1
|
Dong S, Wu S, Hao F, Wu J, Liao Z, Zhong Q, Zhong R, Fang X. Research advancements on theaflavins: Isolation, purification, synthesis, gut microbiota interactions, and applications potentials. Food Res Int 2025; 202:115692. [PMID: 39967149 DOI: 10.1016/j.foodres.2025.115692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/14/2024] [Accepted: 01/04/2025] [Indexed: 02/20/2025]
Abstract
Theaflavins (TFs), specific polyphenolic compounds found in tea, including TF, TF-3-G, TF-3'-G, and TFDG, are renowned for their health-promoting effects. The growing interest in TFs among researchers necessitates a comprehensive review of their properties and impacts. This review systematically examines the chemical and physical properties of TFs, covering their isolation, purification, synthesis, safety, and bioavailability, as well as their implications for health. Special attention is paid to the dynamic interactions between TFs and gut microbiota (GM), exploring how GM metabolizes TFs and the consequent effects on the microbial community. An in-depth understanding of these interactions is crucial for realizing the full health benefits of TFs. Additionally, this review summarizes the well-documented health benefits of TFs, including their roles in ameliorating metabolic diseases, exhibiting anti-inflammatory properties, reducing viral infections, and potential applications in treating cancer and neurological diseases. It also explores the potential industrial applications of TFs, underscoring the need for further research to enhance their benefits for human health and well-being. The primary goal of this review is to support and inspire further detailed investigations into TFs.
Collapse
Affiliation(s)
- Sashuang Dong
- College of Food Science, South China Agricultural University, Guangzhou, PR China.
| | - Sitong Wu
- College of Food Science, South China Agricultural University, Guangzhou, PR China.
| | - Fanyu Hao
- College of Food Science, South China Agricultural University, Guangzhou, PR China.
| | - Jinsong Wu
- College of Food Science, South China Agricultural University, Guangzhou, PR China.
| | - Zhenlin Liao
- College of Food Science, South China Agricultural University, Guangzhou, PR China.
| | - Qingping Zhong
- College of Food Science, South China Agricultural University, Guangzhou, PR China.
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512000, PR China.
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou, PR China.
| |
Collapse
|
2
|
Nguengang RT, Tchegnitegni BT, Ateba JET, Tabekoueng GB, Awantu AF, Bankeu JJK, Chouna JR, Nkenfou CN, Sewald N, Lenta BN. Antibacterial constituents of Rumex nepalensis spreng and its emodin derivatives. Nat Prod Res 2023; 37:3935-3946. [PMID: 36584290 DOI: 10.1080/14786419.2022.2162894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 01/01/2023]
Abstract
The CH2Cl2-MeOH (1:1) extract of roots of Rumex nepalensis (Polygonaceae) displayed significant antibacterial activity against five bacterial strains with MICs (62.5-31.2 μg.mL-1). The EtOAc soluble fraction displayed a significant activity against the same strains with MICs (31.2-3.9 μg.mL-1). The purification of the EtOAc fraction yielded one new phenylisobenzofuranone derivative, berquaertiide (1), along with 19 known compounds (2-20). Their structures were elucidated based on the analysis of their NMR and MS data. All the isolated compounds were assessed for their antibacterial activity. Compound 2 was the most active against all the tested strains (15.7 to 1.9 μg.mL-1), while compounds 3-7 displayed good activities on at least one of the tested strains. In addition, seven analogues (21-27) of compound 2 were prepared and further assessed for their antibacterial activity. Compounds 26 and 27 were most active than 2 against Salmonella enterica and Klebsiella pneumoniae with MIC (125 and 15.6 μg.mL-1, respectively).
Collapse
Affiliation(s)
- Ruland Tchuinkeu Nguengang
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé 1, Yaoundé, Cameroon
| | | | - Joel Eddy Terence Ateba
- Department of Process Engineering, National Polytechnique School, University of Douala, Douala, Cameroon
| | | | - Angelbert Fusi Awantu
- Department of Chemistry, Faculty of Science, The University of Bamenda, Bambili, Cameroon
| | | | - Jean Rodolphe Chouna
- Department of Chemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Celine Nguefeu Nkenfou
- Department of Biology, Higher Teacher Training College, University of Yaoundé 1, Yaoundé, Cameroon
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Bruno Ndjakou Lenta
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé 1, Yaoundé, Cameroon
| |
Collapse
|
3
|
Chen CH, Yu JY, Yang Z, Ke JP, Qi Y, Yang Y, Gao B, Yao G, Bao GH. Novel methylated flavoalkaloids from Echa 1 green tea inhibit fat accumulation and enhance stress resistance in Caenorhabditis elegans. Food Chem 2023; 413:135643. [PMID: 36773353 DOI: 10.1016/j.foodchem.2023.135643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
Methylation is a common structural modification of catechins in tea, which can improve the bioavailability of catechins. Flavoalkaloids are catechin derivatives with a nitrogen containing five-membered ring at the C-6 or C-8 position. Here we isolated three new methylated flavoalkaloids from Echa 1 green tea (Camellia sinensis cv. Echa 1) and synthesized another four new methylated flavoalkaloids. The structures of the new ester-type methylated catechins (etmc)-pyrrolidinone A-G (1-7) were elucidated by various spectroscopic techniques, including nuclear magnetic resonance (NMR), optical rotation, infrared, UV-vis, experimental and calculated circular dichroism (CD) spectra, and high-resolution mass. Among them, 6 and 7 showed the strongest α-glucosidase inhibitory activity and significantly lowered lipid content of Caenorhabditis elegans with 73.50 and 67.39% inhibition rate, respectively. Meanwhile, 6 and 7 also exhibited strong antioxidant activity in vitro and stress resistance to heat, oxidative stress, and UV irradiation in nematodes.
Collapse
Affiliation(s)
- Chen-Hui Chen
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Jing-Ya Yu
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Zi Yang
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Jia-Ping Ke
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Yan Qi
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Yi Yang
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Biao Gao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Guangmin Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Guan-Hu Bao
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Healthy Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
4
|
Cui Y, Han Z, Lian L, Zhang L. The inhibition effects of chlorogenic acid on the formation of colored oxidation products of (-)-epigallocatechin gallate under enzymatic oxidation. Food Chem 2023; 417:135895. [PMID: 36931012 DOI: 10.1016/j.foodchem.2023.135895] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/22/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023]
Abstract
Untargeted Liquid chromatography tandem mass spectrometry (LC-MS) based metabolomics in combination with UV-visible and colorimeter was applied in identifying critical colored enzymatically oxidized products of (-)-epigallocatechin gallate (EGCG). Pearson correlation coefficient analysis between marker compounds and a* value was conducted, and then a series of colored oxidation products were targeted and subsequently identified by diode array detection and mass fragmentation ions. The quinone of oolongtheanin 3-O'-gallate degraded product with quasi-molecular mass ion at m/z 711 was identified as a critical colored oxidation product of single EGCG. To explore the effect of chlorogenic acid on the formation of colored EGCG enzymatic oxidation products, the variation of oxidation products on the oolongtheanin pathway was semi-quantitatively determined. The result showed chlorogenic acid significantly inhibited the formation of colored oxidation products, thus lightened the color of EGCG oxidation mixture. The addition of chlorogenic acid influences the process of tea polyphenols' enzymatic oxidation.
Collapse
Affiliation(s)
- Yuqing Cui
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Zisheng Han
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Li Lian
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
5
|
Long P, Rakariyatham K, Ho CT, Zhang L. Thearubigins: Formation, structure, health benefit and sensory property. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
6
|
Docampo-Palacios ML, Alvarez-Hernández A, de Fátima Â, Lião LM, Pasinetti GM, Dixon RA. Efficient Chemical Synthesis of (Epi)catechin Glucuronides: Brain-Targeted Metabolites for Treatment of Alzheimer's Disease and Other Neurological Disorders. ACS OMEGA 2020; 5:30095-30110. [PMID: 33251444 PMCID: PMC7689943 DOI: 10.1021/acsomega.0c04512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/26/2020] [Indexed: 05/03/2023]
Abstract
Grape seed extract (GSE) is rich in flavonoids and has been recognized to possess human health benefits. Our group and others have demonstrated that GSE is able to attenuate the development of Alzheimer's disease (AD). Moreover, our results have disclosed that the anti-Alzheimer's benefits are not directly/solely related to the dietary flavonoids themselves, but rather to their metabolites, particularly to the glucuronidated ones. To facilitate the understanding of regioisomer/stereoisomer-specific biological effects of (epi)catechin glucuronides, we here describe a concise chemical synthesis of authentic standards of catechin and epicatechin metabolites 3-12. The synthesis of glucuronides 9 and 12 is described here for the first time. The key reactions employed in the synthesis of the novel glucuronides 9 and 12 include the regioselective methylation of the 4'-hydroxyl group of (epi)catechin (≤1.0/99.0%; 3'-OMe/4'-OMe) and the regioselective deprotection of the tert-butyldimethylsilyl (TBS) group at position 5 (yielding up to 79%) over the others (3, 7 and 3' or 4').
Collapse
Affiliation(s)
- Maite L. Docampo-Palacios
- BioDiscovery
Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, United States
- . Phone: +1-214-601-5892. Fax: +1-580-224-6692
| | - Anislay Alvarez-Hernández
- BioDiscovery
Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, United States
| | - Ângelo de Fátima
- Department
of Chemistry, Universidade Federal de Minas
Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Luciano Morais Lião
- Institute
of Chemistry, Universidade Federal de Goiás, Goiânia, GO 74690-900, Brazil
| | - Giulio M. Pasinetti
- Department
of Psychiatry, The Mount Sinai School of
Medicine, New York, New York 10029, United States
| | - Richard A. Dixon
- BioDiscovery
Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, United States
- . Phone: +1-940-565-2308
| |
Collapse
|
7
|
Takemoto M, Takemoto H. Synthesis of Theaflavins and Their Functions. Molecules 2018; 23:molecules23040918. [PMID: 29659496 PMCID: PMC6017393 DOI: 10.3390/molecules23040918] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/26/2022] Open
Abstract
Numerous epidemiological and interventional clinical studies have consistently reported that black tea is good for human health. The polyphenolic compound, theaflavin, and its galloyl esters (theaflavins) are the primary red pigments in black tea that possess several health benefits, including fat-reducing and glucose-lowering capabilities and lifestyle-related disease prevention related to anti-obesity, anticancer, anti-atherosclerotic, anti-inflammatory, antiviral, antibacterial, anti-osteoporotic, and anti-dental caries properties. These compounds are produced by key enzymes, such as polyphenol oxidase and peroxidase, from parent green tea catechins present in fresh green tea leaves during the production of black tea leaves or the fermentation of green tea. However, theaflavins are only present in low concentrations in black tea; thus, their extraction from black tea leaves at sufficient levels for use in medical studies has been difficult. To circumvent this issue, different procedures for the synthesis of theaflavins using chemical oxidizing reagents or enzymes have been studied; however, low yields have limited their utility. Recently, however, several biosynthetic methods have been developed for the mass production of theaflavins. Using these methods, the physiological functions of theaflavins in lifestyle-related diseases in mice and humans have also been studied. In this review, we present the synthesis of theaflavins and their health benefits.
Collapse
Affiliation(s)
- Masumi Takemoto
- School of Pharmaceutical Sciences, Ohu University, 31-1 Tomitamachi-Aza Misumido, Koriyama, Fukushima 963-8611, Japan.
| | - Hiroaki Takemoto
- School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan.
| |
Collapse
|