1
|
Somenzi E, Partel E, Barbato M, Chero Osorio AM, Colli L, Franceschi N, Mantovani R, Pilla F, Komjanc M, Achilli A, Hauffe HC, Ajmone Marsan P. Genetic legacy and adaptive signatures: investigating the history, diversity, and selection signatures in Rendena cattle resilient to eighteenth century rinderpest epidemics. Genet Sel Evol 2024; 56:32. [PMID: 38698323 PMCID: PMC11064358 DOI: 10.1186/s12711-024-00900-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Rendena is a dual-purpose cattle breed, which is primarily found in the Italian Alps and the eastern areas of the Po valley, and recognized for its longevity, fertility, disease resistance and adaptability to steep Alpine pastures. It is categorized as 'vulnerable to extinction' with only 6057 registered animals in 2022, yet no comprehensive analyses of its molecular diversity have been performed to date. The aim of this study was to analyse the origin, genetic diversity, and genomic signatures of selection in Rendena cattle using data from samples collected in 2000 and 2018, and shed light on the breed's evolution and conservation needs. RESULTS Genetic analysis revealed that the Rendena breed shares genetic components with various Alpine and Po valley breeds, with a marked genetic proximity to the Original Braunvieh breed, reflecting historical restocking efforts across the region. The breed shows signatures of selection related to both milk and meat production, environmental adaptation and immune response, the latter being possibly the result of multiple rinderpest epidemics that swept across the Alps in the eighteenth century. An analysis of the Rendena cattle population spanning 18 years showed an increase in the mean level of inbreeding over time, which is confirmed by the mean number of runs of homozygosity per individual, which was larger in the 2018 sample. CONCLUSIONS The Rendena breed, while sharing a common origin with Brown Swiss, has developed distinct traits that enable it to thrive in the Alpine environment and make it highly valued by local farmers. Preserving these adaptive features is essential, not only for maintaining genetic diversity and enhancing the ability of this traditional animal husbandry to adapt to changing environments, but also for guaranteeing the resilience and sustainability of both this livestock system and the livelihoods within the Rendena valley.
Collapse
Affiliation(s)
- Elisa Somenzi
- DIANA Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del Sacro Cuore, Piacenza, Italy.
| | - Erika Partel
- Unità risorse foraggere e produzioni zootecniche, Centro Trasferimento Tecnologico, Fondazione Edmund Mach, S. Michele all'Adige, Trento, Italy
| | - Mario Barbato
- DIANA Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del Sacro Cuore, Piacenza, Italy
- Department of Veterinary Science, Università degli Studi di Messina, Messina, Italy
| | - Ana María Chero Osorio
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Licia Colli
- DIANA Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del Sacro Cuore, Piacenza, Italy
- Centro di Ricerca Sulla Biodiversità e sul DNA Antico, BioDNA, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Niccolò Franceschi
- DIANA Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Roberto Mantovani
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padua, Padua, Italy
| | - Fabio Pilla
- Department of Agriculture Environment and Food Science, University of Molise, Campobasso, Italy
| | - Matteo Komjanc
- Unità risorse foraggere e produzioni zootecniche, Centro Trasferimento Tecnologico, Fondazione Edmund Mach, S. Michele all'Adige, Trento, Italy
| | - Alessandro Achilli
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Heidi Christine Hauffe
- Conservation Genomics Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, Trento, Italy
| | - Paolo Ajmone Marsan
- DIANA Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del Sacro Cuore, Piacenza, Italy
- Centro di Ricerca Nutrigenomica e Proteomica-PRONUTRIGEN, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
2
|
Coia V, Paladin A, Zingale S, Wurst C, Croze M, Maixner F, Zink A. Ancestry and kinship in a Late Antiquity-Early Middle Ages cemetery in the Eastern Italian Alps. iScience 2023; 26:108215. [PMID: 37953960 PMCID: PMC10637928 DOI: 10.1016/j.isci.2023.108215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/31/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
In South Tyrol (Eastern Italian Alps), during Late Antiquity-Early Middle Ages, archeological records indicate cultural hybridization among alpine groups and peoples of various origin. Using paleogenomics, we reconstructed the ancestry of 20 individuals (4th-7th cent. AD) from a cemetery to analyze whether they had heterogeneous or homogeneous ancestry and to study their social organization. The results revealed a primary genetic ancestry from southern Europe and additional ancestries from south-western, western, and northern Europe, suggesting that cultural hybridization was accompanied by complex genetic admixture. Kinship analyses found no genetic relatedness between the only two individuals buried with grave goods. Instead, a father-son pair was discovered in one multiple grave, together with unrelated individuals and one possible non-local female. These genetic findings indicate the presence of a high social status familia, which is supported by the cultural materials and the proximity of the grave to the most sacred area of the church.
Collapse
Affiliation(s)
- Valentina Coia
- Institute for Mummy Studies, Eurac Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Alice Paladin
- Institute for Mummy Studies, Eurac Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Stefania Zingale
- Institute for Mummy Studies, Eurac Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Christina Wurst
- Institute for Mummy Studies, Eurac Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Myriam Croze
- Institute for Mummy Studies, Eurac Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Frank Maixner
- Institute for Mummy Studies, Eurac Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Albert Zink
- Institute for Mummy Studies, Eurac Research, Viale Druso 1, 39100 Bolzano, Italy
| |
Collapse
|
3
|
Havaš Auguštin D, Šarac J, Reidla M, Tamm E, Grahovac B, Kapović M, Novokmet N, Rudan P, Missoni S, Marjanović D, Korolija M. Refining the Global Phylogeny of Mitochondrial N1a, X, and HV2 Haplogroups Based on Rare Mitogenomes from Croatian Isolates. Genes (Basel) 2023; 14:1614. [PMID: 37628665 PMCID: PMC10454736 DOI: 10.3390/genes14081614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial DNA (mtDNA) has been used for decades as a predominant tool in population genetics and as a valuable addition to forensic genetic research, owing to its unique maternal inheritance pattern that enables the tracing of individuals along the maternal lineage across numerous generations. The dynamic interplay between evolutionary forces, primarily genetic drift, bottlenecks, and the founder effect, can exert significant influence on genetic profiles. Consequently, the Adriatic islands have accumulated a subset of lineages that exhibits remarkable absence or rarity within other European populations. This distinctive genetic composition underscores the islands' potential as a significant resource in phylogenetic research, with implications reaching beyond regional boundaries to contribute to a global understanding. In the initial attempt to expand the mitochondrial forensic database of the Croatian population with haplotypes from small isolated communities, we sequenced mitogenomes of rare haplogroups from different Croatian island and mainland populations using next-generation sequencing (NGS). In the next step and based on the obtained results, we refined the global phylogeny of haplogroup N1a, HV2, and X by analyzing rare haplotypes, which are absent from the current phylogenetic tree. The trees were based on 16 novel and 52 previously published samples, revealing completely novel branches in the X and HV2 haplogroups and a new European cluster in the ancestral N1a variant, previously believed to be an exclusively African-Asian haplogroup. The research emphasizes the importance of investigating geographically isolated populations and their unique characteristics within a global context.
Collapse
Affiliation(s)
- Dubravka Havaš Auguštin
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Ljudevita Gaja 32, 10000 Zagreb, Croatia; (D.H.A.)
- Institute for Anthropological Research, 10000 Zagreb, Croatia
| | - Jelena Šarac
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Ljudevita Gaja 32, 10000 Zagreb, Croatia; (D.H.A.)
- Institute for Anthropological Research, 10000 Zagreb, Croatia
| | - Maere Reidla
- Institute of Genomics, University of Tartu, 50090 Tartu, Estonia
| | - Erika Tamm
- Institute of Genomics, University of Tartu, 50090 Tartu, Estonia
| | | | | | | | - Pavao Rudan
- Croatian Academy of Sciences and Arts, 10000 Zagreb, Croatia
| | - Saša Missoni
- Institute for Anthropological Research, 10000 Zagreb, Croatia
- Faculty of Dental Medicine and Health, J. J. Strossmayer University, 31000 Osijek, Croatia
| | - Damir Marjanović
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Ljudevita Gaja 32, 10000 Zagreb, Croatia; (D.H.A.)
- Institute for Anthropological Research, 10000 Zagreb, Croatia
- Genetics and Bioengineering Department, International Burch University, 71000 Sarajevo, Bosnia and Herzegovina
| | - Marina Korolija
- Forensic Science Centre “Ivan Vučetić”, Ministry of the Interior, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Helena's Many Daughters: More Mitogenome Diversity behind the Most Common West Eurasian mtDNA Control Region Haplotype in an Extended Italian Population Sample. Int J Mol Sci 2022; 23:ijms23126725. [PMID: 35743173 PMCID: PMC9223851 DOI: 10.3390/ijms23126725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/27/2023] Open
Abstract
The high number of matching haplotypes of the most common mitochondrial (mt)DNA lineages are considered to be the greatest limitation for forensic applications. This study investigates the potential to solve this constraint by massively parallel sequencing a large number of mitogenomes that share the most common West Eurasian mtDNA control region (CR) haplotype motif (263G 315.1C 16519C). We augmented a pilot study on 29 to a total of 216 Italian mitogenomes that represents the largest set of the most common CR haplotype compiled from a single country. The extended population sample confirmed and extended the huge coding region diversity behind the most common CR motif. Complete mitogenome sequencing allowed for the detection of 163 distinct haplotypes, raising the power of discrimination from 0 (CR) to 99.6% (mitogenome). The mtDNAs were clustered into 61 named clades of haplogroup H and did not reveal phylogeographic trends within Italy. Rapid individualization approaches for investigative purposes are limited to the most frequent H clades of the dataset, viz. H1, H3, and H7.
Collapse
|
5
|
Boattini A, Bortolini E, Bauer R, Ottone M, Miglio R, Gueresi P, Pettener D. The surname structure of Trentino (Italy) and its relationship with dialects and genes. Ann Hum Biol 2021; 48:260-269. [PMID: 34459343 DOI: 10.1080/03014460.2021.1936635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Thanks to the availability of rich surname, linguistic and genetic information, together with its geographic and cultural complexity, Trentino (North-Eastern Italy) is an ideal place to test the relationships between genetic and cultural traits. AIM We provide a comprehensive study of population structures based on surname and dialect variability and evaluate their relationships with genetic diversity in Trentino. SUBJECTS AND METHODS Surname data were collected for 363 parishes, linguistic data for 57 dialects and genetic data for different sets of molecular markers (Y-chromosome, mtDNA, autosomal) in 10 populations. Analyses relied on different multivariate methods and correlation tests. RESULTS Besides the expected isolation-by-distance-like patterns (with few local exceptions, likely related to sociocultural instances), we detected a significant and geography-independent association between dialects and surnames. As for molecular markers, only Y-chromosomal STRs seem to be associated with the dialects, although no significant result was obtained. No evidence for correlation between molecular markers and surnames was observed. CONCLUSION Surnames act as cultural markers as do other words, although in this context they cannot be used as reliable proxies for genetic variability at a local scale.
Collapse
Affiliation(s)
- Alessio Boattini
- Department of Biological, Geological and Environmental Sciences (BIGEA), University of Bologna, Bologna, Italy
| | - Eugenio Bortolini
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Roland Bauer
- Fachbereich Romanistik, Universität Salzburg, Austria
| | - Marta Ottone
- Epidemiology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Rossella Miglio
- Department of Statistical Sciences, University of Bologna, Italy
| | - Paola Gueresi
- Department of Statistical Sciences, University of Bologna, Italy
| | - Davide Pettener
- Department of Biological, Geological and Environmental Sciences (BIGEA), University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Sarno S, Boscolo Agostini R, De Fanti S, Ferri G, Ghirotto S, Modenini G, Pettener D, Boattini A. Y-chromosome variability and genetic history of Commons from Northern Italy. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 175:665-679. [PMID: 33969895 PMCID: PMC8360088 DOI: 10.1002/ajpa.24302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/19/2021] [Accepted: 04/17/2021] [Indexed: 12/31/2022]
Abstract
Objectives Genetic drift and admixture are driving forces in human evolution, but their concerted impact to population evolution in historical times and at a micro‐geographic scale is poorly assessed. In this study we test a demographic model encompassing both admixture and drift to the case of social‐cultural isolates such as the so‐called “Commons.” Materials and methods Commons are peculiar institutions of medieval origins whose key feature is the tight relationship between population and territory, mediated by the collective property of shared resources. Here, we analyze the Y‐chromosomal genetic structure of four Commons (for a total of 366 samples) from the Central and Eastern Padana plain in Northern Italy. Results Our results reveal that all these groups exhibit patterns of significant diversity reduction, peripheral/outlier position within the Italian/European genetic space and high frequency of Common‐specific haplogroups. By explicitly testing different drift‐admixture models, we show that a drift‐only model is more probable for Central Padana Commons, while additional admixture (~20%) from external population around the same time of their foundation cannot be excluded for the Eastern ones. Discussion Building on these results, we suggest central Middle Ages as the most probable age of foundation for three of the considered Commons, the remaining one pointing to late antiquity. We conclude that an admixture‐drift model is particularly useful for interpreting the genetic structure and recent demographic history of small‐scale populations in which social‐cultural features play a significant role.
Collapse
Affiliation(s)
- Stefania Sarno
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | | | - Sara De Fanti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy.,Interdepartmental Centre Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, Bologna, Italy
| | - Gianmarco Ferri
- Department of Diagnostic and Clinical Medicine and Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Ghirotto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giorgia Modenini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Davide Pettener
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Alessio Boattini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Zink AR, Maixner F. The Current Situation of the Tyrolean Iceman. Gerontology 2019; 65:699-706. [PMID: 31505504 DOI: 10.1159/000501878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/03/2019] [Indexed: 11/19/2022] Open
Abstract
The Tyrolean Iceman, commonly known as Ötzi, is the world's oldest glacier mummy and one of the best investigated ancient human remains in the world. Since the discovery of the 5,300-year-old Copper Age individual in 1991, in a glacier in the Eastern Italian Alps, a variety of morphological, biochemical, and molecular analyses have been performed that revealed important insights into his origin, his life habits, and the circumstances surrounding his demise. In more recent research, the mummy was subjected to cutting-edge modern research methodologies currently focusing on high-throughput sequence analysis of ancient biomolecules (DNA, proteins, lipids) that are still preserved in the mummified tissues. This application of innovative "-omics" technologies revealed novel insights on the ancestry, disease predisposition, diet, and the presence of pathogens in the glacier mummy. In this review, the most important and actual results of the molecular studies will be highlighted.
Collapse
Affiliation(s)
- Albert R Zink
- Institute for Mummy Studies, Eurac Research, Bolzano, Italy,
| | - Frank Maixner
- Institute for Mummy Studies, Eurac Research, Bolzano, Italy
| |
Collapse
|
8
|
Ehler E, Vanek D. Forensic genetic analyses in isolated populations with examples of central European Valachs and Roma. J Forensic Leg Med 2017; 48:46-52. [PMID: 28454050 DOI: 10.1016/j.jflm.2017.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/22/2017] [Accepted: 04/09/2017] [Indexed: 01/27/2023]
Abstract
Isolated populations present a constant threat to the correctness of forensic genetic casework. In this review article we present several examples of how analyzing samples from isolated populations can bias the results of the forensic statistics and analyses. We select our examples from isolated populations from central and southeastern Europe, namely the Valachs and the European Roma. We also provide the reader with general strategies and principles to improve the laboratory practice (best practice) and reporting of samples from supposedly isolated populations. These include reporting the precise population data used for computing the forensic statistics, using the appropriate θ correction factor for calculating allele frequencies, typing ancestry informative markers in samples of unknown or uncertain ethnicity and establishing ethnic-specific forensic databases.
Collapse
Affiliation(s)
- Edvard Ehler
- Department of Biology and Environmental Studies, Charles University in Prague, Faculty of Education, Magdaleny Rettigove 4, Prague, 116 39, Czech Republic; Institute of Anthropology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614, Poznan, Poland.
| | - Daniel Vanek
- Forensic DNA Service, Janovskeho 18, Prague 7, 170 00, Czech Republic; Charles University in Prague, 2nd Faculty of Medicine, V Uvalu 84, Prague, 150 06, Czech Republic; Nemocnice Na Bulovce, Institute of Legal Medicine, Budinova 2, Prague, 180 81, Czech Republic.
| |
Collapse
|
9
|
An Unbiased Estimator of Gene Diversity with Improved Variance for Samples Containing Related and Inbred Individuals of any Ploidy. G3-GENES GENOMES GENETICS 2017; 7:671-691. [PMID: 28040781 PMCID: PMC5295611 DOI: 10.1534/g3.116.037168] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Gene diversity, or expected heterozygosity (H), is a common statistic for assessing genetic variation within populations. Estimation of this statistic decreases in accuracy and precision when individuals are related or inbred, due to increased dependence among allele copies in the sample. The original unbiased estimator of expected heterozygosity underestimates true population diversity in samples containing relatives, as it only accounts for sample size. More recently, a general unbiased estimator of expected heterozygosity was developed that explicitly accounts for related and inbred individuals in samples. Though unbiased, this estimator's variance is greater than that of the original estimator. To address this issue, we introduce a general unbiased estimator of gene diversity for samples containing related or inbred individuals, which employs the best linear unbiased estimator of allele frequencies, rather than the commonly used sample proportion. We examine the properties of this estimator, [Formula: see text] relative to alternative estimators using simulations and theoretical predictions, and show that it predominantly has the smallest mean squared error relative to others. Further, we empirically assess the performance of [Formula: see text] on a global human microsatellite dataset of 5795 individuals, from 267 populations, genotyped at 645 loci. Additionally, we show that the improved variance of [Formula: see text] leads to improved estimates of the population differentiation statistic, [Formula: see text] which employs measures of gene diversity within its calculation. Finally, we provide an R script, BestHet, to compute this estimator from genomic and pedigree data.
Collapse
|
10
|
Anagnostou P, Capocasa M, Dominici V, Montinaro F, Coia V, Destro-Bisol G. Evaluating mtDNA patterns of genetic isolation using a re-sampling procedure: A case study on Italian populations. Ann Hum Biol 2016; 44:140-148. [PMID: 27109644 DOI: 10.1080/03014460.2016.1181784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND A number of studies which have investigated isolation patterns in human populations rely on the analysis of intra- and inter-population genetic statistics of mtDNA polymorphisms. However, this approach makes it difficult to differentiate between the effects of long-term genetic isolation and the random fluctuations of statistics due to reduced sample size. AIM To overcome the confounding effect of sample size when detecting signatures of genetic isolation. SUBJECTS AND METHODS A re-sampling based procedure was employed to evaluate reduction in intra-population diversity, departure from surrounding genetic background and demographic stationarity in 34 Italian populations subject to isolation factors. RESULTS Signatures of genetic isolation were detected for all three statistics in seven populations: Pusteria valley, Sappada, Sauris, Timau settled in the eastern Italian Alps and Cappadocia, Filettino and Vallepietra settled in the Appenines. However, this study was unable to find signals for any of the statistics analysed in 19 populations. Finally, eight populations showing signals of isolation were found for one or two statistics. CONCLUSION The analysis revealed that the use of population genetic statistics combined with re-sampling procedure can help detect signatures of genetic isolation in human populations, even using a single, although highly informative, locus like mtDNA.
Collapse
Affiliation(s)
- Paolo Anagnostou
- a Dipartimento di Biologia Ambientale , Sapienza University of Rome , Rome , Italy.,b Istituto Italiano di Antropologia , Rome , Italy
| | - Marco Capocasa
- b Istituto Italiano di Antropologia , Rome , Italy.,c Dipartimento di Biologia e Biotecnologie 'Charles Darwin' , Sapienza University of Rome , Rome , Italy
| | - Valentina Dominici
- a Dipartimento di Biologia Ambientale , Sapienza University of Rome , Rome , Italy
| | | | - Valentina Coia
- e Istituto per le Mummie e l'Iceman, Accademia Europea di Bolzano (EURAC-Research) , Bolzano , Italy
| | - Giovanni Destro-Bisol
- a Dipartimento di Biologia Ambientale , Sapienza University of Rome , Rome , Italy.,b Istituto Italiano di Antropologia , Rome , Italy
| |
Collapse
|
11
|
Coia V, Cipollini G, Anagnostou P, Maixner F, Battaggia C, Brisighelli F, Gómez-Carballa A, Destro Bisol G, Salas A, Zink A. Whole mitochondrial DNA sequencing in Alpine populations and the genetic history of the Neolithic Tyrolean Iceman. Sci Rep 2016; 6:18932. [PMID: 26764605 PMCID: PMC4725900 DOI: 10.1038/srep18932] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/01/2015] [Indexed: 01/01/2023] Open
Abstract
The Tyrolean Iceman is an extraordinarily well-preserved natural mummy that lived south of the Alpine ridge ~5,200 years before present (ybp), during the Copper Age. Despite studies that have investigated his genetic profile, the relation of the Iceman´s maternal lineage with present-day mitochondrial variation remains elusive. Studies of the Iceman have shown that his mitochondrial DNA (mtDNA) belongs to a novel lineage of haplogroup K1 (K1f) not found in extant populations. We analyzed the complete mtDNA sequences of 42 haplogroup K bearing individuals from populations of the Eastern Italian Alps - putatively in genetic continuity with the Tyrolean Iceman-and compared his mitogenome with a large dataset of worldwide K1 sequences. Our results allow a re-definition of the K1 phylogeny, and indicate that the K1f haplogroup is absent or rare in present-day populations. We suggest that mtDNA Iceman´s lineage could have disappeared during demographic events starting in Europe from ~5,000 ybp. Based on the comparison of our results with published data, we propose a scenario that could explain the apparent contrast between the phylogeographic features of maternal and paternal lineages of the Tyrolean Iceman within the context of the demographic dynamics happening in Europe from 8,000 ybp.
Collapse
Affiliation(s)
- V Coia
- Accademia Europea di Bolzano (EURAC-Research), Istituto per le mummie e l´Iceman, Bolzano, Italy
| | - G Cipollini
- Accademia Europea di Bolzano (EURAC-Research), Istituto per le mummie e l´Iceman, Bolzano, Italy
| | - P Anagnostou
- Dipartimento Biologia Ambientale, Università La Sapienza, Roma, Italy
| | - F Maixner
- Accademia Europea di Bolzano (EURAC-Research), Istituto per le mummie e l´Iceman, Bolzano, Italy
| | - C Battaggia
- Dipartimento Biologia Ambientale, Università La Sapienza, Roma, Italy
| | - F Brisighelli
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - A Gómez-Carballa
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
| | - G Destro Bisol
- Dipartimento Biologia Ambientale, Università La Sapienza, Roma, Italy.,Istituto Italiano di Antropologia, Roma, Italy
| | - A Salas
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
| | - A Zink
- Accademia Europea di Bolzano (EURAC-Research), Istituto per le mummie e l´Iceman, Bolzano, Italy
| |
Collapse
|
12
|
MtDNA Haplogroup A10 Lineages in Bronze Age Samples Suggest That Ancient Autochthonous Human Groups Contributed to the Specificity of the Indigenous West Siberian Population. PLoS One 2015; 10:e0127182. [PMID: 25950581 PMCID: PMC4423966 DOI: 10.1371/journal.pone.0127182] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/13/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The craniometric specificity of the indigenous West Siberian human populations cannot be completely explained by the genetic interactions of the western and eastern Eurasian groups recorded in the archaeology of the area from the beginning of the 2nd millennium BC. Anthropologists have proposed another probable explanation: contribution to the genetic structure of West Siberian indigenous populations by ancient human groups, which separated from western and eastern Eurasian populations before the final formation of their phenotypic and genetic features and evolved independently in the region over a long period of time. This hypothesis remains untested. From the genetic point of view, it could be confirmed by the presence in the gene pool of indigenous populations of autochthonous components that evolved in the region over long time periods. The detection of such components, particularly in the mtDNA gene pool, is crucial for further clarification of early regional genetic history. RESULTS AND CONCLUSION We present the results of analysis of mtDNA samples (n = 10) belonging to the A10 haplogroup, from Bronze Age populations of West Siberian forest-steppe (V-I millennium BC), that were identified in a screening study of a large diachronic sample (n = 96). A10 lineages, which are very rare in modern Eurasian populations, were found in all the Bronze Age groups under study. Data on the A10 lineages' phylogeny and phylogeography in ancient West Siberian and modern Eurasian populations suggest that A10 haplogroup underwent a long-term evolution in West Siberia or arose there autochthonously; thus, the presence of A10 lineages indicates the possible contribution of early autochthonous human groups to the genetic specificity of modern populations, in addition to contributions of later interactions of western and eastern Eurasian populations.
Collapse
|
13
|
Messina F, Finocchio A, Rolfo MF, De Angelis F, Rapone C, Coletta M, Martínez-Labarga C, Biondi G, Berti A, Rickards O. Traces of forgotten historical events in mountain communities in Central Italy: A genetic insight. Am J Hum Biol 2015; 27:508-19. [PMID: 25728801 DOI: 10.1002/ajhb.22677] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 11/20/2014] [Accepted: 12/20/2014] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVES Analysis of human genetic variation in mountain communities can shed light on the peopling of mountainous regions, perhaps revealing whether the remote geographic location spared them from outside invasion and preserved their gene pool from admixture. In this study, we created a model to assess genetic traces of historical events by reconstructing the paternal and maternal genetic history of seven small mountain villages in inland valleys of Central Italy. METHODS The communities were selected for their geographic isolation, attested biodemographic stability, and documented history prior to the Roman conquest. We studied the genetic structure by analyzing two hypervariable segments (HVS-I and HVS-II) of the mtDNA D-loop and several informative single nucleotide polymorphisms (SNPs) of the mtDNA coding region in 346 individuals, in addition to 17 short tandem repeats (STRs) and Y-chromosome SNPs in 237 male individuals. RESULTS For both uniparental markers, most of the haplogroups originated in Western Europe while some Near Eastern haplogroups were identified at low frequencies. However, there was an evident genetic similarity between the Central Italian samples and Near Eastern populations mainly in the male genetic pool. CONCLUSIONS The samples highlight an overall European genetic pattern both for mtDNA and Y chromosome. Notwithstanding this scenario, Y chromosome haplogroup Q, a common paternal lineage in Central/Western Asia but almost Europe-wide absent, was found, suggesting that Central Italy could have hosted a settlement from Anatolia that might be supported by cultural, topographic and genetic evidence.
Collapse
Affiliation(s)
- Francesco Messina
- Department of Biology, Center of Molecular Anthropology for ancient DNA study, University of Rome 'Tor Vergata', Via della Ricerca Scientifica n. 1, 00133, Rome, Italy
| | - Andrea Finocchio
- Department of Biology, Center of Molecular Anthropology for ancient DNA study, University of Rome 'Tor Vergata', Via della Ricerca Scientifica n. 1, 00133, Rome, Italy
| | - Mario Federico Rolfo
- Department of Historical, Philosophical and Social Sciences, Cultural and Territory Heritage, University of Rome 'Tor Vergata', Via Columbia n. 1, 00173, Rome, Italy
| | - Flavio De Angelis
- Department of Biology, Center of Molecular Anthropology for ancient DNA study, University of Rome 'Tor Vergata', Via della Ricerca Scientifica n. 1, 00133, Rome, Italy
| | - Cesare Rapone
- Carabinieri, Scientific Investigation Department, Viale di Tor di Quinto 151, 00191, Rome, Italy
| | - Martina Coletta
- Department of Biology, Center of Molecular Anthropology for ancient DNA study, University of Rome 'Tor Vergata', Via della Ricerca Scientifica n. 1, 00133, Rome, Italy
| | - Cristina Martínez-Labarga
- Department of Biology, Center of Molecular Anthropology for ancient DNA study, University of Rome 'Tor Vergata', Via della Ricerca Scientifica n. 1, 00133, Rome, Italy
| | - Gianfranco Biondi
- Department of Environmental Sciences, University of L'Aquila, Via Vetoio, 67010, L'Aquila, Italy
| | - Andrea Berti
- Carabinieri, Scientific Investigation Department, Viale di Tor di Quinto 151, 00191, Rome, Italy
| | - Olga Rickards
- Department of Biology, Center of Molecular Anthropology for ancient DNA study, University of Rome 'Tor Vergata', Via della Ricerca Scientifica n. 1, 00133, Rome, Italy
| |
Collapse
|
14
|
Kutanan W, Srikummool M, Pittayaporn P, Seielstad M, Kangwanpong D, Kumar V, Prombanchachai T, Chantawannakul P. Admixed origin of the Kayah (Red Karen) in Northern Thailand revealed by biparental and paternal markers. Ann Hum Genet 2015; 79:108-21. [PMID: 25590861 DOI: 10.1111/ahg.12100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 11/27/2014] [Indexed: 11/27/2022]
Abstract
This study analyzes the autosomal short tandem repeats (STRs) variation and the presence of Y chromosomal haplogroups from 44 individuals of the Kayah or Red Karen (KA) in Northern Thailand. The results based on autosomal STRs indicated that the KA exhibited closer genetic relatedness to populations from adjacent regions in Southeast Asia (SEA) than populations from Northeast Asia (NEA) and Tibet. Moreover, an admixed origin of the KA forming three population groups was observed: NEA, Southern China, and Northern Thailand. The NEA populations made a minor genetic contribution to the KA, while the rest came from populations speaking Sino-Tibetan (ST) languages from Southern China and Tai-Kadai (TK) speaking groups from Northern Thailand. The presence of six paternal haplogroups, composed of dual haplogroups prevalent in NEA (NO, N, and D1) and SEA (O2 and O3) as well as the intermediate genetic position of the KA between the SEA and NEA also indicated an admixed origin of male KA lineages. Our genetic results thus agree with findings in linguistics that Karenic languages are ST languages that became heavily influenced by TK during their southward spread. A result of the Mongol invasions during the 13th century A.D. is one possible explanation for genetic contribution of NEA to the KA.
Collapse
Affiliation(s)
- Wibhu Kutanan
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Kutanan W, Ghirotto S, Bertorelle G, Srithawong S, Srithongdaeng K, Pontham N, Kangwanpong D. Geography has more influence than language on maternal genetic structure of various northeastern Thai ethnicities. J Hum Genet 2014; 59:512-20. [PMID: 25078355 DOI: 10.1038/jhg.2014.64] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 11/09/2022]
Abstract
Several literatures have shown the influence of geographic and linguistic factors in shaping genetic variation patterns, but their relative impact, if any, in the very heterogeneous northeastern region of Thailand has not yet been studied. This area, called Isan, is geographically structured in two wide basins, the Sakon Nakorn Basin and the Korat Basin, serving today as home to diverse ethnicities encompassing two different linguistic families, that is, the Austro-Asiatic; Suay (Kui), Mon, Chaobon (Nyahkur), So and Khmer, and the Tai-Kadai; Saek, Nyaw, Phu Tai, Kaleung and Lao Isan. In this study, we evaluated the relative role of geographic distance and barriers as well as linguistic differences as possible causes affecting the maternal genetic distances among northeastern Thai ethnicities. A 596-bp segment of the hypervariable region I mitochondrial DNA was utilized to elucidate the genetic structure and biological affinity from 433 individuals. Different statistical analyses agreed in suggesting that most ethnic groups in the Sakon Nakorn Basin are closely related. Mantel test revealed that genetic distances were highly associated to geographic (r = 0.445, P<0.01) but not to linguistic (r = 0.001, P>0.01) distances. Three evolutionary models were compared by Approximate Bayesian Computation. The posterior probability of the scenario, which assumed an initial population divergence possibly related to reduced gene flow among basins, was equal or higher than 0.87. All analyses exhibited concordant results supporting that geography was the most relevant factor in determining the maternal genetic structure of northeastern Thai populations.
Collapse
Affiliation(s)
- Wibhu Kutanan
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Silvia Ghirotto
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giorgio Bertorelle
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Suparat Srithawong
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | | | - Nattapon Pontham
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Daoroong Kangwanpong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
16
|
Coia V, Capocasa M, Anagnostou P, Pascali V, Scarnicci F, Boschi I, Battaggia C, Crivellaro F, Ferri G, Alù M, Brisighelli F, Busby GBJ, Capelli C, Maixner F, Cipollini G, Viazzo PP, Zink A, Destro Bisol G. Demographic histories, isolation and social factors as determinants of the genetic structure of Alpine linguistic groups. PLoS One 2013; 8:e81704. [PMID: 24312576 PMCID: PMC3847036 DOI: 10.1371/journal.pone.0081704] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/15/2013] [Indexed: 11/25/2022] Open
Abstract
Great European mountain ranges have acted as barriers to gene flow for resident populations since prehistory and have offered a place for the settlement of small, and sometimes culturally diverse, communities. Therefore, the human groups that have settled in these areas are worth exploring as an important potential source of diversity in the genetic structure of European populations. In this study, we present new high resolution data concerning Y chromosomal variation in three distinct Alpine ethno-linguistic groups, Italian, Ladin and German. Combining unpublished and literature data on Y chromosome and mitochondrial variation, we were able to detect different genetic patterns. In fact, within and among population diversity values observed vary across linguistic groups, with German and Italian speakers at the two extremes, and seem to reflect their different demographic histories. Using simulations we inferred that the joint effect of continued genetic isolation and reduced founding group size may explain the apportionment of genetic diversity observed in all groups. Extending the analysis to other continental populations, we observed that the genetic differentiation of Ladins and German speakers from Europeans is comparable or even greater to that observed for well known outliers like Sardinian and Basques. Finally, we found that in south Tyroleans, the social practice of Geschlossener Hof, a hereditary norm which might have favored male dispersal, coincides with a significant intra-group diversity for mtDNA but not for Y chromosome, a genetic pattern which is opposite to those expected among patrilocal populations. Together with previous evidence regarding the possible effects of “local ethnicity” on the genetic structure of German speakers that have settled in the eastern Italian Alps, this finding suggests that taking socio-cultural factors into account together with geographical variables and linguistic diversity may help unveil some yet to be understood aspects of the genetic structure of European populations.
Collapse
MESH Headings
- Chromosomes, Human, Y/genetics
- Demography/history
- Ethnicity/genetics
- Ethnicity/history
- Evolution, Molecular
- Female
- Gene Flow
- Genetic Variation
- History, 15th Century
- History, 16th Century
- History, 17th Century
- History, 18th Century
- History, 19th Century
- History, 20th Century
- History, 21st Century
- Humans
- Linguistics
- Male
- Mitochondria/genetics
- Polymorphism, Single Nucleotide
- White People/ethnology
- White People/genetics
- White People/history
Collapse
Affiliation(s)
- Valentina Coia
- Accademia Europea di Bolzano (EURAC), Istituto per le Mummie e l'Iceman, Bolzano, Italy
- * E-mail: (VC); (GDB)
| | - Marco Capocasa
- Dipartimento Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
- Istituto Italiano di Antropologia, Rome, Italy
| | - Paolo Anagnostou
- Istituto Italiano di Antropologia, Rome, Italy
- Dipartimento Biologia Ambientale, Sapienza Università di Roma, Rome, Italy
| | - Vincenzo Pascali
- Istituto di Medicina Legale e delle Assicurazioni, Università Cattolica di Roma, Rome, Italy
| | - Francesca Scarnicci
- Istituto di Medicina Legale e delle Assicurazioni, Università Cattolica di Roma, Rome, Italy
| | - Ilaria Boschi
- Istituto di Medicina Legale e delle Assicurazioni, Università Cattolica di Roma, Rome, Italy
| | - Cinzia Battaggia
- Dipartimento Biologia Ambientale, Sapienza Università di Roma, Rome, Italy
| | - Federica Crivellaro
- Sezione di Antropologia, Museo Nazionale Preistorico Etnografico “Luigi Pigorini”, Rome, Italy
| | - Gianmarco Ferri
- Dipartimento Integrato di Servizi Diagnostici e di Laboratorio e di Medicina Legale, Università di Modena e Reggio Emilia, Modena, Italy
| | - Milena Alù
- Dipartimento Integrato di Servizi Diagnostici e di Laboratorio e di Medicina Legale, Università di Modena e Reggio Emilia, Modena, Italy
| | - Francesca Brisighelli
- Istituto di Medicina Legale e delle Assicurazioni, Università Cattolica di Roma, Rome, Italy
| | | | - Cristian Capelli
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Frank Maixner
- Accademia Europea di Bolzano (EURAC), Istituto per le Mummie e l'Iceman, Bolzano, Italy
| | - Giovanna Cipollini
- Accademia Europea di Bolzano (EURAC), Istituto per le Mummie e l'Iceman, Bolzano, Italy
| | - Pier Paolo Viazzo
- Dipartimento Culture, Politica e Società-Sezione Scienze Antropologiche, Università degli Studi di Torino, Turin, Italy
| | - Albert Zink
- Accademia Europea di Bolzano (EURAC), Istituto per le Mummie e l'Iceman, Bolzano, Italy
| | - Giovanni Destro Bisol
- Istituto Italiano di Antropologia, Rome, Italy
- Dipartimento Biologia Ambientale, Sapienza Università di Roma, Rome, Italy
- * E-mail: (VC); (GDB)
| |
Collapse
|
17
|
Detecting Sex-Biased Gene Flow in African-Americans through the Analysis of Intra- and Inter-Population Variation at Mitochondrial DNA and Y- Chromosome Microsatellites. Balkan J Med Genet 2013; 15:7-14. [PMID: 24052726 PMCID: PMC3776662 DOI: 10.2478/bjmg-2013-0001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This study reports on variations at the mitochondrial DNA (mtDNA) hypervariable region 1 (HVR-1) and at seven Y-chromosome microsatellites in an African-American population sample from Chicago, IL, USA. Our results support the hypothesis that the population studied had undergone a European male-biased gene flow. We show that comparisons of intra-and inter-population diversity parameters between African-Americans, Europeans and Africans may help detect sex-biased gene flow, providing a complement to quantitative methods to estimate genetic admixture.
Collapse
|
18
|
Capocasa M, Taglioli L, Anagnostou P, Paoli G, Danubio ME. Determinants of marital behaviour in five Apennine communities of Central Italy inferred by surname analysis, repeated pairs and kinship estimates. HOMO-JOURNAL OF COMPARATIVE HUMAN BIOLOGY 2013; 65:64-74. [PMID: 24012323 DOI: 10.1016/j.jchb.2013.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 07/23/2013] [Indexed: 10/26/2022]
Abstract
The work makes use of surname analysis, repeated pairs and kinship estimates in 11,009 marriage records celebrated in five communities of the Italian Central Apennine (Celano, Lecce dei Marsi, Ortucchio, Roio, Villavallelonga) from 1802 to 1965 with the objective to deepen knowledge of the relative influence of several determinants on their marital behaviour. These towns are part of the same geographic and economic environment: the slopes of the ancient Fucino Lake. This work further elaborates the results from previous studies on the bio-demographic model of the region. The data were analyzed according to three periods of approximately 50 years. Results show the highest inbreeding coefficients in the pastoral towns of Roio and Villavallelonga. Repeated pair analysis highlights a certain degree of population subdivision which declined in time in Celano, Lecce dei Marsi and Ortucchio. The highest and increasing values of RP-RPr in time in Roio suggest a general reduction in genetic heterogeneity. This is possibly due to the celebration of marriages among families selected on the economic basis of pastoralism, as this town historically has had a leading tradition of sheep-farming. Villavallelonga, excluding isonymous marriages, shows an increase in repeated pair unions in time, thus revealing a substructure with marriages among preferred lineages. This is in line with previous results on consanguineous marriages which indicated the tendency of avoiding unions between close relatives in this small geographic isolate. This study demonstrates the influence of geographical (altitude) and social factors (pastoralism) on the marital structures of the investigated populations.
Collapse
Affiliation(s)
- M Capocasa
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; Istituto Italiano di Antropologia, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - L Taglioli
- Dipartimento di Biologia, Università di Pisa, Via Luca Ghini 13, 56126 Pisa, Italy
| | - P Anagnostou
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; Istituto Italiano di Antropologia, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - G Paoli
- Dipartimento di Biologia, Università di Pisa, Via Luca Ghini 13, 56126 Pisa, Italy
| | - M E Danubio
- Dipartimento di Medicina clinica, sanità pubblica, scienze della vita e dell'ambiente, Università di L'Aquila, Piazzale Salvatore Tommasi 1, L'Aquila, Italy; Istituto Italiano di Antropologia, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
19
|
Capocasa M, Battaggia C, Anagnostou P, Montinaro F, Boschi I, Ferri G, Alù M, Coia V, Crivellaro F, Bisol GD. Detecting genetic isolation in human populations: a study of European language minorities. PLoS One 2013; 8:e56371. [PMID: 23418562 PMCID: PMC3572090 DOI: 10.1371/journal.pone.0056371] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/08/2013] [Indexed: 12/01/2022] Open
Abstract
The identification of isolation signatures is fundamental to better understand the genetic structure of human populations and to test the relations between cultural factors and genetic variation. However, with current approaches, it is not possible to distinguish between the consequences of long-term isolation and the effects of reduced sample size, selection and differential gene flow. To overcome these limitations, we have integrated the analysis of classical genetic diversity measures with a Bayesian method to estimate gene flow and have carried out simulations based on the coalescent. Combining these approaches, we first tested whether the relatively short history of cultural and geographical isolation of four “linguistic islands” of the Eastern Alps (Lessinia, Sauris, Sappada and Timau) had left detectable signatures in their genetic structure. We then compared our findings to previous studies of European population isolates. Finally, we explored the importance of demographic and cultural factors in shaping genetic diversity among the groups under study. A combination of small initial effective size and continued genetic isolation from surrounding populations seems to provide a coherent explanation for the diversity observed among Sauris, Sappada and Timau, which was found to be substantially greater than in other groups of European isolated populations. Simulations of micro-evolutionary scenarios indicate that ethnicity might have been important in increasing genetic diversity among these culturally related and spatially close populations.
Collapse
Affiliation(s)
- Marco Capocasa
- Dipartimento Biologia e Biotecnologie “Charles Darwin”, Università La Sapienza, Rome, Italy
- Istituto Italiano di Antropologia, Rome, Italy
| | - Cinzia Battaggia
- Dipartimento di Biologia Ambientale, Università “La Sapienza”, Rome, Italy
| | - Paolo Anagnostou
- Dipartimento di Biologia Ambientale, Università “La Sapienza”, Rome, Italy
- Istituto Italiano di Antropologia, Rome, Italy
| | - Francesco Montinaro
- Facolta di Medicina, Istituto di Medicina Legale, Università Cattolica, Rome, Italy
| | - Ilaria Boschi
- Facolta di Medicina, Istituto di Medicina Legale, Università Cattolica, Rome, Italy
| | - Gianmarco Ferri
- Dipartimento ad Attività Integrata di Laboratori, Anatomia Patologica, Medicina Legale, Struttura Complessa di Medicina Legale, Università di Modena e Reggio Emilia, Modena, Italy
| | - Milena Alù
- Dipartimento ad Attività Integrata di Laboratori, Anatomia Patologica, Medicina Legale, Struttura Complessa di Medicina Legale, Università di Modena e Reggio Emilia, Modena, Italy
| | - Valentina Coia
- Dipartimento di Filosofia, Storia e Beni culturali, Universita degli Studi di Trento, Trento, Italy
| | - Federica Crivellaro
- Division of Biological Anthropology, Leverhulme Centre for Human Evolutionary Studies, Cambridge, United Kingdom
| | - Giovanni Destro Bisol
- Dipartimento di Biologia Ambientale, Università “La Sapienza”, Rome, Italy
- Dipartimento Biologia e Biotecnologie “Charles Darwin”, Università La Sapienza, Rome, Italy
- * E-mail:
| |
Collapse
|
20
|
Brisighelli F, Álvarez-Iglesias V, Fondevila M, Blanco-Verea A, Carracedo Á, Pascali VL, Capelli C, Salas A. Uniparental markers of contemporary Italian population reveals details on its pre-Roman heritage. PLoS One 2012; 7:e50794. [PMID: 23251386 PMCID: PMC3519480 DOI: 10.1371/journal.pone.0050794] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 10/24/2012] [Indexed: 11/18/2022] Open
Abstract
Background According to archaeological records and historical documentation, Italy has been a melting point for populations of different geographical and ethnic matrices. Although Italy has been a favorite subject for numerous population genetic studies, genetic patterns have never been analyzed comprehensively, including uniparental and autosomal markers throughout the country. Methods/Principal Findings A total of 583 individuals were sampled from across the Italian Peninsula, from ten distant (if homogeneous by language) ethnic communities — and from two linguistic isolates (Ladins, Grecani Salentini). All samples were first typed for the mitochondrial DNA (mtDNA) control region and selected coding region SNPs (mtSNPs). This data was pooled for analysis with 3,778 mtDNA control-region profiles collected from the literature. Secondly, a set of Y-chromosome SNPs and STRs were also analyzed in 479 individuals together with a panel of autosomal ancestry informative markers (AIMs) from 441 samples. The resulting genetic record reveals clines of genetic frequencies laid according to the latitude slant along continental Italy – probably generated by demographical events dating back to the Neolithic. The Ladins showed distinctive, if more recent structure. The Neolithic contribution was estimated for the Y-chromosome as 14.5% and for mtDNA as 10.5%. Y-chromosome data showed larger differentiation between North, Center and South than mtDNA. AIMs detected a minor sub-Saharan component; this is however higher than for other European non-Mediterranean populations. The same signal of sub-Saharan heritage was also evident in uniparental markers. Conclusions/Significance Italy shows patterns of molecular variation mirroring other European countries, although some heterogeneity exists based on different analysis and molecular markers. From North to South, Italy shows clinal patterns that were most likely modulated during Neolithic times.
Collapse
Affiliation(s)
- Francesca Brisighelli
- Unidade de Xenética, Facultade de Medicina, Instituto de Medicina Legal, Universidade de Santiago de Compostela, Galicia, Spain
- Forensic Genetics Laboratory, Institute of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Vanesa Álvarez-Iglesias
- Unidade de Xenética, Facultade de Medicina, Instituto de Medicina Legal, Universidade de Santiago de Compostela, Galicia, Spain
| | - Manuel Fondevila
- Unidade de Xenética, Facultade de Medicina, Instituto de Medicina Legal, Universidade de Santiago de Compostela, Galicia, Spain
| | - Alejandro Blanco-Verea
- Unidade de Xenética, Facultade de Medicina, Instituto de Medicina Legal, Universidade de Santiago de Compostela, Galicia, Spain
| | - Ángel Carracedo
- Unidade de Xenética, Facultade de Medicina, Instituto de Medicina Legal, Universidade de Santiago de Compostela, Galicia, Spain
- Fundación Pública Galega de Medicina Xenómica (FPGMX-SERGAS), CIBER enfermedades raras, Santiago de Compostela, Galicia, Spain
| | - Vincenzo L. Pascali
- Forensic Genetics Laboratory, Institute of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Cristian Capelli
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Antonio Salas
- Unidade de Xenética, Facultade de Medicina, Instituto de Medicina Legal, Universidade de Santiago de Compostela, Galicia, Spain
- * E-mail:
| |
Collapse
|
21
|
Montinaro F, Boschi I, Trombetta F, Merigioli S, Anagnostou P, Battaggia C, Capocasa M, Crivellaro F, Destro Bisol G, Coia V. Using forensic microsatellites to decipher the genetic structure of linguistic and geographic isolates: A survey in the eastern Italian Alps. Forensic Sci Int Genet 2012; 6:827-33. [PMID: 22595149 DOI: 10.1016/j.fsigen.2012.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 04/07/2012] [Accepted: 04/08/2012] [Indexed: 11/20/2022]
Abstract
The study of geographically and/or linguistically isolated populations could represent a potential area of interaction between population and forensic genetics. These investigations may be useful to evaluate the suitability of loci which have been selected using forensic criteria for bio-anthropological studies. At the same time, they give us an opportunity to evaluate the efficiency of forensic tools for parentage testing in groups with peculiar allele frequency profiles. Within the frame of a long-term project concerning Italian linguistic isolates, we studied 15 microsatellite loci (Identifiler kit) comprising the CODIS panel in 11 populations from the north-eastern Italian Alps (Veneto, Trentino and Friuli Venezia Giulia regions). All our analyses of inter-population differentiation highlight the genetic distinctiveness of most Alpine populations comparing them either to each other or with large and non-isolated Italian populations. Interestingly, we brought to light some aspects of population genetic structure which cannot be detected using unilinear polymorphisms. In fact, the analysis of genotypic disequilibrium between loci detected signals of population substructure when all the individuals of Alpine populations are pooled in a single group. Furthermore, despite the relatively low number of loci analyzed, genetic differentiation among Alpine populations was detected at individual level using a Bayesian method to cluster multilocus genotypes. Among the various populations studied, the four linguistic minorities (Fassa Valley, Luserna, Sappada and Sauris) showed the most pronounced diversity and signatures of a peculiar genetic ancestry. Finally, we show that database replacement may affect estimates of probability of paternity even when the local database is replaced by another based on populations which share a common genetic background but which differ in their demographic history. These findings point to the importance of considering the demographic and cultural profile of populations in forensic applications, even in a context of substantial genetic homogeneity such as that of European populations.
Collapse
Affiliation(s)
- Francesco Montinaro
- Università di Roma La Sapienza, Dipartimento di Biologia Ambientale, Roma, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|