1
|
Zhan T, Chen X, Tian X, Han Z, Liu M, Zou Y, Huang S, Chen A, Cheng X, Deng J, Tan J, Huang X. MiR-331-3p Links to Drug Resistance of Pancreatic Cancer Cells by Activating WNT/β-Catenin Signal via ST7L. Technol Cancer Res Treat 2020; 19:1533033820945801. [PMID: 32924881 PMCID: PMC7493267 DOI: 10.1177/1533033820945801] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: Pancreatic cancer is an aggressive type of cancer with poor prognosis, short survival rate, and high mortality. Drug resistance is a major cause of treatment failure in the disease. MiR-331-3p has been reported to play an important role in several cancers. We previously showed that miR-331-3p is upregulated in pancreatic cancer and promotes pancreatic cancer cell proliferation and epithelial-to-mesenchymal transition–mediated metastasis by targeting ST7L. However, it is uncertain whether miR-331-3p is involved in drug resistance. Methods: We investigated the relationship between miR-331-3p and pancreatic cancer drug resistance. As part of this, microRNA mimics or inhibitors were transfected into pancreatic cancer cells. Quantitative polymerase chain reaction was used to detect miR-331-3p expression, and flow cytometry was used to detect cell apoptosis. The Cell Counting Kit-8 assay was used to measure the IC50 values of gemcitabine in pancreatic cancer cells. The expression of multidrug resistance protein 1, multidrug resistance-related protein 1, breast cancer resistance protein, β-Catenin, c-Myc, Cyclin D1, Bcl-2, and Caspase-3 was evaluated by Western blotting. Results: We confirmed that miR-331-3p is upregulated in gemcitabine-treated pancreatic cancer cells and plasma from chemotherapy patients. We also confirmed that miR-331-3p inhibition decreased drug resistance by regulating cell apoptosis and multidrug resistance protein 1, multidrug resistance-related protein 1, and breast cancer resistance protein expression in pancreatic cancer cells, whereas miR-331-3p overexpression had the opposite effect. We further demonstrated that miR-331-3p effects in drug resistance were partially reversed by ST7L overexpression. In addition, overexpression of miR-331-3p activated Wnt/β-catenin signaling in pancreatic cancer cells, and ST7L overexpression restored activation of Wnt/β-catenin signaling. Conclusions: Taken together, our data demonstrate that miR-331-3p contributes to drug resistance by activating Wnt/β-catenin signaling via ST7L in pancreatic cancer cells. These data provide a theoretical basis for new targeted therapies in the future.
Collapse
Affiliation(s)
- Ting Zhan
- Department of Gastroenterology, Wuhan Third Hospital, 89674Tongren Hospital of Wuhan University, Wuhan, China
| | - Xiaoli Chen
- Department of Gastroenterology, Wuhan Third Hospital, 89674Tongren Hospital of Wuhan University, Wuhan, China
| | - Xia Tian
- Department of Gastroenterology, Wuhan Third Hospital, 89674Tongren Hospital of Wuhan University, Wuhan, China
| | - Zheng Han
- Department of Gastroenterology, Wuhan Third Hospital, 89674Tongren Hospital of Wuhan University, Wuhan, China
| | - Meng Liu
- Department of Gastroenterology, Wuhan Third Hospital, 89674Tongren Hospital of Wuhan University, Wuhan, China
| | - Yanli Zou
- Department of Gastroenterology, Wuhan Third Hospital, 89674Tongren Hospital of Wuhan University, Wuhan, China
| | - Shasha Huang
- Department of Gastroenterology, Wuhan Third Hospital, 89674Tongren Hospital of Wuhan University, Wuhan, China
| | - Aifang Chen
- Department of Gastroenterology, Wuhan Third Hospital, 89674Tongren Hospital of Wuhan University, Wuhan, China
| | - Xueting Cheng
- Department of Gastroenterology, 89674Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junsheng Deng
- Department of Gastroenterology, 89674Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jie Tan
- Department of Gastroenterology, Wuhan Third Hospital, 89674Tongren Hospital of Wuhan University, Wuhan, China
| | - Xiaodong Huang
- Department of Gastroenterology, Wuhan Third Hospital, 89674Tongren Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Shi X, Xiao L, Mao X, He J, Ding Y, Huang J, Peng C, Xu Z. miR-205-5p Mediated Downregulation of PTEN Contributes to Cisplatin Resistance in C13K Human Ovarian Cancer Cells. Front Genet 2018; 9:555. [PMID: 30510566 PMCID: PMC6253938 DOI: 10.3389/fgene.2018.00555] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/31/2018] [Indexed: 12/19/2022] Open
Abstract
Cisplatin resistance is a major cause of treatment failure in advanced ovarian cancer. The limited evidence shows the paradoxical regulation of miR-205 on chemotherapy resistance in cancer. Herein, we found that miR-205-5p was enormously increased in cisplatin-resistant C13K ovarian cancer cells compared with its cisplatin-sensitive OV2008 parental cells using miRNA microarrays, which was further verified by quantitative PCR. Furthermore, we confirmed that inhibition of miR-205-5p upregulated PTEN and subsequently attenuated its downstream target p-AKT, which inversed C13K cells from cisplatin resistance to sensitivity. Our data suggest that miR-205-5p contributes to cisplatin resistance in C13K ovarian cancer cells may via targeting PTEN/AKT pathway.
Collapse
Affiliation(s)
- Xiaoyan Shi
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Central Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lan Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, An Hui Medical University, Hefei, China
| | - Xiaolu Mao
- Department of Clinical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinrong He
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Central Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Ding
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Central Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Huang
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Central Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caixia Peng
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Central Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihui Xu
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Zhan T, Huang X, Tian X, Chen X, Ding Y, Luo H, Zhang Y. Downregulation of MicroRNA-455-3p Links to Proliferation and Drug Resistance of Pancreatic Cancer Cells via Targeting TAZ. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 10:215-226. [PMID: 29499934 PMCID: PMC5862130 DOI: 10.1016/j.omtn.2017.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 01/02/2023]
Abstract
Drug resistance is a major cause of treatment failure in pancreatic cancer. The limited evidence indicates the involvement of miR-455-3p in chemotherapy resistance of cancer. Here we observed by qPCR that miR-455-3p was significantly decreased in pancreatic cancer tissues and cell lines. We then confirmed that the inhibition of miR-455-3p increased cell proliferation and gemcitabine resistance of pancreatic cancer, whereas forced overexpression of miR-455-3p had the opposite effect. Furthermore, we demonstrated that TAZ, which is associated with drug resistance of pancreatic cancer, is a new direct downstream target of miR-455-3p. Our present study suggests that miR-455-3p contributes to cell proliferation and drug resistance in pancreatic cancer cells via targeting TAZ.
Collapse
Affiliation(s)
- Ting Zhan
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430060, China; Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China; Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaodong Huang
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430060, China
| | - Xia Tian
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaoli Chen
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430060, China
| | - Yu Ding
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yadong Zhang
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China.
| |
Collapse
|
4
|
Meng F, Qian L, Lv L, Ding B, Zhou G, Cheng X, Niu S, Liang Y. miR-193a-3p regulation of chemoradiation resistance in oesophageal cancer cells via the PSEN1 gene. Gene 2016; 579:139-45. [DOI: 10.1016/j.gene.2015.12.060] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 12/10/2015] [Accepted: 12/22/2015] [Indexed: 12/17/2022]
|
5
|
Gonzalez H, Lema C, Kirken RA, Maldonado RA, Varela-Ramirez A, Aguilera RJ. Arsenic-exposed Keratinocytes Exhibit Differential microRNAs Expression Profile; Potential Implication of miR-21, miR-200a and miR-141 in Melanoma Pathway. ACTA ACUST UNITED AC 2015; 2:138-147. [PMID: 27054085 DOI: 10.2174/2212697x02666150629174704] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Long-term exposure to arsenic has been linked to cancer in different organs and tissues, including skin. Here, non-malignant human keratinocytes (HaCaT) were exposed to arsenic and its effects on microRNAs (miRNAs; miR) expression were analyzed via miRCURY LNA array analyses. A total of 30 miRNAs were found differentially expressed in arsenic-treated cells, as compared to untreated controls. Among the up-regulated miRNAs, miR-21, miR-200a and miR-141, are well known to be involved in carcinogenesis. Additional findings confirmed that those three miRNAs were indeed up-regulated in arsenic-stimulated keratinocytes as demonstrated by quantitative PCR assay. Furthermore, bioinformatics analysis of both potential cancer-related pathways and targeted genes affected by miR-21, miR-200a and/or miR-141 was performed. Results revealed that miR-21, miR-200a and miR-141 are implicated in skin carcinogenesis related with melanoma development. Conclusively, our results indicate that arsenic-treated keratinocytes exhibited alteration in the miRNAs expression profile and that miR-21, miR-200a and miR-141 could be promising early biomarkers of the epithelial phenotype of cancer cells and they could be potential novel targets for melanoma therapeutic interventions.
Collapse
Affiliation(s)
- Horacio Gonzalez
- Department of Biological Sciences, Border Biomedical Research Center, the University of Texas at El Paso, 500 West University Ave. El Paso, Texas, 79968, USA
| | - Carolina Lema
- Cytometry, Screening and Imaging Core Facility, Border Biomedical Research Center, Department of Biological Sciences, the University of Texas at El Paso, El Paso, Texas, 79968, USA; College of Optometry, University of Houston, 4901 Calhoun Road, Houston, Texas, 77204, USA
| | - Robert A Kirken
- Department of Biological Sciences, Border Biomedical Research Center, the University of Texas at El Paso, 500 West University Ave. El Paso, Texas, 79968, USA
| | - Rosa A Maldonado
- Department of Biological Sciences, Border Biomedical Research Center, the University of Texas at El Paso, 500 West University Ave. El Paso, Texas, 79968, USA
| | - Armando Varela-Ramirez
- Department of Biological Sciences, Border Biomedical Research Center, the University of Texas at El Paso, 500 West University Ave. El Paso, Texas, 79968, USA; Cytometry, Screening and Imaging Core Facility, Border Biomedical Research Center, Department of Biological Sciences, the University of Texas at El Paso, El Paso, Texas, 79968, USA
| | - Renato J Aguilera
- Department of Biological Sciences, Border Biomedical Research Center, the University of Texas at El Paso, 500 West University Ave. El Paso, Texas, 79968, USA; Cytometry, Screening and Imaging Core Facility, Border Biomedical Research Center, Department of Biological Sciences, the University of Texas at El Paso, El Paso, Texas, 79968, USA
| |
Collapse
|
6
|
Noncoding RNA Expression Aberration Is Associated with Cancer Progression and Is a Potential Biomarker in Esophageal Squamous Cell Carcinoma. Int J Mol Sci 2015; 16:27824-34. [PMID: 26610479 PMCID: PMC4661918 DOI: 10.3390/ijms161126060] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/06/2015] [Accepted: 11/16/2015] [Indexed: 01/01/2023] Open
Abstract
Esophageal cancer is one of the most common cancers worldwide. Esophageal squamous cell carcinoma (ESCC) is the major histological type of esophageal cancer in Eastern Asian countries. Several types of noncoding RNAs (ncRNAs) function as key epigenetic regulators of gene expression and are implicated in various physiological processes. Unambiguous evidence indicates that dysregulation of ncRNAs is deeply implicated in carcinogenesis, cancer progression and metastases of various cancers, including ESCC. The current review summarizes recent findings on the ncRNA-mediated mechanisms underlying the characteristic behaviors of ESCC that will help support the development of biomarkers and the design of novel therapeutic strategies.
Collapse
|
7
|
Abstract
Cancers of the oesophagus, gastro-oesophageal junction and stomach (upper gastrointestinal tract cancers; UGICs) pose a major health risk around the world. Collectively, the 5-year survival rate has remained <15%, and therapeutic improvements have been very slow and small. Novel molecules for early diagnosis, prognosis and therapy are, therefore, urgently needed. The role that microRNA (miRNA) molecules have in UGICs are worth pursuing to this end. miRNAs are small noncoding RNA molecules that regulate ∼60% of coding genes in humans and, therefore, are pivotal in mediating and regulating many physiologic processes. miRNAs are deregulated in many disease states, particularly in cancer, making them important targets. Here, we review the growing body of evidence regarding the alterations of miRNAs in UGICs. By suppressing translation and/or promoting degradation of mRNAs, miRNAs can contribute to carcinogenesis and progression of UGICs. In-depth studies of miRNAs in UGICs might yield novel insights and potential novel therapeutic strategies.
Collapse
|
8
|
Du L, Pertsemlidis A. microRNA regulation of cell viability and drug sensitivity in lung cancer. Expert Opin Biol Ther 2012; 12:1221-39. [PMID: 22731874 DOI: 10.1517/14712598.2012.697149] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION microRNAs (miRNAs) are 19 - 23 nucleotide long RNAs found in multiple organisms that regulate gene expression and have been shown to play important roles in tumorigenesis. In the context of lung cancer, numerous studies have shown that tumor suppressor genes and oncogenes that play crucial roles in lung tumor development and progression are targets of miRNA regulation. Manipulation of miRNA levels that modulate lung cancer cell survival and drug sensitivity can therefore provide novel therapeutic targets and agents. AREAS COVERED Here, the authors review the published in vitro, in vivo and preclinical studies on the functional role of miRNAs in modulating lung cancer cell viability and drug response, and discuss the limitations and promise of translating current findings into miRNA-based therapeutic and diagnostic strategies. EXPERT OPINION Although many miRNAs have been identified as potent regulators of cell viability and drug sensitivity in lung cancer, most of them have not been characterized for potential clinical application. Further study is warranted to evaluate translation of the current findings to the clinic to improve the diagnosis and treatment of lung cancer. In addition, most studies have focused on non-small cell lung cancer (NSCLC). It is therefore important to raise interest in investigating miRNAs in small cell lung cancer (SCLC) as well as in comparative studies of miRNA expression and function in different histological subtypes of lung cancer.
Collapse
Affiliation(s)
- Liqin Du
- Greehey Children's Cancer Research Institute, Department of Cellular and Structural Biology, UT Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | |
Collapse
|