1
|
Jagota P, Ugawa Y, Aldaajani Z, Ibrahim NM, Ishiura H, Nomura Y, Tsuji S, Diesta C, Hattori N, Onodera O, Bohlega S, Al-Din A, Lim SY, Lee JY, Jeon B, Pal PK, Shang H, Fujioka S, Kukkle PL, Phokaewvarangkul O, Lin CH, Shambetova C, Bhidayasiri R. Nine Hereditary Movement Disorders First Described in Asia: Their History and Evolution. J Mov Disord 2023; 16:231-247. [PMID: 37309109 PMCID: PMC10548072 DOI: 10.14802/jmd.23065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/14/2023] Open
Abstract
Clinical case studies and reporting are important to the discovery of new disorders and the advancement of medical sciences. Both clinicians and basic scientists play equally important roles leading to treatment discoveries for both cures and symptoms. In the field of movement disorders, exceptional observation of patients from clinicians is imperative, not just for phenomenology but also for the variable occurrences of these disorders, along with other signs and symptoms, throughout the day and the disease course. The Movement Disorders in Asia Task Force (TF) was formed to help enhance and promote collaboration and research on movement disorders within the region. As a start, the TF has reviewed the original studies of the movement disorders that were preliminarily described in the region. These include nine disorders that were first described in Asia: Segawa disease, PARK-Parkin, X-linked dystonia-parkinsonism, dentatorubral-pallidoluysian atrophy, Woodhouse-Sakati syndrome, benign adult familial myoclonic epilepsy, Kufor-Rakeb disease, tremulous dystonia associated with mutation of the calmodulin-binding transcription activator 2 gene, and paroxysmal kinesigenic dyskinesia. We hope that the information provided will honor the original researchers and help us learn and understand how earlier neurologists and basic scientists together discovered new disorders and made advances in the field, which impact us all to this day.
Collapse
Affiliation(s)
- Priya Jagota
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, Faculty of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Zakiyah Aldaajani
- Neurology Unit, King Fahad Military Medical Complex, Dhahran, Saudi Arabia
| | - Norlinah Mohamed Ibrahim
- Neurology Unit, Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Hiroyuki Ishiura
- Department of Neurology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshiko Nomura
- Yoshiko Nomura Neurological Clinic for Children, Tokyo, Japan
| | - Shoji Tsuji
- Institute of Medical Genomics, International University of Health and Welfare, Narita, Chiba, Japan
| | - Cid Diesta
- Section of Neurology, Department of Neuroscience, Makati Medical Center, NCR, Makati City, Philippines
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Saeed Bohlega
- Department of Neurosciences, King Faisal Specialist Hospital & Research Center, Riyad, Saudi Arabia
| | - Amir Al-Din
- Mid Yorkshire Hospitals National Health Services Trust, Wakefield, UK
| | - Shen-Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson’s & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jee-Young Lee
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center & Seoul National University Medical College, Seoul, Korea
| | - Beomseok Jeon
- Department of Neurology, Seoul National University, Seoul, Korea
- Movement Disorder Center, Seoul National University Hospital, Seoul, Korea
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shinsuke Fujioka
- Department of Neurology, Fukuoka University, Faculty of Medicine, Fukuoka, Japan
| | - Prashanth Lingappa Kukkle
- Center for Parkinson’s Disease and Movement Disorders, Manipal Hospital, Bangalore, India
- Parkinson's Disease and Movement Disorders Clinic, Bangalore, India
| | - Onanong Phokaewvarangkul
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | | | - Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
2
|
Cuccurullo C, Striano P, Coppola A. Familial Adult Myoclonus Epilepsy: A Non-Coding Repeat Expansion Disorder of Cerebellar-Thalamic-Cortical Loop. Cells 2023; 12:1617. [PMID: 37371086 DOI: 10.3390/cells12121617] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Familial adult myoclonus Epilepsy (FAME) is a non-coding repeat expansion disorder that has been reported under different acronyms and initially linked to four main loci: FAME1 (8q23.3-q24.1), FAME 2 (2p11.1-q12.1), FAME3 (5p15.31-p15.1), and FAME4 (3q26.32-3q28). To date, it is known that the genetic mechanism underlying FAME consists of the expansion of similar non-coding pentanucleotide repeats, TTTCA and TTTTA, in different genes. FAME is characterized by cortical tremor and myoclonus usually manifesting within the second decade of life, and infrequent seizures by the third or fourth decade. Cortical tremor is the core feature of FAME and is considered part of a spectrum of cortical myoclonus. Neurophysiological investigations as jerk-locked back averaging (JLBA) and corticomuscular coherence analysis, giant somatosensory evoked potentials (SEPs), and the presence of long-latency reflex I (or C reflex) at rest support cortical tremor as the result of the sensorimotor cortex hyperexcitability. Furthermore, the application of transcranial magnetic stimulation (TMS) protocols in FAME patients has recently shown that inhibitory circuits are also altered within the primary somatosensory cortex and the concomitant involvement of subcortical networks. Moreover, neuroimaging studies and postmortem autoptic studies indicate cerebellar alterations and abnormal functional connectivity between the cerebellum and cerebrum in FAME. Accordingly, the pathophysiological mechanism underlying FAME has been hypothesized to reside in decreased sensorimotor cortical inhibition through dysfunction of the cerebellar-thalamic-cortical loop, secondary to primary cerebellar pathology. In this context, the non-coding pentameric expansions have been proposed to cause cerebellar damage through an RNA-mediated toxicity mechanism. The elucidation of the underlying pathological mechanisms of FAME paves the way to novel therapeutic possibilities, such as RNA-targeting treatments, possibly applicable to other neurodegenerative non-coding disorders.
Collapse
Affiliation(s)
- Claudia Cuccurullo
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, 80131 Naples, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, 16126 Genova, Italy
| | - Antonietta Coppola
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, 80131 Naples, Italy
| |
Collapse
|
3
|
Corbett MA, Depienne C, Veneziano L, Klein KM, Brancati F, Guerrini R, Zara F, Tsuji S, Gecz J. Genetics of familial adult myoclonus epilepsy: From linkage studies to noncoding repeat expansions. Epilepsia 2023; 64 Suppl 1:S14-S21. [PMID: 37021642 PMCID: PMC10952679 DOI: 10.1111/epi.17610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/07/2023]
Abstract
Familial adult myoclonus epilepsy (FAME) is a genetic epilepsy syndrome that for many years has resisted understanding of its underlying molecular cause. This review covers the history of FAME genetic studies worldwide, starting with linkage and culminating in the discovery of noncoding TTTTA and inserted TTTCA pentanucleotide repeat expansions within six different genes to date (SAMD12, STARD7, MARCHF6, YEATS2, TNRC6A, and RAPGEF2). FAME occurs worldwide; however, repeat expansions in particular genes have regional geographical distributions. FAME repeat expansions are dynamic in nature, changing in length and structure within germline and somatic tissues. This variation poses challenges for molecular diagnosis such that molecular methods used to identify FAME repeat expansions typically require a trade-off between cost and efficiency. A rigorous evaluation of the sensitivity and specificity of each molecular approach remains to be performed. The origin of FAME repeat expansions and the genetic and environmental factors that modulate repeat variability are not well defined. Longer repeats and particular arrangements of the TTTTA and TTTCA motifs within an expansion are correlated with earlier onset and increased severity of disease. Other factors such as maternal or paternal inheritance, parental age, and repeat length alone have been suggested to influence repeat variation; however, further research is required to confirm this. The history of FAME genetics to the present is a chronicle of perseverance and predominantly collaborative efforts that yielded a successful outcome. The discovery of FAME repeats will spark progress toward a deeper understanding of the molecular pathogenesis of FAME, discovery of new loci, and development of cell and animal models.
Collapse
Affiliation(s)
- Mark A. Corbett
- Robinson Research Institute and Adelaide Medical SchoolUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Christel Depienne
- Institute of Human GeneticsUniversity Hospital Essen, University Duisburg–EssenEssenGermany
| | - Liana Veneziano
- Institute of Translational PharmacologyNational Research CouncilRomeItaly
| | - Karl Martin Klein
- Departments of Clinical Neurosciences, Medical Genetics, and Community Health Sciences, Hotchkiss Brain Institute and Alberta Children's HospitalResearch Institute, Cumming School of Medicine, University of CalgaryCalgaryAlbertaCanada
- Epilepsy Center Frankfurt Rhine–Main, Department of Neurology, Center of Neurology and NeurosurgeryCenter for Personalized Translational Epilepsy Research, University Hospital, Goethe University FrankfurtFrankfurt am MainGermany
| | - Francesco Brancati
- Institute of Translational PharmacologyNational Research CouncilRomeItaly
- Medical Genetics, Department of Life, Health, and Environmental SciencesUniversity of L'AquilaL'AquilaItaly
- Laboratory of Human Functional GenomicsIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San RaffaeleRomeItaly
| | - Renzo Guerrini
- Neuroscience and Neurogenetics DepartmentMeyer Children's HospitalFlorenceItaly
| | - Federico Zara
- Laboratory of NeurogeneticsIRCCS Institute "G. Gaslini"GenoaItaly
| | - Shoji Tsuji
- Department of Neurology, Graduate School of MedicineUniversity of TokyoTokyoJapan
- Institute of Medical GenomicsInternational University of Health and WelfareChibaJapan
| | - Jozef Gecz
- Robinson Research Institute and Adelaide Medical SchoolUniversity of AdelaideAdelaideSouth AustraliaAustralia
- South Australian Health and Medical Research InstituteAdelaideSouth AustraliaAustralia
| |
Collapse
|
4
|
Marsili L, Duque KR, Bode RL, Kauffman MA, Espay AJ. Uncovering Essential Tremor Genetics: The Promise of Long-Read Sequencing. Front Neurol 2022; 13:821189. [PMID: 35401394 PMCID: PMC8983820 DOI: 10.3389/fneur.2022.821189] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/25/2022] [Indexed: 12/23/2022] Open
Abstract
Long-read sequencing (LRS) technologies have been recently introduced to overcome intrinsic limitations of widely-used next-generation sequencing (NGS) technologies, namely the sequencing limited to short-read fragments (150–300 base pairs). Since its introduction, LRS has permitted many successes in unraveling hidden mutational mechanisms. One area in clinical neurology in need of rethinking as it applies to genetic mechanisms is essential tremor (ET). This disorder, among the most common in neurology, is a syndrome often exhibiting an autosomal dominant pattern of inheritance whose large phenotypic spectrum suggest a multitude of genetic etiologies. Exome sequencing has revealed the genetic etiology only in rare ET families (FUS, SORT1, SCN4A, NOS3, KCNS2, HAPLN4/BRAL2, and USP46). We hypothesize that a reason for this shortcoming may be non-classical genetic mechanism(s) underpinning ET, among them trinucleotide, tetranucleotide, or pentanucleotide repeat disorders. In support of this hypothesis, trinucleotide (e.g., GGC repeats in NOTCH2NLC) and pentanucleotide repeat disorders (e.g., ATTTC repeats in STARD7) have been revealed as pathogenic in patients with a past history of what has come to be referred to as “ET plus,” bilateral hand tremor associated with epilepsy and/or leukoencephalopathy. A systematic review of LRS in neurodegenerative disorders showed that 10 of the 22 (45%) genetic etiologies ascertained by LRS include tremor in their phenotypic spectrum, suggesting that future clinical applications of LRS for tremor disorders may uncover genetic subtypes of familial ET that have eluded NGS, particularly those with associated leukoencephalopathy or family history of epilepsy. LRS provides a pathway for potentially uncovering novel genes and genetic mechanisms, helping narrow the large proportion of “idiopathic” ET.
Collapse
Affiliation(s)
- Luca Marsili
- James J. and Joan A. Gardner Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Kevin R. Duque
- James J. and Joan A. Gardner Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Rachel L. Bode
- James J. and Joan A. Gardner Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Marcelo A. Kauffman
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología José María Ramos Mejía, Buenos Aires, Argentina
| | - Alberto J. Espay
- James J. and Joan A. Gardner Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Alberto J. Espay
| |
Collapse
|
5
|
DNA analysis of benign adult familial myoclonic epilepsy reveals associations between the pathogenic TTTCA repeat insertion in SAMD12 and the nonpathogenic TTTTA repeat expansion in TNRC6A. J Hum Genet 2020; 66:419-429. [PMID: 33040085 DOI: 10.1038/s10038-020-00855-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 11/09/2022]
Abstract
Benign adult familial myoclonic epilepsy (BAFME) is an autosomal dominant disease characterized by adult-onset tremulous hand movement, myoclonus, and infrequent epileptic seizures. Recently, intronic expansion of unstable TTTCA/TTTTA pentanucleotide repeats in SAMD12, TNRC6A, or RAPGEF2 was identified as pathological mutations in Japanese BAFME pedigrees. To confirm these mutations, we performed a genetic analysis on 12 Japanese BAFME pedigrees. A total of 143 participants, including 43 familial patients, 5 suspected patients, 3 sporadic nonfamilial patients, 22 unaffected familial members, and 70 unrelated controls, were screened for expanded abnormal pentanucleotide repeats in SAMD12, TNRC6A, RAPGEF2, YEAT2, MARCH6, and STARD7. DNA samples were analyzed using Southern blotting, long-range polymerase chain reaction (PCR), repeat-primed PCR, and long-range PCR followed by Southern blotting. Of the 51 individuals with clinically diagnosed or suspected BAFME, 49 carried a SAMD12 allele with an expanded TTTCA/TTTTA pentanucleotide repeat. Genetic and clinical anticipation was observed. As in previous reports, the one patient with homozygous mutant alleles showed more severe symptoms than the heterozygous carriers. In addition, screening for expanded pentanucleotide repeats in TNRC6A revealed that the frequency of expanded TTTTA repeat alleles in the BAFME group was significantly higher than in the control group. All patients who were clinically diagnosed with BAFME, including those in the original family reported by Yasuda, carried abnormally expanded TTTCA/TTTTA repeat alleles of SAMD12. Patients with BAFME also frequently carried a TTTTA repeat expansion in TNRC6A, suggesting that there may be unknown factors in the ancestry of patients with BAFME that make pentanucleotide repeats unstable.
Collapse
|
6
|
Advances in repeat expansion diseases and a new concept of repeat motif-phenotype correlation. Curr Opin Genet Dev 2020; 65:176-185. [PMID: 32777681 DOI: 10.1016/j.gde.2020.05.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/22/2020] [Indexed: 12/19/2022]
Abstract
Recently repeat expansions have been found in more than 10 diseases in the past two years. Because the same repeat motifs are found in similar disease (as exemplified by benign adult familial myoclonic epilepsy) or in diseases with overlapping phenotype (as exemplified by fragile X tremor/ataxia syndrome, neuronal intranuclear inclusion disease, oculopharyngeal myopathy with leukoencephalopathy, and oculopharyngodistal myopathy), we propose a new concept of 'repeat motif-phenotype correlation', which argue for toxic gain-of-function mechanism caused by expanded repeats, rather than altered functions of genes harboring expanded repeats. The concept is expected to help identify repeat expansions taking the similar or overlapping clinical presentations as the clues. Although repeat expansions have been identified predominantly in autosomal dominant diseases, recent progresses have demonstrated that they are also observed in autosomal recessive diseases. Furthermore, repeat expansions are not infrequently observed in patients without family histories, which urges us to pay attention to sporadic diseases. We should expand our views toward repeat expansion diseases to accelerate discovery of diseases caused by repeat expansions, better understanding the disease mechanisms, and development of therapeutic measures.
Collapse
|
7
|
Yeetong P, Pongpanich M, Srichomthong C, Assawapitaksakul A, Shotelersuk V, Tantirukdham N, Chunharas C, Suphapeetiporn K, Shotelersuk V. TTTCA repeat insertions in an intron of YEATS2 in benign adult familial myoclonic epilepsy type 4. Brain 2020; 142:3360-3366. [PMID: 31539032 DOI: 10.1093/brain/awz267] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/02/2019] [Accepted: 07/04/2019] [Indexed: 11/13/2022] Open
Abstract
Epilepsy is a common neurological disorder and identification of its causes is important for a better understanding of its pathogenesis. We previously studied a Thai family with a type of epilepsy, benign adult familial myoclonic epilepsy type 4 (BAFME4), and localized its gene to chromosome 3q26.32-q28. Here, we used single-molecule real-time sequencing and found expansions of TTTTA and insertions of TTTCA repeats in intron 1 of YEATS2 in one affected member of the family. Of all the available members in the family-comprising 13 affected and eight unaffected-repeat-primed PCR and long-range PCR revealed the co-segregation of the TTTCA repeat insertions with the TTTTA repeat expansions and the disease status. For 1116 Thai control subjects, none were found to harbour the TTTCA repeats while four had the TTTTA repeat expansions. Therefore, our findings suggest that BAFME4 is caused by the insertions of the intronic TTTCA repeats in YEATS2. Interestingly, all four types of BAFMEs for which underlying genes have been found (BAFMEs 1, 4, 6 and 7) are caused by the same molecular pathology, suggesting that the insertions of non-coding TTTCA repeats are involved in their pathogenesis.
Collapse
Affiliation(s)
- Patra Yeetong
- Division of Human Genetics, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Monnat Pongpanich
- Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok,, Thailand
| | - Chalurmpon Srichomthong
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | - Adjima Assawapitaksakul
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | - Varote Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | - Nithiphut Tantirukdham
- Division of Human Genetics, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Chaipat Chunharas
- Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kanya Suphapeetiporn
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
8
|
Cen Z, Chen Y, Yang D, Zhu Q, Chen S, Chen X, Wang B, Xie F, Ouyang Z, Jiang Z, Fu A, Hu B, Yin H, Qiu X, Yu F, Du X, Hao W, Liu Y, Wang H, Wang L, Yu X, Xiao Y, Liu C, Xiao J, Zhou Y, Yang W, Zhang B, Luo W. Intronic (TTTGA) n insertion in SAMD12 also causes familial cortical myoclonic tremor with epilepsy. Mov Disord 2019; 34:1571-1576. [PMID: 31483537 DOI: 10.1002/mds.27832] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/02/2019] [Accepted: 07/29/2019] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Intronic (TTTCA)n insertions in the SAMD12, TNRC6A, and RAPGEF2 genes have been identified as causes of familial cortical myoclonic tremor with epilepsy. OBJECTIVE To identify the cause of familial cortical myoclonic tremor with epilepsy pedigrees without (TTTCA)n insertions in SAMD12, TNRC6A, and RAPGEF2. METHODS Repeat-primed polymerase chain reaction, long-range polymerase chain reaction, and Sanger sequencing were performed to identify the existence of a novel (TTTGA)n insertion. Targeted long-read sequencing was performed to confirm the accurate structure of the (TTTGA)n insertion. RESULTS We identified a novel expanded intronic (TTTGA)n insertion at the same site as the previously reported (TTTCA)n insertion in SAMD12. This insertion cosegregated with familial cortical myoclonic tremor with epilepsy in 1 Chinese pedigree with no (TTTCA)n insertion. In the targeted long-read sequencing of 2 patients and 1 asymptomatic carrier in this pedigree, with 1 previously reported (TTTCA)n -insertion-carrying patient as a positive control, a respective total of 302, 159, 207, and 50 on-target subreads (predicated accuracy: ≥90%) spanning the target repeat expansion region were generated. These sequencing data revealed the accurate repeat expansion structures as (TTTTA)114-123 (TTTGA)108-116 in the pedigree and (TTTTA)38 (TTTCA)479 in (TTTCA)n -insertion-carrying patient. CONCLUSION The targeted long-read sequencing helped us to elucidate the accurate structures of the (TTTGA)n and (TTTCA)n insertions. Our finding offers a novel possible cause for familial cortical myoclonic tremor with epilepsy and might shed light on the identification of genetic causes of this disease in pedigrees with no detected (TTTCA)n insertion in the reported causative genes. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Zhidong Cen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - You Chen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dehao Yang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Si Chen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinhui Chen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bo Wang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Xie
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhiyuan Ouyang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhengwen Jiang
- Genesky Diagnostics Inc, Biobay, SIP, Suzhou, Jiangsu, China
| | - Aisi Fu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Ben Hu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Houmin Yin
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xia Qiu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feng Yu
- Genesky Diagnostics Inc, Biobay, SIP, Suzhou, Jiangsu, China
| | - Xiaoping Du
- Epilepsy Center, Department of Neurosurgery, Humanity Hospital, Xiamen, Fujian, China
- Department of Neurology, West District, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weicheng Hao
- Department of Neurology, West District, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yuxi Liu
- Institute of Epilepsy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Haotian Wang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lebo Wang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiafei Yu
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chunyu Liu
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jianfeng Xiao
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Yongxing Zhou
- Department of Neurology, MedStar St Mary's Hospital/Georgetown University Hospital, MedStar Medical Group, Leonardtown, Maryland, USA
| | - Wei Yang
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wei Luo
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Detecting a long insertion variant in SAMD12 by SMRT sequencing: implications of long-read whole-genome sequencing for repeat expansion diseases. J Hum Genet 2018; 64:191-197. [DOI: 10.1038/s10038-018-0551-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/12/2018] [Accepted: 11/27/2018] [Indexed: 01/21/2023]
|
10
|
Lei XX, Liu Q, Lu Q, Huang Y, Zhou XQ, Sun HY, Wu LW, Cui LY, Zhang X. TTTCA repeat expansion causes familial cortical myoclonic tremor with epilepsy. Eur J Neurol 2018; 26:513-518. [PMID: 30351492 DOI: 10.1111/ene.13848] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/12/2018] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND PURPOSE The aim was to investigate whether abnormal TTTTA and TTTCA repeat expansions in introns of SAMD12, TNRC6A and RAPGEF2 are involved in the pathogenesis of familial cortical myoclonic tremor with epilepsy (FCMTE). METHODS Five families diagnosed with FCMTE were included in the current genetic analysis. Whole-exome sequencing was performed in selected patients of each family. TTTTA and TTTCA expansions were examined by repeat-primed polymerase chain reaction. The clinical features of FCMTE were elicited as defined by the common genetic mechanism of 14 patients. RESULTS Abnormal TTTCA expansion was identified and co-segregated in all five FCMTE families, four inserted in SAMD12 and one in RAPGEF2. The insertion of expanded TTTCA was not found in 116 control alleles. TTTTA expansion in SAMD12 was detected in 90.9% (10/11) of patients or mutation carriers; TTTTA expansion in RAPGEF2 was not found. The onset age of myoclonic tremor was 27.4 ± 5.9 (19-37) and epilepsy usually presented around age 34. Focal and generalized seizures were witnessed with various origins recorded by electroencephalogram. Cognitive deficits were not common within the first 3 years after epilepsy onset. Emotional instability was reported by most patients. No patients showed any cerebellar deficits. Valproate added with clonazepam is effective in controlling seizures but cannot guarantee a complete remission of tremor. Repeat length showed intergenerational instability and was inversely correlated with age at onset of myoclonic tremor and epilepsy. CONCLUSIONS TTTCA expansion insertion is associated with FCMTE in Chinese families. The homogenous genetic mechanism allowed for a higher precision of FCMTE description.
Collapse
Affiliation(s)
- X X Lei
- Department of Neurology and Laboratory of Clinical Genetics, Peking Union Medical College Hospital (PUMCH), CAMS and PUMC, Beijing, China.,McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Q Liu
- Department of Neurology and Laboratory of Clinical Genetics, Peking Union Medical College Hospital (PUMCH), CAMS and PUMC, Beijing, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Q Lu
- Department of Neurology and Laboratory of Clinical Genetics, Peking Union Medical College Hospital (PUMCH), CAMS and PUMC, Beijing, China
| | - Y Huang
- Department of Neurology and Laboratory of Clinical Genetics, Peking Union Medical College Hospital (PUMCH), CAMS and PUMC, Beijing, China
| | - X Q Zhou
- Department of Neurology and Laboratory of Clinical Genetics, Peking Union Medical College Hospital (PUMCH), CAMS and PUMC, Beijing, China
| | - H Y Sun
- Department of Neurology and Laboratory of Clinical Genetics, Peking Union Medical College Hospital (PUMCH), CAMS and PUMC, Beijing, China
| | - L W Wu
- Department of Neurology and Laboratory of Clinical Genetics, Peking Union Medical College Hospital (PUMCH), CAMS and PUMC, Beijing, China
| | - L Y Cui
- Department of Neurology and Laboratory of Clinical Genetics, Peking Union Medical College Hospital (PUMCH), CAMS and PUMC, Beijing, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - X Zhang
- Department of Neurology and Laboratory of Clinical Genetics, Peking Union Medical College Hospital (PUMCH), CAMS and PUMC, Beijing, China.,McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Kobayashi K, Hitomi T, Matsumoto R, Watanabe M, Takahashi R, Ikeda A. Nationwide survey in Japan endorsed diagnostic criteria of benign adult familial myoclonus epilepsy. Seizure 2018; 61:14-22. [DOI: 10.1016/j.seizure.2018.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/31/2018] [Accepted: 07/19/2018] [Indexed: 10/28/2022] Open
|
12
|
Lin H, Hu N, Zhang Y, Wang Y, Macdonald RL. Whole exome sequencing reveals novel NOV and DCAF13 variants in a Chinese pedigree with familial cortical myoclonic tremor with epilepsy. Neurosci Lett 2018; 684:115-120. [PMID: 30003937 DOI: 10.1016/j.neulet.2018.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 11/18/2022]
Abstract
OBJECTIVE We report a large new family of familial cortical myoclonic tremor with epilepsy(FCMTE) from China and identify the possible causative gene(s) for the family. METHOD Whole exome sequencing of blood genomic DNA from 4 patients and 2 unaffected family members were performed. Detected variants and their cosegregation were confirmed by Sanger sequencing. RESULTS We identified c.20 G > C variant in the DCAF13 gene and c.983 T > C variant in the NOV gene cosegregating in the family. There was no additional cross-over in the family to narrow to one gene. The two DCAF13 and NOV gene variants are located on 8q23.3 and 8q24.12, which is consistent with the location 8q23.3-q24.13 reported previously for a group of Japanese families. The DCAF13 variant is located in alternative transcription start site(TSS) and the function of alternative TSS is unknown. The missense NOV variant is near the C terminus in a site that is highly conserved across species. It was predicted to be deleterious on protein function. CONCLUSIONS In this study, we identify two novel variants in the DCAF13 and NOV genes associated with FCMTE in Asian populations. The interval between two variants is 15.6Mb, which is very close to each other. Future studies of additional families with this phenotype are warranted to confirm whether it is rare bigenic or monogenic inheritance.
Collapse
Affiliation(s)
- Hua Lin
- Department of Neurology, XuanWu Hospital, Capital Medical University, Beijing, China.
| | - Ningning Hu
- Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN USA
| | - Yanfeng Zhang
- Division of Epidemiology, Departments of Medicine, Vanderbilt University Medical Center Nashville, TN USA; HudsonAlpha Institute for Biotechnology, Huntsville, AL USA
| | - Yuping Wang
- Department of Neurology, XuanWu Hospital, Capital Medical University, Beijing, China.
| | - Robert L Macdonald
- Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN USA; Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN USA; Pharmacology, Vanderbilt University Medical Center, Nashville, TN USA.
| |
Collapse
|
13
|
Zeng S, Zhang MY, Wang XJ, Hu ZM, Li JC, Li N, Wang JL, Liang F, Yang Q, Liu Q, Fang L, Hao JW, Shi FD, Ding XB, Teng JF, Yin XM, Jiang H, Liao WP, Liu JY, Wang K, Xia K, Tang BS. Long-read sequencing identified intronic repeat expansions inSAMD12from Chinese pedigrees affected with familial cortical myoclonic tremor with epilepsy. J Med Genet 2018; 56:265-270. [DOI: 10.1136/jmedgenet-2018-105484] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/25/2018] [Accepted: 08/15/2018] [Indexed: 01/23/2023]
Abstract
BackgroundThe locus for familial cortical myoclonic tremor with epilepsy (FCMTE) has long been mapped to 8q24 in linkage studies, but the causative mutations remain unclear. Recently, expansions of intronic TTTCA and TTTTA repeat motifs withinSAMD12were found to be involved in the pathogenesis of FCMTE in Japanese pedigrees. We aim to identify the causative mutations of FCMTE in Chinese pedigrees.MethodsWe performed genetic linkage analysis by microsatellite markers in a five-generation Chinese pedigree with 55 members. We also used array-comparative genomic hybridisation (CGH) and next-generation sequencing (NGS) technologies (whole-exome sequencing, capture region deep sequencing and whole-genome sequencing) to identify the causative mutations in the disease locus. Recently, we used low-coverage (~10×) long-read genome sequencing (LRS) on the PacBio Sequel and Oxford Nanopore platforms to identify the causative mutations, and used repeat-primed PCR for validation of the repeat expansions.ResultsLinkage analysis mapped the disease locus to 8q23.3–24.23. Array-CGH and NGS failed to identify causative mutations in this locus. LRS identified the intronic TTTCA and TTTTA repeat expansions inSAMD12as the causative mutations, thus corroborating the recently published results in Japanese pedigrees.ConclusionsWe identified the pentanucleotide repeat expansion inSAMD12as the causative mutation in Chinese FCMTE pedigrees. Our study also suggested that LRS is an effective tool for molecular diagnosis of genetic disorders, especially for neurological diseases that cannot be positively diagnosed by conventional clinical microarray and NGS technologies.
Collapse
|
14
|
Cen Z, Jiang Z, Chen Y, Zheng X, Xie F, Yang X, Lu X, Ouyang Z, Wu H, Chen S, Yin H, Qiu X, Wang S, Ding M, Tang Y, Yu F, Li C, Wang T, Ishiura H, Tsuji S, Jiao C, Liu C, Xiao J, Luo W. Intronic pentanucleotide TTTCA repeat insertion in the SAMD12 gene causes familial cortical myoclonic tremor with epilepsy type 1. Brain 2018; 141:2280-2288. [PMID: 29939203 DOI: 10.1093/brain/awy160] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/18/2018] [Indexed: 12/16/2022] Open
Abstract
Familial cortical myoclonic tremor with epilepsy is an autosomal dominant neurodegenerative disease, characterized by cortical tremor and epileptic seizures. Although four subtypes (types 1-4) mapped on different chromosomes (8q24, 2p11.1-q12.2, 5p15.31-p15.1 and 3q26.32-3q28) have been reported, the causative gene has not yet been identified. Here, we report the genetic study in a cohort of 20 Chinese pedigrees with familial cortical myoclonic tremor with epilepsy. Linkage and haplotype analysis in 11 pedigrees revealed maximum two-point logarithm of the odds (LOD) scores from 1.64 to 3.77 (LOD scores in five pedigrees were >3.0) in chromosomal region 8q24 and narrowed the candidate region to an interval of 4.9 Mb. Using whole-genome sequencing, long-range polymerase chain reaction and repeat-primed polymerase chain reaction, we identified an intronic pentanucleotide (TTTCA)n insertion in the SAMD12 gene as the cause, which co-segregated with the disease among the 11 pedigrees mapped on 8q24 and additional seven unmapped pedigrees. Only two pedigrees did not contain the (TTTCA)n insertion. Repeat-primed polymerase chain reaction revealed that the sizes of (TTTCA)n insertion in all affected members were larger than 105 repeats. The same pentanucleotide insertion (ATTTCATTTC)58 has been reported to form RNA foci resulting in neurotoxicity in spinocerebellar ataxia type 37, which suggests the similar pathogenic process in familial cortical myoclonic tremor with epilepsy type 1.
Collapse
Affiliation(s)
- Zhidong Cen
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhengwen Jiang
- Genesky Diagnostics Inc, Biobay, SIP, Suzhou, Jiangsu, China
| | - You Chen
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaosheng Zheng
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Intensive Care Unit, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Fei Xie
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaodong Yang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xingjiao Lu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Zhiyuan Ouyang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongwei Wu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Neurology, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Si Chen
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Houmin Yin
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xia Qiu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuang Wang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Meiping Ding
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yelei Tang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Feng Yu
- Genesky Diagnostics Inc, Biobay, SIP, Suzhou, Jiangsu, China
| | - Caihua Li
- Genesky Biotechnologies Inc., Shanghai, China
| | - Tao Wang
- Genesky Biotechnologies Inc., Shanghai, China
| | - Hiroyuki Ishiura
- Department of Neurology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shoji Tsuji
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan
| | - Chuan Jiao
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Chunyu Liu
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jianfeng Xiao
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Wei Luo
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Expansions of intronic TTTCA and TTTTA repeats in benign adult familial myoclonic epilepsy. Nat Genet 2018; 50:581-590. [PMID: 29507423 DOI: 10.1038/s41588-018-0067-2] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 01/09/2018] [Indexed: 11/09/2022]
Abstract
Epilepsy is a common neurological disorder, and mutations in genes encoding ion channels or neurotransmitter receptors are frequent causes of monogenic forms of epilepsy. Here we show that abnormal expansions of TTTCA and TTTTA repeats in intron 4 of SAMD12 cause benign adult familial myoclonic epilepsy (BAFME). Single-molecule, real-time sequencing of BAC clones and nanopore sequencing of genomic DNA identified two repeat configurations in SAMD12. Intriguingly, in two families with a clinical diagnosis of BAFME in which no repeat expansions in SAMD12 were observed, we identified similar expansions of TTTCA and TTTTA repeats in introns of TNRC6A and RAPGEF2, indicating that expansions of the same repeat motifs are involved in the pathogenesis of BAFME regardless of the genes in which the expanded repeats are located. This discovery that expansions of noncoding repeats lead to neuronal dysfunction responsible for myoclonic tremor and epilepsy extends the understanding of diseases with such repeat expansion.
Collapse
|
16
|
van den Ende T, Sharifi S, van der Salm SMA, van Rootselaar AF. Familial Cortical Myoclonic Tremor and Epilepsy, an Enigmatic Disorder: From Phenotypes to Pathophysiology and Genetics. A Systematic Review. Tremor Other Hyperkinet Mov (N Y) 2018; 8:503. [PMID: 29416935 PMCID: PMC5801339 DOI: 10.7916/d85155wj] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023] Open
Abstract
Background Autosomal dominant familial cortical myoclonic tremor and epilepsy (FCMTE) is characterized by distal tremulous myoclonus, generalized seizures, and signs of cortical reflex myoclonus. FCMTE has been described in over 100 pedigrees worldwide, under several different names and acronyms. Pathological changes have been located in the cerebellum. This systematic review discusses the clinical spectrum, treatment, pathophysiology, and genetic findings. Methods We carried out a PubMed search, using a combination of the following search terms: cortical tremor, myoclonus, epilepsy, benign course, adult onset, familial, and autosomal dominant; this resulted in a total of 77 studies (761 patients; 126 pedigrees) fulfilling the inclusion and exclusion criteria. Results Phenotypic differences across pedigrees exist, possibly related to underlying genetic differences. A "benign" phenotype has been described in several Japanese families and pedigrees linked to 8q (FCMTE1). French patients (5p linkage; FCMTE3) exhibit more severe progression, and in Japanese/Chinese pedigrees (with unknown linkage) anticipation has been suggested. Preferred treatment is with valproate (mind teratogenicity), levetiracetam, and/or clonazepam. Several genes have been identified, which differ in potential pathogenicity. Discussion Based on the core features (above), the syndrome can be considered a distinct clinical entity. Clinical features may also include proximal myoclonus and mild progression with aging. Valproate or levetiracetam, with or without clonazepam, reduces symptoms. FCMTE is a heterogeneous disorder, and likely to include a variety of different conditions with mutations of different genes. Distinct phenotypic traits might reflect different genetic mutations. Genes involved in Purkinje cell outgrowth or those encoding for ion channels or neurotransmitters seem good candidate genes.
Collapse
Affiliation(s)
- Tom van den Ende
- Department of Neurology and Clinical Neurophysiology, Amsterdam Neuroscience, Academic Medical Center, Amsterdam, The Netherlands
| | - Sarvi Sharifi
- Department of Neurology and Clinical Neurophysiology, Amsterdam Neuroscience, Academic Medical Center, Amsterdam, The Netherlands
| | - Sandra M. A. van der Salm
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center, Utrecht, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Zwolle, The Netherlands
| | - Anne-Fleur van Rootselaar
- Department of Neurology and Clinical Neurophysiology, Amsterdam Neuroscience, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
17
|
van Coller R, van Rootselaar AF, Schutte C, van der Meyden CH. Familial cortical myoclonic tremor and epilepsy: Description of a new South African pedigree with 30 year follow up. Parkinsonism Relat Disord 2017; 38:35-40. [PMID: 28237853 DOI: 10.1016/j.parkreldis.2017.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/17/2017] [Accepted: 02/17/2017] [Indexed: 10/20/2022]
Abstract
AIM The aims of this study were to report the index case of a South African family with cortical myoclonic tremor and epilepsy, to describe the pedigree with the clinical findings and results of additional investigations, and to report the unique follow-up evaluation of affected and unaffected family members after 30 years. METHODS The index case led to evaluation of the clinical files of patients from 1978/1979 and clinical assessment and investigation of patients from this cohort as well as newly identified family members. Patients were examined clinically; cortical myoclonic tremor severity was scored by using the Fahn-Tolosa- Marin-Tremor Rating Scale and the Myoclonus Rating Scale. Cortical origin of myoclonus was proven. Statistical analyses were done to assess the impact of cortical myoclonic tremor on quality of life. CONCLUSION Clinical data was available for 23 patients. Increase in cortical myoclonic tremor and age showed a statistically significant correlation with worsening of the sub-score for Quality of Life (FTMTRS) and myoclonus rating scale. After 30 years eleven of fourteen patients could be followed up. Progression of cortical myoclonic tremor severity was noted but epilepsy control was adequate with all patients reporting less than two seizures per year. No clinical features of neurodegeneration were found. DISCUSSION We describe the initial presentation and 30 year follow-up of a four generation South African family with FCMTE. The unique long term follow up of this pedigree supports previous findings that the condition does not cause additional progressive neurological deterioration and quality of life is mostly influenced by worsening of the cortical myoclonic tremor with age.
Collapse
Affiliation(s)
- Riaan van Coller
- Department of Neurology, University of Pretoria, Pretoria, South Africa.
| | - Anne-Fleur van Rootselaar
- Department of Neurology and Neurophysiology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Clara Schutte
- Department of Neurology, University of Pretoria, Pretoria, South Africa
| | | |
Collapse
|
18
|
Cen Z, Huang C, Yin H, Ding X, Xie F, Lu X, Ouyang Z, Lou Y, Qiu X, Wang Z, Xiao J, Ding M, Luo W. Clinical and neurophysiological features of familial cortical myoclonic tremor with epilepsy. Mov Disord 2016; 31:1704-1710. [PMID: 27613677 DOI: 10.1002/mds.26756] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/24/2016] [Accepted: 07/27/2016] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Familial cortical myoclonic tremor with epilepsy is a rare epilepsy syndrome. Herein, we report on nine Chinese familial cortical myoclonic tremor with epilepsy pedigrees to delineate its clinical and neurophysiological features. METHODS Detailed clinical and neurophysiological data were obtained. Somatosensory evoked potential amplitudes and clinical profile were analyzed using multilevel statistical models. Age-at-onset anticipation was analyzed using Kaplan-Meier survival analysis. RESULTS Fifty-five patients were interviewed directly, whose mean age at onset of cortical tremor and generalized tonic-clonic seizures were 31.0 ± 8.3 and 36.0 ± 7.9 years. Giant somatosensory evoked potential was detected in 87.5% (28 of 32) of patients, and long-latency cortical reflex was detected in 93.5% (29 of 31). Cortical tremor severity was significantly higher in patients with longer disease duration of cortical tremor (P = 0.0061). Somatosensory evoked potential amplitudes were significant higher in patients with higher level of cortical tremor severity (P = 0.0003) and those using antiepileptic drugs (P = 0.0150). Age-at-onset anticipation of cortical tremor with paternal transmission was found with statistical significance (P = 0.022). CONCLUSION We provided the clinical and neurophysiological features of familial cortical myoclonic tremor with epilepsy patients. This study is reported for the presentation of this rare disease in a Chinese population with the largest single report on familial cortical myoclonic tremor with epilepsy worldwide. Age-at-onset anticipation of cortical tremor with paternal transmission was statistically significant, which further confirmed a possibility of unstable expanding repeat in the genetic mechanism of familial cortical myoclonic tremor with epilepsy. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Zhidong Cen
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Pediatrics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chunping Huang
- Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Houmin Yin
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xueping Ding
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fei Xie
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xingjiao Lu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Zhiyuan Ouyang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuting Lou
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Pediatrics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xia Qiu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhongjin Wang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianfeng Xiao
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Meiping Ding
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Luo
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Cohen R, Halevy A, Aharoni S, Kraus D, Konen O, Basel-Vanagaite L, Goldberg-Stern H, Straussberg R. Polymicrogyria and myoclonic epilepsy in autosomal recessive cutis laxa type 2A. Neurogenetics 2016; 17:251-257. [PMID: 27631729 DOI: 10.1007/s10048-016-0491-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/17/2016] [Indexed: 11/27/2022]
Abstract
Cutis laxa syndromes are rare inherited disorders of skin and connective tissue metabolism associated with variable systemic involvement. The main clinical manifestation is loose, wrinkled, redundant, inelastic skin, hypotonia, typical facies including short nose and down-slanting palpebral fissures, and varying degrees of developmental delay. The aim of this report is to describe two siblings diagnosed with a moderate form of ATP6V0A2-related cutis laxa with polymicrogyria (cobblestone-like brain dysgenesis). One of the patients has myoclonic epilepsy which may have contributed to his more severe clinical presentation. The literature on cutis laxa syndromes is reviewed.
Collapse
Affiliation(s)
- Rony Cohen
- Department of Pediatric Neurology and Epilepsy Center, Schneider Children's Medical Center of Israel, Petach Tikva, 4920235, Israel. .,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Ayelet Halevy
- Department of Pediatric Neurology and Epilepsy Center, Schneider Children's Medical Center of Israel, Petach Tikva, 4920235, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Aharoni
- Department of Pediatric Neurology and Epilepsy Center, Schneider Children's Medical Center of Israel, Petach Tikva, 4920235, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dror Kraus
- Department of Pediatric Neurology and Epilepsy Center, Schneider Children's Medical Center of Israel, Petach Tikva, 4920235, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Osnat Konen
- Department of Radiology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lina Basel-Vanagaite
- Pediatric Genetic Service, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Raphael Recanati Genetics Institute, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel
| | - Hadassa Goldberg-Stern
- Department of Pediatric Neurology and Epilepsy Center, Schneider Children's Medical Center of Israel, Petach Tikva, 4920235, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rachel Straussberg
- Department of Pediatric Neurology and Epilepsy Center, Schneider Children's Medical Center of Israel, Petach Tikva, 4920235, Israel.,Pediatric Genetic Service, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
20
|
Henden L, Freytag S, Afawi Z, Baldassari S, Berkovic SF, Bisulli F, Canafoglia L, Casari G, Crompton DE, Depienne C, Gecz J, Guerrini R, Helbig I, Hirsch E, Keren B, Klein KM, Labauge P, LeGuern E, Licchetta L, Mei D, Nava C, Pippucci T, Rudolf G, Scheffer IE, Striano P, Tinuper P, Zara F, Corbett M, Bahlo M. Identity by descent fine mapping of familial adult myoclonus epilepsy (FAME) to 2p11.2-2q11.2. Hum Genet 2016; 135:1117-25. [PMID: 27368338 DOI: 10.1007/s00439-016-1700-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/21/2016] [Indexed: 02/03/2023]
Abstract
Familial adult myoclonus epilepsy (FAME) is a rare autosomal dominant disorder characterized by adult onset, involuntary muscle jerks, cortical myoclonus and occasional seizures. FAME is genetically heterogeneous with more than 70 families reported worldwide and five potential disease loci. The efforts to identify potential causal variants have been unsuccessful in all but three families. To date, linkage analysis has been the main approach to find and narrow FAME critical regions. We propose an alternative method, pedigree free identity-by-descent (IBD) mapping, that infers regions of the genome between individuals that have been inherited from a common ancestor. IBD mapping provides an alternative to linkage analysis in the presence of allelic and locus heterogeneity by detecting clusters of individuals who share a common allele. Succeeding IBD mapping, gene prioritization based on gene co-expression analysis can be used to identify the most promising candidate genes. We performed an IBD analysis using high-density single nucleotide polymorphism (SNP) array data followed by gene prioritization on a FAME cohort of ten European families and one Australian/New Zealander family; eight of which had known disease loci. By identifying IBD regions common to multiple families, we were able to narrow the FAME2 locus to a 9.78 megabase interval within 2p11.2-q11.2. We provide additional evidence of a founder effect in four Italian families and allelic heterogeneity with at least four distinct founders responsible for FAME at the FAME2 locus. In addition, we suggest candidate disease genes using gene prioritization based on gene co-expression analysis.
Collapse
Affiliation(s)
- Lyndal Henden
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Saskia Freytag
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Zaid Afawi
- Tel Aviv University Medical School, 69978, Tel Aviv, Israel
| | - Sara Baldassari
- Medical Genetics Unit, Polyclinic Sant'Orsola-Malpighi-Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne Austin Health, Melbourne, VIC, 3084, Australia
| | - Francesca Bisulli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Laura Canafoglia
- Neurophysiopathology and Epilepsy Center, IRCCS Foundation C. Besta Neurological Institute, Milan, Italy
| | - Giorgio Casari
- Division of Genetics and Cell Biology, Università Vita-Salute San Raffaele, San Raffaele Scientific Institute, Milan, Italy
| | | | - Christel Depienne
- Département de Médicine translationnelle et Neurogénétique, IGBMC, CNRS UMR 7104/INSERM U964/Université de Strasbourg, Illkirch, France.,Laboratoire de diagnostic génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jozef Gecz
- Robinson Institute and School of Medicine, The University of Adelaide, Adelaide, SA, 5005, Australia.,School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department, A Meyer Children's Hospital, University of Florence, Florence, Italy.,IRCCS Stella Maris Foundation, Pisa, Italy
| | - Ingo Helbig
- Department of Neuropediatrics, Christian-Albrechts-University of Kiel and University Medical Center, Kiel, Schleswig-Holstein, Germany.,Departments of Brain and Cognitive Sciences, Physiology and Cell Biology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Negev, Israel.,Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Edouard Hirsch
- Medical and Surgical Epilepsy Unit, Hautepierre Hospital, University of Strasbourg, Strasbourg, France
| | - Boris Keren
- Département de Génétique, Hôpital de la Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 75013, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06,UMR S 1127, ICM, 75013, Paris, France
| | - Karl Martin Klein
- Department of Neurology, Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, University Hospital, Goethe-University Frankfurt, Frankfurt, Germany.,Department of Neurology, Epilepsy Center Hessen, University Hospitals Giessen and Marburg, Philipps-University Marburg, Marburg, Germany
| | - Pierre Labauge
- Department of Neurology, Montpellier University, Gui de Chauliac, 34295, Montpellier, Cedex 5, France
| | - Eric LeGuern
- Sorbonne Universités, UPMC Univ Paris 06,UMR S 1127, ICM, 75013, Paris, France.,INSERM, U 1127; CNRS, UMR 7225; INSERM UMR 975; Institut du Cerveau et de la Moelle Epinière; and Département de Génétique et de Cytogénétique, Hôpital de la Pitié-Salpêtrière, Assistance Publique-Hôpitaux De Paris (AP-HP), Paris, France.,Université Pierre et Marie Curie (Paris 6) (UPMC), UMRS 975, Paris, France
| | - Laura Licchetta
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Davide Mei
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department, A Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Caroline Nava
- Département de Génétique, Hôpital de la Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 75013, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06,UMR S 1127, ICM, 75013, Paris, France
| | - Tommaso Pippucci
- Medical Genetics Unit, Polyclinic Sant'Orsola-Malpighi-Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Gabrielle Rudolf
- Département de Médicine translationnelle et Neurogénétique, IGBMC, CNRS UMR 7104/INSERM U964/Université de Strasbourg, Illkirch, France.,Department of Neurology, Hautepierre Hospital, University of Strasbourg, Strasbourg, France
| | - Ingrid Eileen Scheffer
- Epilepsy Research Centre, Department of Medicine, University of Melbourne Austin Health, Melbourne, VIC, 3084, Australia.,Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, 3084, Australia.,Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Gaslini Institute, Genoa, Italy
| | - Paolo Tinuper
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Federico Zara
- Laboratory of Neurogenetics, Department of Neurosciences, Gaslini Institute, Genoa, Italy
| | - Mark Corbett
- Robinson Institute and School of Medicine, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
21
|
Long L, Zeng LL, Song Y, Shen H, Fang P, Zhang L, Xu L, Gong J, Zhang YC, Zhang Y, Zhou P, Huang S, Chen S, Xie Y, Hu D, Xiao B. Altered cerebellar-cerebral functional connectivity in benign adult familial myoclonic epilepsy. Epilepsia 2016; 57:941-8. [PMID: 27037791 DOI: 10.1111/epi.13372] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The pathogenesis of benign adult familial myoclonic epilepsy (BAFME) remains unknown, although cerebellar pathologic changes and brain hyperexcitability have been reported. We used resting-state functional magnetic resonance imaging (fMRI) to examine the functional connectivity between the cerebellum and cerebrum in a Chinese family with BAFME for the first time. METHODS Eleven adults with BAFME and 15 matched healthy controls underwent resting-state blood oxygen level-dependent (BOLD) fMRI scanning. The cerebellar seeds, including the bilateral crus I, lobule VIII, lobule VIIb, and lobule IV&V, were defined a priori. Next, regional time courses were obtained for each individual by averaging the BOLD time series over all voxels in each seed region. Then, seed-based functional connectivity z-maps were produced by computing Pearson's correlation coefficients (converted to z-scores by Fisher transformation) between each seed signal and the time series from all other voxels within the entire brain. Finally, a second-level random-effect two-sample t-test was performed on the individual z-maps in a voxel-wise manner. RESULTS Reduced functional connectivity of the right cerebellar crus I with the left middle frontal gyrus and right cerebellar lobule IX was observed in the default network of BAFME. Enhanced functional connectivity of the left cerebellar lobule VIII with the bilateral middle temporal gyri, right putamen, and left cerebellar crus I was found in the dorsal attention network of BAFME. Enhanced functional connectivity between the left cerebellar lobule VIIb and right frontal pole was found in the control network of BAFME. SIGNIFICANCE Altered cerebellar-cerebral functional connectivity may contribute to the understanding of the nosogenesis of BAFME and explain the cognitive dysfunction in this Chinese family with BAFME.
Collapse
Affiliation(s)
- Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling-Li Zeng
- College of Mechatronics and Automation, National University of Defense Technology, Changsha, Hunan, China
| | - Yanmin Song
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Shen
- College of Mechatronics and Automation, National University of Defense Technology, Changsha, Hunan, China
| | - Peng Fang
- College of Mechatronics and Automation, National University of Defense Technology, Changsha, Hunan, China
| | - Linlin Zhang
- Department of Neurology, Fuyang People's Hospital, Fuyang, Anhui, China
| | - Lin Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Gong
- Department of Neurology, Fuyang People's Hospital, Fuyang, Anhui, China
| | - Yun-Ci Zhang
- Department of Neurology, Fuyang People's Hospital, Fuyang, Anhui, China
| | - Yong Zhang
- Department of Neurology, Fuyang People's Hospital, Fuyang, Anhui, China
| | - Pinting Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sha Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Si Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuanyuan Xie
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dewen Hu
- College of Mechatronics and Automation, National University of Defense Technology, Changsha, Hunan, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
22
|
Cen ZD, Xie F, Xiao JF, Luo W. Rational search for genes in familial cortical myoclonic tremor with epilepsy, clues from recent advances. Seizure 2016; 34:83-9. [DOI: 10.1016/j.seizure.2015.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/06/2015] [Accepted: 12/08/2015] [Indexed: 11/26/2022] Open
|
23
|
Cen ZD, Xie F, Lou DN, Lu XJ, Ouyang ZY, Liu L, Cao J, Li D, Yin HM, Wang ZJ, Xiao JF, Luo W. Fine mapping and whole-exome sequencing of a familial cortical myoclonic tremor with epilepsy family. Am J Med Genet B Neuropsychiatr Genet 2015; 168:595-9. [PMID: 26130016 DOI: 10.1002/ajmg.b.32337] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/16/2015] [Indexed: 02/05/2023]
Abstract
Familial cortical myoclonic tremor with epilepsy (FCMTE) is an autosomal dominant epilepsy syndrome. Four loci, including 8q24 (FCMTE1), 2p11.1-q12.2 (FCMTE2), 5p15.31-p15.1 (FCMTE3), and 3q26.32-3q28 (FCMTE4) were previously reported. Herein, we report a new FCMTE1 pedigree from Chinese population with its clinical and genetic study results. Whole genome scan was performed to identify the causative gene region and copy number variants. Whole-exome sequencing was used to identify the causative gene. There were twelve affected members alive in this FCMTE1 pedigree. Nine affected members had both cortical myoclonic tremor and epilepsy, while three affected members had only cortical myoclonic tremor. Electrophysiologic examinations manifested giant somatosensory evoked potentials and long-latency cortical reflex in some affected members. Whole genome scan identified a 20.4 Mb causative gene region at 8q22.3-q24.13. No copy number variants were identified as the causative mutation. Whole-exome sequencing identified a co-segregated mutation (c.206A>T; p.Y69F) in the SLC30A8 gene. However, the evidence supporting this gene as the causative gene of FCMTE1 is not enough. We report the first Chinese FCMTE1 pedigree. No copy number variants, point mutation or small insertion/deletion were detected in the identified region that showed an association with FCMTE1. Further studies could focus on other possible genetic mechanisms while the association between the SLC30A8 and FCMTE1 needs further evidence.
Collapse
Affiliation(s)
- Zhi-Dong Cen
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Pediatrics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fei Xie
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dan-Ning Lou
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xing-Jiao Lu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhi-Yuan Ouyang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ling Liu
- Department of Neurology, West China Hospital, Sichuan University, Cheng du, Sichuan, China
| | - Jin Cao
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dan Li
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hou-Min Yin
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhong-Jin Wang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian-Feng Xiao
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Wei Luo
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Long L, Song Y, Zhang L, Hu C, Gong J, Xu L, Long H, Zhou L, Zhang Y, Zhang Y, Xiao B. A case-control proton magnetic resonance spectroscopy study confirms cerebellar dysfunction in benign adult familial myoclonic epilepsy. Neuropsychiatr Dis Treat 2015; 11:485-91. [PMID: 25750529 PMCID: PMC4348134 DOI: 10.2147/ndt.s77910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Benign adult familial myoclonic epilepsy (BAFME) is a rare form of epilepsy syndrome. The pathogenesis of BAFME remains unclear, though it seems to involve dysfunction of the cerebellum. OBJECTIVES The purpose of this study was to use proton magnetic resonance spectroscopy ((1)H-MRS) to investigate whether neurochemical changes underlie abnormal brain function in BAFME. METHODS Twelve BAFME patients from one family and 12 age- and sex-matched healthy controls were enrolled in this study. The ratios of NAA/Cr, NAA/Cho, Cho/Cr, and NAA/(Cr+Cho) were analyzed. RESULTS The BAFME patients exhibited a decreased N-acetylaspartate (NAA)/choline (Cho) ratio in the cerebellar cortex, whereas there were no significant differences in the NAA/creatine (Cr), Cho/Cr, and NAA/(Cr+Cho) ratios compared with healthy controls. There were no significant differences in (1)H-MRS values in the frontal cortex or thalamus between the BAFME patients and controls. No correlation was detected between the NAA/Cho ratio in the cerebellar cortex and disease duration, myoclonus severity, or tremor severity. CONCLUSION Our results indicate clear cerebellar dysfunction in BAFME. (1)H-MRS is a useful tool for the diagnosis of BAFME in combination with family history and electrophysiological examination.
Collapse
Affiliation(s)
- Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Yanmin Song
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Linlin Zhang
- The People's Hospital of Fuyang, Anhui Province, People's Republic of China
| | - Chongyu Hu
- Department of Neurology, Hunan Provincial People's Hospital, People's Republic of China
| | - Jian Gong
- The People's Hospital of Fuyang, Anhui Province, People's Republic of China
| | - Lin Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Hongyu Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Luo Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Yunci Zhang
- The People's Hospital of Fuyang, Anhui Province, People's Republic of China
| | - Yong Zhang
- The People's Hospital of Fuyang, Anhui Province, People's Republic of China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| |
Collapse
|
25
|
Licchetta L, Pippucci T, Bisulli F, Cantalupo G, Magini P, Alvisi L, Baldassari S, Martinelli P, Naldi I, Vanni N, Liguori R, Seri M, Tinuper P. A novel pedigree with familial cortical myoclonic tremor and epilepsy (FCMTE): clinical characterization, refinement of the FCMTE2 locus, and confirmation of a founder haplotype. Epilepsia 2013; 54:1298-306. [PMID: 23663087 DOI: 10.1111/epi.12216] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2013] [Indexed: 12/18/2022]
Abstract
PURPOSE We describe the clinical, neurophysiologic, and genetic features of a new, large family with familial cortical myoclonic tremor and epilepsy (FCMTE). METHODS Reliable clinical information was obtained on the 127 members. Thirty-one collaborative individuals were assessed by a detailed clinical interview and a complete neurologic examination. A polygraphic study was conducted in 15 patients, back-averaging analysis and somatosensory evoked potentials with C-reflex study in four. The genetic study investigated 30 subjects with microsatellite markers at three loci on chromosomes 8q (FCMTE1), 2p (FCMTE2), and 5p (FCMTE3). KEY FINDINGS The pedigree included 25 affected members (M/F: 9/16). We studied 16 of the 19 living affected members (M/F: 5/11; mean age 47.8 years). Cortical myoclonic tremor (CMT) was associated with generalized seizures in 10 patients (62.5%). The mean age at onset of CMT and seizures was 28.1 and 33.8 years, respectively. Four patients (25%) reported a slow progression of CMT, with severe gait impairment in one. Psychiatric disorders of variable severity recurred in 37.5% of cases. Rhythmic bursts at 7-15 Hz were recorded in all 11 affected members tested. Additional neurophysiologic investigations disclosed a cortical origin of myoclonus in all patients tested. Generalized epileptiform discharges were recorded in 25% of cases, and a photoparoxysmal response in 31%. Genetic analysis established linkage to the FCMTE2 locus on chromosome 2p11.1-2q12.2 (OMIM 607876) and narrowed the critical interval to a 10.4 Mb segment. Haplotype analysis in the present family identified a founder haplotype identical to that previously observed in families from the same geographic area. SIGNIFICANCE This study confirms evidence of a founder effect in Italian families and reduces the number of positional candidate genes in the FCMTE2 locus to 59, thereby contributing to future gene identification by Next Generation Sequencing approaches.
Collapse
Affiliation(s)
- Laura Licchetta
- IRCCS Institute of Neurological Sciences of Bologna, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Stogmann E, Reinthaler E, ElTawil S, El Etribi MA, Hemeda M, El Nahhas N, Gaber AM, Fouad A, Edris S, Benet-Pages A, Eck SH, Pataraia E, Mei D, Brice A, Lesage S, Guerrini R, Zimprich F, Strom TM, Zimprich A. Autosomal recessive cortical myoclonic tremor and epilepsy: association with a mutation in the potassium channel associated gene CNTN2. Brain 2013; 136:1155-60. [DOI: 10.1093/brain/awt068] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
27
|
A newly identified locus for benign adult familial myoclonic epilepsy on chromosome 3q26.32-3q28. Eur J Hum Genet 2012; 21:225-8. [PMID: 22713812 DOI: 10.1038/ejhg.2012.133] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Benign Adult Familial Myoclonic Epilepsy (BAFME) is an autosomal dominant disorder characterized by adult-onset cortical tremor or action myoclonus predominantly in the upper limbs, and generalized seizures. We investigated a Thai BAFME family. Clinical and electrophysiological studies revealed that 13 were affected with BAFME. There were a total of 24 individuals studied. Genetic analysis by genome-wide linkage study (GWLS) was performed using 400 microsatellite markers and excluded linkage of the previous BAFME loci, 8q23.3-q24.1, and 2p11.1-q12.2. GWLS showed that the disease-associated region in our Thai family was linked to a newly identified locus on chromosome 3q26.32-3q28. This locus represents the fourth chromosomal region for BAFME.
Collapse
|