1
|
Shapovalova KS, Zatonsky GV, Razumova EA, Ipatova DA, Lukianov DA, Sergiev PV, Grammatikova NE, Tikhomirov AS, Shchekotikhin AE. Synthesis and Antibacterial Activity of New 6″-Modified Tobramycin Derivatives. Antibiotics (Basel) 2024; 13:1191. [PMID: 39766581 PMCID: PMC11672562 DOI: 10.3390/antibiotics13121191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Objectives: Aminoglycosides are one of the first classes of natural antibiotics which have not lost relevance due to their broad spectrum of action against Gram-positive, Gram-negative bacteria and mycobacteria. The high growth rate of antimicrobial resistance (AMR) together with the severe side effects of aminoglycosides increase the importance of developing improved semisynthetic derivatives. Methods: In this work, we proposed a synthetic route to new tobramycin derivatives modified at the 6″-position with aminoalkylamine or guanidinoalkylamine residues. Results: The antibacterial activity of the new compounds against reference strains of microorganisms was comparable to the parental tobramycin. In striking contrast to tobramycin (resistance index, >256), its 6″-modified derivatives were significantly more potent against resistant clinical isolates of P. aeruginosa strains (resistance index = 4-16) and they demonstrated a promising AMR circumvention in E. coli strains associated with mutations in the fusA gene encoding elongation factor G. All the obtained tobramycin derivatives exhibited reduced cytotoxicity for the eukaryotic HEK293T cells compared to the tobramycin and thereby they potentially may have improved therapeutic index. The proposed modification of the 6″-position of tobramycin does not change the mechanism of aminoglycoside's antibacterial activity: new compounds induced translation errors which resulted in the inhibition of protein synthesis in bacterial cells. Conclusions: Taken together, we can suggest that further modifications of the 6″-position of tobramycin may be beneficial for circumvention of AMR to aminoglycosides or used for conjugation with other molecules of interest.
Collapse
Affiliation(s)
- Kseniya S. Shapovalova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia; (K.S.S.); (G.V.Z.); (N.E.G.); (A.S.T.)
| | - Georgy V. Zatonsky
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia; (K.S.S.); (G.V.Z.); (N.E.G.); (A.S.T.)
| | - Elizaveta A. Razumova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia; (E.A.R.); (D.A.I.); (D.A.L.); (P.V.S.)
| | - Daria A. Ipatova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia; (E.A.R.); (D.A.I.); (D.A.L.); (P.V.S.)
| | - Dmitrii A. Lukianov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia; (E.A.R.); (D.A.I.); (D.A.L.); (P.V.S.)
- Center for Molecular and Cellular Biology, Moscow 121205, Russia
| | - Petr V. Sergiev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia; (E.A.R.); (D.A.I.); (D.A.L.); (P.V.S.)
- Center for Molecular and Cellular Biology, Moscow 121205, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Natalia E. Grammatikova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia; (K.S.S.); (G.V.Z.); (N.E.G.); (A.S.T.)
| | - Alexander S. Tikhomirov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia; (K.S.S.); (G.V.Z.); (N.E.G.); (A.S.T.)
| | - Andrey E. Shchekotikhin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia; (K.S.S.); (G.V.Z.); (N.E.G.); (A.S.T.)
| |
Collapse
|
2
|
Lizunova SA, Tsvetkov VB, Skvortsov DA, Kamzeeva PN, Ivanova OM, Vasilyeva LA, Chistov AA, Belyaev ES, Khrulev AA, Vedekhina TS, Bogomazova AN, Lagarkova MA, Varizhuk AM, Aralov AV. Anticancer activity of G4-targeting phenoxazine derivatives in vitro. Biochimie 2022; 201:43-54. [PMID: 35817132 DOI: 10.1016/j.biochi.2022.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 11/02/2022]
Abstract
G4-stabilizing ligands are now being considered as anticancer, antiviral and antibacterial agents. Phenoxazine is a promising scaffold for the development of G4 ligands. Here, we profiled two known phenoxazine-based nucleoside analogs and five new nucleoside and non-nucleoside derivatives against G4 targets from telomere repeats and the KIT promoter region. Leading new derivatives exhibited remarkably high G4-stabilizing effects (comparable or superior to the effects of the commonly used selective G4 ligands PDS and NMM) and selectivity toward G4s over duplex (superior to BRACO-19). All phenoxazine-based ligands inhibited cellular metabolic activity. The phenoxazine derivatives were particularly toxic for lung adenocarcinoma cells A549' and human liver cancer cells HepG2 (CC50 of the nucleoside analogues in the nanomolar range), but also affected breast cancer cells MCF7, as well as immortalized fibroblasts VA13 and embryonic kidney cells HEK293t (CC50 in the micromolar range). Importantly, the CC50 values varied mostly in accordance with G4-binding affinities and G4-stabilizing effects, and the phenoxazine derivatives localized in the cell nuclei, which corroborates G4-mediated mechanisms of action.
Collapse
Affiliation(s)
- Sofia A Lizunova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, Moscow, 119435, Russia
| | - Vladimir B Tsvetkov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, Moscow, 119435, Russia; I.M. Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, Moscow, 119991, Russia; A.V. Topchiev Institute of Petrochemical Synthesis RAS, Leninsky Prospect Str. 29, Moscow, 119991, Russia.
| | - Dmitry A Skvortsov
- Lomonosov Moscow State University, Department of Chemistry and Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia
| | - Polina N Kamzeeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya Str. 16/10, Moscow, 117997, Russia
| | - Olga M Ivanova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, Moscow, 119435, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya Str. 1a, Moscow, 119435, Russia
| | - Lilja A Vasilyeva
- Lomonosov Moscow State University, Department of Chemistry and Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia
| | - Alexey A Chistov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya Str. 16/10, Moscow, 117997, Russia
| | - Evgeny S Belyaev
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Science, Moscow, 119071, Russia
| | - Alexei A Khrulev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya Str. 16/10, Moscow, 117997, Russia
| | - Tatiana S Vedekhina
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, Moscow, 119435, Russia; G4_Interact, USERN, University of Pavia, 27100 Pavia, Italy
| | - Alexandra N Bogomazova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, Moscow, 119435, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya Str. 1a, Moscow, 119435, Russia
| | - Maria A Lagarkova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, Moscow, 119435, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya Str. 1a, Moscow, 119435, Russia
| | - Anna M Varizhuk
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, Moscow, 119435, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya Str. 1a, Moscow, 119435, Russia; Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, 141701, Russia; G4_Interact, USERN, University of Pavia, 27100 Pavia, Italy.
| | - Andrey V Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya Str. 16/10, Moscow, 117997, Russia.
| |
Collapse
|
3
|
The role of the cell surface glycocalyx in drug delivery to and through the endothelium. Adv Drug Deliv Rev 2022; 184:114195. [PMID: 35292326 DOI: 10.1016/j.addr.2022.114195] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/05/2022] [Accepted: 03/08/2022] [Indexed: 11/20/2022]
Abstract
Cell membranes are key interfaces where materials engineering meets biology. Traditionally regarded as just the location of receptors regulating the uptake of molecules, we now know that all mammalian cell membranes are 'sugar coated'. These sugars, or glycans, form a matrix bound at the cell membrane via proteins and lipids, referred to as the glycocalyx, which modulate access to cell membrane receptors crucial for interactions with drug delivery systems (DDS). Focusing on the key blood-tissue barrier faced by most DDS to enable transport from the place of administration to target sites via the circulation, we critically assess the design of carriers for interactions at the endothelial cell surface. We also discuss the current challenges for this area and provide opportunities for future research efforts to more fully engineer DDS for controlled, efficient, and targeted interactions with the endothelium for therapeutic application.
Collapse
|
4
|
Sabeti Azad M, Okuda M, Cyrenne M, Bourge M, Heck MP, Yoshizawa S, Fourmy D. Fluorescent Aminoglycoside Antibiotics and Methods for Accurately Monitoring Uptake by Bacteria. ACS Infect Dis 2020; 6:1008-1017. [PMID: 32195576 DOI: 10.1021/acsinfecdis.9b00421] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Characterizing how multidrug-resistant bacteria circumvent the action of clinically used or novel antibiotics requires a detailed understanding of how the antibiotics interact with and cross bacterial membranes to accumulate in the cells and exert their action. When monitoring the interactions of drugs with bacteria, it remains challenging to differentiate functionally relevant internalized drug levels from nonspecific binding. Fluorescence is a method of choice for observing dynamics of biomolecules. In order to facilitate studies involving aminoglycoside antibiotics, we have generated fluorescently labeled aminoglycoside derivatives with uptake and bactericidal activities similar, albeit with a moderate loss, to those of the parent drug. The method combines fluorescence microscopy with fluorescence-activated cell sorting (FACS) using neomycin coupled to nonpermeable cyanine dyes. Fluorescence imaging allowed membrane-bound antibiotic to be distinguished from molecules in the cytoplasm. Patterns of uptake were assigned to different populations in the FACS analysis. Our study illustrates how fluorescent derivatives of an aminoglycoside enable a robust characterization of the three components of uptake: membrane binding, EDPI, and EDPII. Because EDPI levels are weak compared to the two other types of accumulation and critical for the action of these drugs, the three components of uptake must be taken into account separately when drawing conclusions about aminoglycoside function.
Collapse
Affiliation(s)
- Mahnaz Sabeti Azad
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Maho Okuda
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Mélina Cyrenne
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Mickael Bourge
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Marie-Pierre Heck
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et de Marquage, 91191 Gif-sur-Yvette, France
| | - Satoko Yoshizawa
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Dominique Fourmy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|