1
|
A multi-staged neuropeptide response to traumatic brain injury. Eur J Trauma Emerg Surg 2020; 48:507-517. [DOI: 10.1007/s00068-020-01431-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/28/2020] [Indexed: 01/05/2023]
|
2
|
Honda M, Ichibayashi R, Suzuki G, Yokomuro H, Seiki Y, Sase S, Kishi T. Consideration of the Intracranial Pressure Threshold Value for the Initiation of Traumatic Brain Injury Treatment: A Xenon CT and Perfusion CT Study. Neurocrit Care 2018; 27:308-315. [PMID: 28762185 DOI: 10.1007/s12028-017-0432-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Monitoring of intracranial pressure (ICP) is considered to be fundamental for the care of patients with severe traumatic brain injury (TBI) and is routinely used to direct medical and surgical therapy. Accordingly, some guidelines for the management of severe TBI recommend that treatment be initiated for ICP values >20 mmHg. However, it remained to be accounted whether there is a scientific basis to this instruction. The purpose of the present study was to clarify whether the basis of ICP values >20 mmHg is appropriate. SUBJECT AND METHODS We retrospectively reviewed 25 patients with severe TBI who underwent neuroimaging during ICP monitoring within the first 7 days. We measured cerebral blood flow (CBF), mean transit time (MTT), cerebral blood volume (CBV), and ICP 71 times within the first 7 days. RESULTS Although the CBF, MTT, and CBV values were not correlated with the ICP value at ICP values ≤20 mmHg, the CBF value was significantly negatively correlated with the ICP value (r = -0.381, P < 0.05) at ICP values >20 mmHg. The MTT value was also significantly positively correlated with the ICP value (r = 0.638, P < 0.05) at ICP values >20 mmHg. CONCLUSION The cerebral circulation disturbance increased with the ICP value. We demonstrated the cerebral circulation disturbance at ICP values >20 mmHg. This study suggests that an ICP >20 mmHg is the threshold to initiate treatments. An active treatment intervention would be required for severe TBI when the ICP was >20 mmHg.
Collapse
Affiliation(s)
- Mitsuru Honda
- Department of Critical Care Center, Toho University Medical Center Omori Hospital, 6-11-1 Omori-Nishi, Ota-ku, Tokyo, 143-8541, Japan.
| | - Ryo Ichibayashi
- Department of Critical Care Center, Toho University Medical Center Omori Hospital, 6-11-1 Omori-Nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Ginga Suzuki
- Department of Critical Care Center, Toho University Medical Center Omori Hospital, 6-11-1 Omori-Nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Hiroki Yokomuro
- Department of Critical Care Center, Toho University Medical Center Omori Hospital, 6-11-1 Omori-Nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Yoshikatsu Seiki
- Department of Neurosurgery, Toho University Medical Center Omori Hospital, Tokyo, Japan
| | - Shigeru Sase
- Department of Neurosurgery, Toho University Medical Center Omori Hospital, Tokyo, Japan
| | - Taichi Kishi
- Department of Education Planning and Development, Faculty of Medicine, School of Medicine, Toho University, Tokyo, Japan
| |
Collapse
|
3
|
Ziegler D, Cravens G, Poche G, Gandhi R, Tellez M. Use of Transcranial Doppler in Patients with Severe Traumatic Brain Injuries. J Neurotrauma 2016; 34:121-127. [PMID: 26913374 DOI: 10.1089/neu.2015.3967] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Severe traumatic brain injuries (TBI) are associated with a high rate of mortality and disability. Transcranial Doppler (TCD) sonography permits a noninvasive measurement of cerebral blood flow. The purpose of this study is to determine the usefulness of TCD in patients with severe TBI. TCD was performed, from April 2008 to April 2013, on 255 patients with severe TBI, defined as a Glasgow Coma Scale score of ≤8 on admission. TCD was performed on hospital days 1, 2, 3, and 7. Hypoperfusion was defined by having two out of three of the following: 1) mean velocity (Vm) of the middle cerebral artery <35 cm/sec, 2) diastolic velocity (Vd) of the middle cerebral artery <20 cm/sec, or 3) pulsatility index (PI) of >1.4. Vasospasm was defined by the following: Vm of the middle cerebral artery >120 cm/sec and/or a Lindegaard index (LI) >3. One hundred fourteen (45%) had normal measurements. Of these, 92 (80.7%) had a good outcome, 6 (5.3%) had moderate disability, and 16 (14%) died, 4 from brain death. Seventy-two patients (28%) had hypoperfusion and 71 (98.6%) died, 65 from brain death, and 1 patient survived with moderate disability. Sixty-nine patients (27%) had vasospasm, 31 (44.9%) had a good outcome, 16 (23.2%) had severe disability, and 22 (31.9%) died, 13 from brain death. The vasospasm was detected on hospital day 1 in 8 patients, on day 2 in 23 patients, on day 3 in 22 patients, and on day 7 in 16 patients. Patients with normal measurements can be expected to survive. Patients with hypoperfusion have a poor prognosis. Patients with vasospasm have a high incidence of mortality and severe disability. TCD is useful in determining early prognosis.
Collapse
Affiliation(s)
- Daniel Ziegler
- 1 Department of Surgery, John Peter Smith Hospital , Fort Worth, Texas
| | - George Cravens
- 2 Department of Neurosurgery, John Peter Smith Hospital , Fort Worth, Texas
| | - Gerard Poche
- 2 Department of Neurosurgery, John Peter Smith Hospital , Fort Worth, Texas
| | - Raj Gandhi
- 1 Department of Surgery, John Peter Smith Hospital , Fort Worth, Texas
| | - Mark Tellez
- 1 Department of Surgery, John Peter Smith Hospital , Fort Worth, Texas
| |
Collapse
|
4
|
Carron SF, Alwis DS, Rajan R. Traumatic Brain Injury and Neuronal Functionality Changes in Sensory Cortex. Front Syst Neurosci 2016; 10:47. [PMID: 27313514 PMCID: PMC4889613 DOI: 10.3389/fnsys.2016.00047] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 05/19/2016] [Indexed: 01/21/2023] Open
Abstract
Traumatic brain injury (TBI), caused by direct blows to the head or inertial forces during relative head-brain movement, can result in long-lasting cognitive and motor deficits which can be particularly consequential when they occur in young people with a long life ahead. Much is known of the molecular and anatomical changes produced in TBI but much less is known of the consequences of these changes to neuronal functionality, especially in the cortex. Given that much of our interior and exterior lives are dependent on responsiveness to information from and about the world around us, we have hypothesized that a significant contributor to the cognitive and motor deficits seen after TBI could be changes in sensory processing. To explore this hypothesis, and to develop a model test system of the changes in neuronal functionality caused by TBI, we have examined neuronal encoding of simple and complex sensory input in the rat’s exploratory and discriminative tactile system, the large face macrovibrissae, which feeds to the so-called “barrel cortex” of somatosensory cortex. In this review we describe the short-term and long-term changes in the barrel cortex encoding of whisker motion modeling naturalistic whisker movement undertaken by rats engaged in a variety of tasks. We demonstrate that the most common form of TBI results in persistent neuronal hyperexcitation specifically in the upper cortical layers, likely due to changes in inhibition. We describe the types of cortical inhibitory neurons and their roles and how selective effects on some of these could produce the particular forms of neuronal encoding changes described in TBI, and then generalize to compare the effects on inhibition seen in other forms of brain injury. From these findings we make specific predictions as to how non-invasive extra-cranial electrophysiology can be used to provide the high-precision information needed to monitor and understand the temporal evolution of changes in neuronal functionality in humans suffering TBI. Such detailed understanding of the specific changes in an individual patient’s cortex can allow for treatment to be tailored to the neuronal changes in that particular patient’s brain in TBI, a precision that is currently unavailable with any technique.
Collapse
Affiliation(s)
- Simone F Carron
- Neuroscience Research Program, Biomedicine Discovery Institute, Department of Physiology, Monash University Monash, VIC, Australia
| | - Dasuni S Alwis
- Neuroscience Research Program, Biomedicine Discovery Institute, Department of Physiology, Monash University Monash, VIC, Australia
| | - Ramesh Rajan
- Neuroscience Research Program, Biomedicine Discovery Institute, Department of Physiology, Monash UniversityMonash, VIC, Australia; Ear Sciences Institute of AustraliaPerth, WA, Australia
| |
Collapse
|
5
|
Carron SF, Yan EB, Alwis DS, Rajan R. Differential susceptibility of cortical and subcortical inhibitory neurons and astrocytes in the long term following diffuse traumatic brain injury. J Comp Neurol 2016; 524:3530-3560. [PMID: 27072754 DOI: 10.1002/cne.24014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 02/02/2023]
Abstract
Long-term diffuse traumatic brain injury (dTBI) causes neuronal hyperexcitation in supragranular layers in sensory cortex, likely through reduced inhibition. Other forms of TBI affect inhibitory interneurons in subcortical areas but it is unknown if this occurs in cortex, or in any brain area in dTBI. We investigated dTBI effects on inhibitory neurons and astrocytes in somatosensory and motor cortex, and hippocampus, 8 weeks post-TBI. Brains were labeled with antibodies against calbindin (CB), parvalbumin (PV), calretinin (CR) and neuropeptide Y (NPY), and somatostatin (SOM) and glial fibrillary acidic protein (GFAP), a marker for astrogliosis during neurodegeneration. Despite persistent behavioral deficits in rotarod performance up to the time of brain extraction (TBI = 73.13 ± 5.23% mean ± SEM, Sham = 92.29 ± 5.56%, P < 0.01), motor cortex showed only a significant increase, in NPY neurons in supragranular layers (mean cells/mm2 ± SEM, Sham = 16 ± 0.971, TBI = 25 ± 1.51, P = 0.001). In somatosensory cortex, only CR+ neurons showed changes, being decreased in supragranular (TBI = 19 ± 1.18, Sham = 25 ± 1.10, P < 0.01) and increased in infragranular (TBI = 28 ± 1.35, Sham = 24 ± 1.07, P < 0.05) layers. Heterogeneous changes were seen in hippocampal staining: CB+ decreased in dentate gyrus (TBI = 2 ± 0.382, Sham = 4 ± 0.383, P < 0.01), PV+ increased in CA1 (TBI = 39 ± 1.26, Sham = 33 ± 1.69, P < 0.05) and CA2/3 (TBI = 26 ± 2.10, Sham = 20 ± 1.49, P < 0.05), and CR+ decreased in CA1 (TBI = 10 ± 1.02, Sham = 14 ± 1.14, P < 0.05). Astrogliosis significantly increased in corpus callosum (TBI = 6.7 ± 0.69, Sham = 2.5 ± 0.38; P = 0.007). While dTBI effects on inhibitory neurons appear region- and type-specific, a common feature in all cases of decrease was that changes occurred in dendrite targeting interneurons involved in neuronal integration. J. Comp. Neurol. 524:3530-3560, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Simone F Carron
- Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Edwin B Yan
- Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Dasuni S Alwis
- Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Ramesh Rajan
- Department of Physiology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
6
|
Maeda T, Lee SM, Hovda DA. Restoration of Cerebral Vasoreactivity by an L-Type Calcium Channel Blocker following Fluid Percussion Brain Injury. J Neurotrauma 2005; 22:763-71. [PMID: 16004579 DOI: 10.1089/neu.2005.22.763] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) results in significant acute reductions in regional cerebral blood flow (rCBF). However, the mechanisms by which TBI impairs CBF and cerebral vascular reactivity have remained elusive. In the present study, the effect of verapamil, an L-type calcium (Ca(2+)) channel blocker, on post-traumatic vascular reactivity was evaluated following a lateral fluid percussion injury (FPI) in rats. rCBF was measured by [(14)C]-iodoantipyrine autoradiography 1 h after FPI. Following FPI, significant rCBF reductions were documented in all examined cortical areas. These reductions were the most prominent (72.0%) at the primary injury site. Intravenous infusion of verapamil (VE; 200 microg/kg/min), and norepinephrine (NE; 20 microg/mL/min) to maintain normal blood pressure, increased rCBF by 141.5% at the primary injury site when compared to untreated, FPinjured animals. Under stimulated conditions, both the ipsilateral and contralateral hemispheres failed to show any increases in rCBF at 1 h following FPI. In direct contrast, following VE+NE treatment all cortical areas measured showed near normal vascular reactivity to direct cortical stimulation (normal reactivity = 45% increase in rCBF vs. 47% increase in FPI+VE+NE cases). These findings suggest that the majority of post-traumatic hemodynamic depressions are closely related to mechanisms involving vasoconstriction. Furthermore, Ca(2+) may play a causative role in this vasoconstriction and the loss of vasoreactivity.
Collapse
Affiliation(s)
- Takeshi Maeda
- Brain Injury Research Center, Department of Surgery/Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
7
|
Dash PK, Kobori N, Moore AN. A molecular description of brain trauma pathophysiology using microarray technology: an overview. Neurochem Res 2004; 29:1275-86. [PMID: 15176484 DOI: 10.1023/b:nere.0000023614.30084.eb] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
It has been estimated that 50% of human transcriptome, the collection of mRNA in a cell, is expressed in the brain, making it one of the most complex organs to understand in terms of genomic responses to injury. The availability of genome sequences for several organisms coupled with the increasing affordability of microarray technologies makes it feasible to monitor the mRNA levels of thousands of genes simultaneously. In this paper, we provide an overview of findings using both cDNA- and oligonucleotide-based microarray analyses after experimental traumatic brain injury (TBI). Specifically, the utility of this methodology as a means of cataloging the biochemical sequelae of brain trauma and elucidating novel genes or pathways for further study is discussed. Furthermore, we offer future directions for the continued evaluation of microarray results and discuss the usefulness of microarray techniques as a testing format for determining the efficacy of mechanism-based therapies.
Collapse
Affiliation(s)
- Pramod K Dash
- Department of Neurobiology and Anatomy, and The Vivian L. Smith Center for Neurologic Research, The University of Texas Medical School, Houston, Texas 77225, USA.
| | | | | |
Collapse
|
8
|
Raghavendra Rao VL, Dhodda VK, Song G, Bowen KK, Dempsey RJ. Traumatic brain injury-induced acute gene expression changes in rat cerebral cortex identified by GeneChip analysis. J Neurosci Res 2003; 71:208-19. [PMID: 12503083 DOI: 10.1002/jnr.10486] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Proper CNS function depends on concerted expression of thousands of genes in a controlled and timely manner. Traumatic brain injury (TBI) in mammals results in neuronal death and neurological dysfunction, which might be mediated by altered expression of several genes. By employing a CNS-specific GeneChip and real-time polymerase chain reaction (PCR), the present study analyzed the gene expression changes in adult rat cerebral cortex in the first 24 hr after a controlled cortical impact injury. Many functional families of genes not previously implicated in TBI-induced brain damage are altered in the injured cortex. These include up-regulated transcription factors (SOCS-3, JAK-2, STAT-3, CREM, IRF-1, SMN, silencer factor-B, ANIA-3, ANIA-4, and HES-1) and signal transduction pathways (cpg21, Narp, and CRBP) and down-regulated transmitter release mechanisms (CITRON, synaptojanin II, ras-related rab3, neurexin-1beta, and SNAP25A and -B), kinases (IP-3-kinase, Pak1, Ca(2+)/CaM-dependent protein kinases), and ion channels (K(+) channels TWIK, RK5, X62839, and Na(+) channel I). In addition, several genes previously shown to play a role in TBI pathophysiology, including proinflammatory genes, proapoptotic genes, heat shock proteins, immediate early genes, neuropeptides, and glutamate receptor subunits, were also observed to be altered in the injured cortex. Real-time PCR analysis confirmed the GeneChip data for many of these transcripts. The novel physiologically relevant gene expression changes observed here might explain some of the molecular mechanisms of TBI-induced neuronal damage.
Collapse
|
9
|
Matzilevich DA, Rall JM, Moore AN, Grill RJ, Dash PK. High-density microarray analysis of hippocampal gene expression following experimental brain injury. J Neurosci Res 2002; 67:646-63. [PMID: 11891777 DOI: 10.1002/jnr.10157] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Behavioral, biophysical, and pharmacological studies have implicated the hippocampus in the formation and storage of spatial memory. Traumatic brain injury (TBI) often causes spatial memory deficits, which are thought to arise from the death as well as the dysfunction of hippocampal neurons. Cell death and dysfunction are commonly associated with and often caused by altered expression of specific genes. The identification of the genes involved in these processes, as well as those participating in postinjury cellular repair and plasticity, is important for the development of mechanism-based therapies. To monitor the expression levels of a large number of genes and to identify genes not previously implicated in TBI pathophysiology, a high-density oligonucleotide array containing 8,800 genes was interrogated. RNA samples were prepared from ipsilateral hippocampi 3 hr and 24 hr following lateral cortical impact injury and compared to samples from sham-operated controls. Cluster analysis was employed using statistical algorithms to arrange the genes according to similarity in patterns of expression. The study indicates that the genomic response to TBI is complex, affecting approximately 6% (at the time points examined) of the total number of genes examined. The identity of the genes revealed that TBI affects many aspects of cell physiology, including oxidative stress, metabolism, inflammation, structural changes, and cellular signaling. The analysis revealed genes whose expression levels have been reported to be altered in response to injury as well as several genes not previously implicated in TBI pathophysiology.
Collapse
Affiliation(s)
- David A Matzilevich
- The Vivian L. Smith Center for Neurologic Research, Departments of Neurobiology and Anatomy, Neurosurgery, The University of Texas Medical School, Houston, Texas 77225, USA
| | | | | | | | | |
Collapse
|
10
|
Petersson S, Lavebratt C, Schalling M, Hökfelt T. Expression of cholecystokinin, enkephalin, galanin and neuropeptide Y is markedly changed in the brain of the megencephaly mouse. Neuroscience 2001; 100:297-317. [PMID: 11008168 DOI: 10.1016/s0306-4522(00)00285-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Megencephaly, enlarged brain, is a major sign in several human neurological diseases. The mouse model for megencephaly (mceph/mceph) has an enlarged brain, presumably due to brain cell hypertrophy, and exhibits neurological and motor disturbances with seizure-like activity, as well as disturbances in the insulin-like growth factor system. Here, we report that expression of the neuropeptides cholecystokinin, enkephalin, galanin and neuropeptide Y is dramatically changed in mceph/mceph brains compared to wild type, as revealed by in situ hybridization and immunohistochemistry. The changes were confined to discrete brain regions and occurred in a parallel fashion for peptides and their transcripts. For cholecystokinin, mceph/mceph brains had region-specific up- and down-regulations in several layers of the hippocampal formation and increased levels in, especially ventral, cortical regions. Enkephalin messenger RNA expression was up-regulated in the dentate gyrus granular layer and in ventral cortices, but down-regulated in the CA1 pyramidal layer. Enkephalin-like immunoreactivity was elevated in mossy fibers of the hippocampus and the ventral cortices. Galanin expression was increased in several layers and interneurons of the hippocampal formation, as well as in ventral cortices. Galanin-like immunoreactivity was reduced in nerve terminals in the forebrain. Neuropeptide Y expression was increased in the hippocampal formation and ventral cortices. Whether the mainly increased peptide levels contribute to the excessive growth of the brain or represent a consequence of this growth and/or of the neurological and motor disturbances remains to be elucidated.
Collapse
Affiliation(s)
- S Petersson
- Neurogenetic Unit, Center for Molecular Medicine, Karolinska Institutet, 171 76, Stockholm, Sweden.
| | | | | | | |
Collapse
|
11
|
Guan J, Bennet TL, George S, Waldvogel HJ, Faull RL, Gluckman PD, Keunen H, Gunn AJ. Selective neuroprotective effects with insulin-like growth factor-1 in phenotypic striatal neurons following ischemic brain injury in fetal sheep. Neuroscience 2000; 95:831-9. [PMID: 10670451 DOI: 10.1016/s0306-4522(99)00456-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Severe perinatal asphyxia can lead to injury and dysfunction of the basal ganglia. Post insult administration of insulin-like growth factor-1 is neuroprotective, particularly in the striatum. Insulin-like growth factor-1 is also known to be a neuromodulator of several types of striatal neurons. The striatum comprises various phenotypic neurons with a complex neurochemical anatomy and physiology. In the present study, we examined the specificity of neuronal rescue with insulin-like growth factor-1 on different striatal neurons. Bilateral brain injury was induced in near term fetal sheep by 30 min of reversible carotid artery occlusion. A single dose of 3 microg of insulin-like growth factor-1 was infused over 1 h into the lateral ventricle 90 min following ischemia. The histological and immunohistochemical outcome were examined after 4 days recovery using paraffin tissue preparations. Insulin-like growth factor-1 treatment (n = 11) significantly reduced the percentage of neuronal loss in the striatum compared with the vehicle treated group (n = 10, 28.3+/-5.1% vs 55.5+/-17.3%, P < 0.005). Immunohistochemical studies showed that ischemia resulted in a significant loss of calbindin-28kd, choline acetyltransferase, parvalbumin, glutamate acid decarboxylase, neuronal nitric oxide synthase and neuropeptide Y immunopositive neurons, compared with sham controls. Insulin-like growth factor-1 markedly prevented the loss of calbindin-28kd (n = 7, P < 0.05), choline acetyltransferase (n = 7, P < 0.05), neuropeptide Y (n = 7, P < 0.05), neuronal nitric oxide synthase (n = 8, P < 0.05) and glutamate acid decarboxylase (n = 9, P < 0.05) immunopositive neurons, but failed to protect parvalbumin (n = 6) immunopositive neurons. The present study indicates that the therapeutic effect of insulin-like growth factor-1 in the basal ganglia is selectively associated with cholinergic and some phenotypic GABAergic neurons. These data suggest a potential role for insulin-like growth factor-1 in preventing cerebral palsy due to perinatal asphyxia.
Collapse
Affiliation(s)
- J Guan
- Research Center for Developmental Medicine and Biology, School of Medicine, University of Auckland, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Martin NA, Patwardhan RV, Alexander MJ, Africk CZ, Lee JH, Shalmon E, Hovda DA, Becker DP. Characterization of cerebral hemodynamic phases following severe head trauma: hypoperfusion, hyperemia, and vasospasm. J Neurosurg 1997; 87:9-19. [PMID: 9202259 DOI: 10.3171/jns.1997.87.1.0009] [Citation(s) in RCA: 303] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The extent and timing of posttraumatic cerebral hemodynamic disturbances have significant implications for the monitoring and treatment of patients with head injury. This prospective study of cerebral blood flow (CBF) (measured using 133Xe clearance) and transcranial Doppler (TCD) measurements in 125 patients with severe head trauma has defined three distinct hemodynamic phases during the first 2 weeks after injury. The phases are further characterized by measurements of cerebral arteriovenous oxygen difference (AVDO[2]) and cerebral metabolic rate of oxygen (CMRO[2]). Phase I (hypoperfusion phase) occurs on the day of injury (Day 0) and is defined by a low CBF calculated from cerebral clearance curves integrated to 15 minutes (mean CBF 32.3 +/- 2 ml/100 g/minute), normal middle cerebral artery (MCA) velocity (mean V[MCA] 56.7 +/- 2.9 cm/second), normal hemispheric index ([HI], mean HI 1.67 +/- 0.11), and normal AVDO(2) (mean AVDO[2] 5.4 +/- 0.5 vol%). The CMRO, is approximately 50% of normal (mean CMRO(2) 1.77 +/- 0.18 ml/100 g/minute) during this phase and remains depressed during the second and third phases. In Phase II (hyperemia phase, Days 1-3), CBF increases (46.8 +/- 3 ml/100 g/minute), AVDO(2) falls (3.8 +/- 0.1 vol%), V(MCA) rises (86 +/- 3.7 cm/second), and the HI remains less than 3 (2.41 +/- 0.1). In Phase III (vasospasm phase, Days 4-15), there is a fall in CBF (35.7 +/- 3.8 ml/100 g/minute), a further increase in V(MCA) (96.7 +/- 6.3 cm/second), and a pronounced rise in the HI (2.87 +/- 0.22). This is the first study in which CBF, metabolic, and TCD measurements are combined to define the characteristics and time courses of, and to suggest etiological factors for, the distinct cerebral hemodynamic phases that occur after severe craniocerebral trauma. This research is consistent with and builds on the findings of previous investigations and may provide a useful temporal framework for the organization of existing knowledge regarding posttraumatic cerebrovascular and metabolic pathophysiology.
Collapse
Affiliation(s)
- N A Martin
- Brain Injury Research Center, and Division of Neurosurgery, University of California at Los Angeles School of Medicine, 90024-7039, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Berger S, Staub F, Stoffel M, Eriskat J, Schürer L, Baethmann A. Therapeutical efficacy of a novel chloride transport blocker and an IP3-analogue in vasogenic brain edema. ACTA NEUROCHIRURGICA. SUPPLEMENTUM 1994; 60:534-7. [PMID: 7976641 DOI: 10.1007/978-3-7091-9334-1_147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The efficacy of torasemide, a novel chloride-channel blocker, and of PP56, an IP3 analogue, was currently examined in experimental brain edema. Following trephination in anesthesia rats were subjected to a focal cold injury of the left cerebral hemisphere. Animals of 4 experimental groups receiving either torasemide (i.v. at 30 min before and 6 h after lesion) or PP56 (continuous infusion beginning at 30 min before until 24 h after lesion) at two dose levels were compared with controls administered with i.v. saline. 24 h after trauma the brain was removed from the skull, and the hemispheres were separated in the median plane for gravimetric assessment of hemispheric swelling. Hct, blood gases and body temperature remained constant in all groups. Blood pressure was found to increase in a dose-dependent manner in animals with torasemide. No significant reduction of brain swelling was found in animals with low-dose torasemide (8.51 +/- 0.63%) or low- (7.91 +/- 0.60) and high-dose PP56 (6.85 +/- 1.05%) as compared to the untreated controls. Brain swelling, however, was significantly attenuated by high-dose torasemide to 7.04 +/- 0.36%, as compared to 8.89 +/- 0.29% of the untreated group (p < 0.005). It is currently studied whether torasemide reduces brain swelling when given after the insult.
Collapse
Affiliation(s)
- S Berger
- Department of Neurosurgery, Klinikum Grosshadern, Ludwig-Maximilians-University, München, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
14
|
Täuber MG, Ferriero D, Kennedy SL, Sheldon RA, Guerra-Romero L. Brain levels of neuropeptide Y in experimental pneumococcal meningitis. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1993; 18:15-26. [PMID: 8466588 DOI: 10.1007/bf03160019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Neuropeptide Y (NPY), which is found in high concentrations in several regions of the brain including nuclei of the brain stem and in nerve fibers surrounding cerebral vessels, has been proposed to play a role in regulating cerebral blood flow (CBF) and systemic vegetative functions. Since CBF is altered during meningitis, we examined whether NPY concentrations changed in various regions of the rabbit brain in response to experimental pneumococcal meningitis. Changes were most pronounced in the medulla, where NPY concentration increased threefold after 48 h of infection. Concomitantly, there was an increase in NPY immunoreactive fibers surrounding small vessels in the dorsolateral medulla, especially in the nucleus tractus solitarius. These results suggest that NPY may play a role in inducing some of the hemodynamic changes seen during pneumococcal meningitis.
Collapse
Affiliation(s)
- M G Täuber
- Microbial Pathogenesis Unit, San Francisco General Hospital, CA
| | | | | | | | | |
Collapse
|