (A.S.A.Z.); (M.A.Y.); (N.A.H.)
- Correspondence: ; Tel.: +20-100-758-2620
| |
Collapse
|
5
|
Oloyede HO, Woods JAO, Görls H, Plass W, Eseola AO. Influence of structural and thermal factors on phenoxazinone synthase activities catalysed by coordinatively saturated cobalt(III) octahedral complexes bearing diazene–disulfonamide N⌃N⌃N chelators. CR CHIM 2020. [DOI: 10.5802/crchim.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Ezeokonkwo MA, Okafor SN, Ogbonna ON, Onoabedje EA, Ibeanu FN, Godwin-Nwakwasi EU, Ezema BE. New antimalarial agents derived from nonlinear phenoxazine ring system. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02459-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Ezeokonkwo MA, Eze CC, Okafor SN, Onoabedje EA, Godwin-Nwakwasi EU, Ibeanu FN. Diazabenzo[a]phenoxazone sulphonamides: synthesis, in-silico and in-vitro antimicrobial studies. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2251-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Ibeanu FN, Onoabedje EA, Ibezim A, Okoro UC. Synthesis, characterization, computational and biological study of novel azabenzo[a]phenothiazine and azabenzo[b]phenoxazine heterocycles as potential antibiotic agent. Med Chem Res 2018. [DOI: 10.1007/s00044-017-2131-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|