1
|
Hosseinpour S, Razmara E, Heidari M, Rezaei Z, Ashrafi MR, Dehnavi AZ, Kameli R, Bereshneh AH, Vahidnezhad H, Azizimalamiri R, Zamani Z, Pak N, Rasulinezhad M, Mohammadi B, Ghabeli H, Ghafouri M, Mohammadi M, Zamani GR, Badv RS, Saket S, Rabbani B, Mahdieh N, Ahani A, Garshasbi M, Tavasoli AR. A comprehensive study of mutation and phenotypic heterogeneity of childhood mitochondrial leukodystrophies. Brain Dev 2024; 46:167-179. [PMID: 38129218 DOI: 10.1016/j.braindev.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE Mitochondrial leukodystrophies (MLs) are mainly caused by impairments of the mitochondrial respiratory chains. This study reports the mutation and phenotypic spectrum of a cohort of 41 pediatric patients from 39 distinct families with MLs among 320 patients with a molecular diagnosis of leukodystrophies. METHODS This study summarizes the clinical, imaging, and molecular data of these patients for five years. RESULTS The three most common symptoms were neurologic regression (58.5%), pyramidal signs (58.5%), and extrapyramidal signs (43.9%). Because nuclear DNA mutations are responsible for a high percentage of pediatric MLs, whole exome sequencing was performed on all patients. In total, 39 homozygous variants were detected. Additionally, two previously reported mtDNA variants were identified with different levels of heteroplasmy in two patients. Among 41 mutant alleles, 33 (80.4%) were missense, 4 (9.8%) were frameshift (including 3 deletions and one duplication), and 4 (9.8%) were splicing mutations. Oxidative phosphorylation in 27 cases (65.8%) and mtDNA maintenance pathways in 8 patients (19.5%) were the most commonly affected mitochondrial pathways. In total, 5 novel variants in PDSS1, NDUFB9, FXBL4, SURF1, and NDUSF1 were also detected. In silico analyses showed how each novel variant may contribute to ML pathogenesis. CONCLUSIONS The findings of this study suggest whole-exome sequencing as a strong diagnostic genetic tool to identify the causative variants in pediatric MLs. In comparison between oxidative phosphorylation (OXPHOS) and mtDNA maintenance groups, brain stem and periaqueductal gray matter (PAGM) involvement were more commonly seen in OXPHOS group (P value of 0.002 and 0.009, respectively), and thinning of corpus callosum was observed more frequently in mtDNA maintenance group (P value of 0.042).
Collapse
Affiliation(s)
- Sareh Hosseinpour
- Department of Pediatric Neurology, Vali-e-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Razmara
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Morteza Heidari
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Rezaei
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Ashrafi
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Zare Dehnavi
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Reyhaneh Kameli
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ali Hosseini Bereshneh
- Prenatal Diagnosis and Genetic Research Center, Dastgheib Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Vahidnezhad
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, USA; Department of Pediatrics, The University of Pennsylvania School of Medicine, Philadelphia, USA
| | - Reza Azizimalamiri
- Department of Pediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Zamani
- MD, MPH, Community Medicine Specialist, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Pak
- Department of Radiology, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Rasulinezhad
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram Mohammadi
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Ghabeli
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ghafouri
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Mohammadi
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholam Reza Zamani
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shervin Badv
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Sasan Saket
- Iranian Child Neurology Center of Excellence, Pediatric Neurology Research Center, Research Institute for Children Health, Mofid Children's and Shohada-e Tajrish Hospitals, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Rabbani
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nejat Mahdieh
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran; Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Ahani
- Mendel Medical Genetics Laboratory, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Jalal-Al Ahmad Hwy, Tarbiat Modares University, Tehran, Iran.
| | - Ali Reza Tavasoli
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Neurology Division, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA.
| |
Collapse
|
2
|
Tripathi K, Ben-Shachar D. Mitochondria in the Central Nervous System in Health and Disease: The Puzzle of the Therapeutic Potential of Mitochondrial Transplantation. Cells 2024; 13:410. [PMID: 38474374 PMCID: PMC10930936 DOI: 10.3390/cells13050410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Mitochondria, the energy suppliers of the cells, play a central role in a variety of cellular processes essential for survival or leading to cell death. Consequently, mitochondrial dysfunction is implicated in numerous general and CNS disorders. The clinical manifestations of mitochondrial dysfunction include metabolic disorders, dysfunction of the immune system, tumorigenesis, and neuronal and behavioral abnormalities. In this review, we focus on the mitochondrial role in the CNS, which has unique characteristics and is therefore highly dependent on the mitochondria. First, we review the role of mitochondria in neuronal development, synaptogenesis, plasticity, and behavior as well as their adaptation to the intricate connections between the different cell types in the brain. Then, we review the sparse knowledge of the mechanisms of exogenous mitochondrial uptake and describe attempts to determine their half-life and transplantation long-term effects on neuronal sprouting, cellular proteome, and behavior. We further discuss the potential of mitochondrial transplantation to serve as a tool to study the causal link between mitochondria and neuronal activity and behavior. Next, we describe mitochondrial transplantation's therapeutic potential in various CNS disorders. Finally, we discuss the basic and reverse-translation challenges of this approach that currently hinder the clinical use of mitochondrial transplantation.
Collapse
Affiliation(s)
| | - Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, P.O. Box 9649, Haifa 31096, Israel;
| |
Collapse
|
3
|
Jia Y, Cheng S, Liu L, Cheng B, Liang C, Ye J, Chu X, Yao Y, Wen Y, Kafle OP, Zhang F. Evaluating the Genetic Effects of Gut Microbiota on the Development of Neuroticism and General Happiness: A Polygenic Score Analysis and Interaction Study Using UK Biobank Data. Genes (Basel) 2023; 14:156. [PMID: 36672898 PMCID: PMC9858947 DOI: 10.3390/genes14010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Limited efforts have been invested in exploring the interaction effects between genetic factors and gut microbiota on neuroticism and general happiness. The polygenic risk scores (PRS) of gut microbiota were calculated from individual-level genotype data of the UK Biobank cohort. Linear regression models were then used to assess the associations between individual PRS of gut microbiota and mental traits and interaction analysis was performed by PLINK2.0. KOBAS-i was used to conduct gene ontology (GO) enrichment analysis of the identified genes. We observed suggestive significant associations between neuroticism and PRS for the genus Bifidobacterium (rank-normal transformation, RNT) (beta = -1.10, P = 4.16 × 10-3) and the genus Desulfovibrio (RNT) (beta = 0.54, P = 7.46 × 10-3). PRS for the genus Bifidobacterium (hurdle binary, HB) (beta = 1.99, P = 5.24 × 10-3) and the genus Clostridium (RNT) (beta = 1.26, P = 9.27 × 10-3) were found to be suggestive positively associated with general happiness. Interaction analysis identified several significant genes that interacted with gut microbiota, such as RORA (rs575949009, beta = -45.00, P = 1.82 × 10-9) for neuroticism and ASTN2 (rs36005728, beta = 19.15, P = 3.37 × 10-8) for general happiness. Our study results support the genetic effects of gut microbiota on the development of neuroticism and general happiness.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
4
|
Wang D, Wang Y, Chen Y, Yu L, Wu Z, Liu R, Ren J, Fang X, Zhang C. Differences in inflammatory marker profiles and cognitive functioning between deficit and nondeficit schizophrenia. Front Immunol 2022; 13:958972. [PMID: 36341400 PMCID: PMC9627304 DOI: 10.3389/fimmu.2022.958972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Deficit schizophrenia (DS) patient is a homogenous subtype of schizophrenia that includes primary and enduring negative symptoms. This study aimed to compare the differences in cognitive functioning and plasma levels of C-reactive protein (CRP) and inflammatory cytokines among DS patients, nondeficit schizophrenia (NDS) patients, and healthy controls (HCs). A total of 141 schizophrenia patients and 67 HCs were included in this study. The schizophrenia patients were divided into DS (N= 51) and NDS (N=90) groups based on the Proxy for the Deficit Syndrome Scale (PDS). The Positive and Negative Syndrome Scale (PANSS) and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) were used to evaluate the clinical symptoms and cognitive performances, respectively. The plasma level of CRP, IL-1β, Il-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-17, TNF-α, and IFN-γ were measured using enzyme-linked immunosorbent assays (ELISAs). Our results showed that DS patients had the worst cognitive performance, especially in the immediate memory, attention, and language dimensions, compared to the NDS and HC groups. Compared to the HCs group, DS patients had higher levels of CRP, IL-1β, IL-6, IL-8, IFN-γ, and total proinflammatory cytokines, and NDS patients had higher levels of IL-1β, IFN-γ, and proinflammatory cytokines. We also found that CRP levels were significantly increased in DS patients compared to NDS patients. Moreover, stepwise logistic regression analysis revealed that CRP is an independent risk factor for DS. Sex stratification analysis showed significant differences in almost all cytokines in female samples but not in male samples. The significant differences in cognitive performance and inflammatory components among groups suggest that deficit syndrome is an independent endophenotype of schizophrenia patients with unique immune-inflammatory features, but may have sex characteristics.
Collapse
Affiliation(s)
- Dandan Wang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yewei Wang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Chen
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingfang Yu
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zenan Wu
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruimei Liu
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juanjuan Ren
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Fang
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Xinyu Fang, ; Chen Zhang,
| | - Chen Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xinyu Fang, ; Chen Zhang,
| |
Collapse
|
5
|
HSPB1 Gene Variants and Schizophrenia: A Case-Control Study in a Polish Population. DISEASE MARKERS 2022; 2022:4933011. [PMID: 35340410 PMCID: PMC8941579 DOI: 10.1155/2022/4933011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 02/01/2022] [Accepted: 03/01/2022] [Indexed: 11/20/2022]
Abstract
Schizophrenia (SCZ) is a severe psychiatric disorder that has a significant genetic component. HSPB1 (HSP27) is known for its neuroprotective functions under stress conditions and appears to play an important role during the development of the central nervous system, which is in agreement with the neurodevelopmental hypothesis of SCZ. The aim of the present case-control study was to investigate whether HSPB1 variants contribute to the risk and clinical features (age of onset, symptoms, and suicidal behavior) of SCZ in a Polish population. To the best of our knowledge, this is the first study that investigated the association between the HSPB1 polymorphisms and SCZ. Three SNPs of HSPB1 (rs2868370, rs2868371, and rs7459185) were genotyped in a total of 1082 (403 patients and 679 controls) unrelated subjects using TaqMan assays. The results showed that the genotypes, alleles, and haplotypes of the three SNPs were not significantly different between the schizophrenic patients and healthy controls either in the overall analysis or in the gender-stratified analysis (all p > 0.05). However, we did find a significant effect of the rs2868371 genotype on the age of onset, negative symptoms, and disorganized symptoms in the five-factor model of PANSS (all p < 0.01). Post hoc comparisons showed that carriers of the rs2868371 G/G genotype had significantly higher negative and disorganized factor scores than those with the C/G and C/C genotypes, respectively. Further investigations with other larger independent samples are required to confirm our findings and to better explore the effect of the HSPB1 polymorphisms on the risk and symptomatology of SCZ.
Collapse
|
6
|
Liu R, Tang W, Wang W, Xu F, Fan W, Zhang Y, Zhang C. NLRP3 Influences Cognitive Function in Schizophrenia in Han Chinese. Front Genet 2021; 12:781625. [PMID: 34956329 PMCID: PMC8702823 DOI: 10.3389/fgene.2021.781625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022] Open
Abstract
It has been proposed that immune abnormalities may be implicated with pathophysiology of schizophrenia. The nod-like receptor pyrin domain-contraining protein 3 (NLRP3) can trigger immune-inflammatory cascade reactions. In this study, we intended to identify the role of gene encoding NLRP3 (NLRP3) in susceptibility to schizophrenia and its clinical features. For the NLRP3 mRNA expression analysis, 53 drug-naïve patients with first-episode schizophrenia and 56 healthy controls were enrolled. For the genetic study, a total of 823 schizophrenia patients and 859 controls were recruited. Among them, 239 drug-naïve patients with first-episode schizophrenia were enrolled for clinical evaluation. There is no significant difference in NLRP3 mRNA levels between patients with schizophrenia and healthy controls (p = 0.07). We did not observe any significant differences in allele and genotype frequencies of rs10754558 polymorphism between the schizophrenia and control groups. We noticed significant differences in the scores of RBANS attention and total scores between the patients with different genotypes of rs10754558 polymorphism (p = 0.001 and p < 0.01, respectively). Further eQTL analysis presented a significant association between the rs10754558 polymorphism and NLRP3 in frontal cortex (p = 0.0028, p = 0.028 after Bonferroni correction). Although our findings did not support NLRP3 confer susceptibility to schizophrenia, NLRP3 may be a risk factor for cognitive impairment, especially attention deficit in this disorder.
Collapse
Affiliation(s)
- Ruimei Liu
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Tang
- Department of Psychiatry, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weiping Wang
- Department of Psychiatry, Jinhua Second Hospital, Jinhua, China
| | - Feikang Xu
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weixing Fan
- Department of Psychiatry, Jinhua Second Hospital, Jinhua, China
| | - Yi Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Peng L, Ma W, Xie Q, Chen B. Identification and validation of hub genes for diabetic retinopathy. PeerJ 2021; 9:e12126. [PMID: 34603851 PMCID: PMC8445088 DOI: 10.7717/peerj.12126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/17/2021] [Indexed: 12/23/2022] Open
Abstract
Background Diabetic retinopathy (DR) is characterized by a gradually progressive alteration in the retinal microvasculature that leads to middle-aged adult acquired persistent blindness. Limited research has been conducted on DR pathogenesis at the gene level. Thus, we aimed to reveal novel key genes that might be associated with DR formation via a bioinformatics analysis. Methods The GSE53257 dataset from the Gene Expression Omnibus was downloaded for gene co-expression analysis. We identified significant gene modules via the Weighted Gene Co-expression Network Analysis, which was conducted by the Protein-Protein Interaction (PPI) Network via Cytoscape and from this we screened for key genes and gene sets for particular functional and pathway-specific enrichments. The hub gene expression was verified by real-time PCR in DR rats modeling and an external database. Results Two significant gene modules were identified. Significant key genes were predominantly associated with mitochondrial function, fatty acid oxidation and oxidative stress. Among all key genes analyzed, six up-regulated genes (i.e., SLC25A33, NDUFS1, MRPS23, CYB5R1, MECR, and MRPL15) were highly and significantly relevant in the context of DR formation. The PCR results showed that SLC25A33 and NDUFS1 expression were increased in DR rats modeling group. Conclusion Gene co-expression network analysis highlights the importance of mitochondria and oxidative stress in the pathophysiology of DR. DR co-expressing gene module was constructed and key genes were identified, and both SLC25A33 and NDUFS1 may serve as potential biomarker and therapeutic target for DR.
Collapse
Affiliation(s)
- Li Peng
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Department of Ophthalmology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, China
| | - Wei Ma
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qing Xie
- Department of Ophthalmology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, China
| | - Baihua Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Zou R, Tao J, Qiu J, Shi W, Zou M, Chen W, Li W, Zhou N, Wang S, Ma L, Chen X. Ndufs1 Deficiency Aggravates the Mitochondrial Membrane Potential Dysfunction in Pressure Overload-Induced Myocardial Hypertrophy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5545261. [PMID: 33763166 PMCID: PMC7952157 DOI: 10.1155/2021/5545261] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/03/2021] [Accepted: 02/18/2021] [Indexed: 12/11/2022]
Abstract
Mitochondrial dysfunction has been suggested to be the key factor in the development and progression of cardiac hypertrophy. The onset of mitochondrial dysfunction and the mechanisms underlying the development of cardiac hypertrophy (CH) are incompletely understood. The present study is based on the use of multiple bioinformatics analyses for the organization and analysis of scRNA-seq and microarray datasets from a transverse aortic constriction (TAC) model to examine the potential role of mitochondrial dysfunction in the pathophysiology of CH. The results showed that NADH:ubiquinone oxidoreductase core subunit S1- (Ndufs1-) dependent mitochondrial dysfunction plays a key role in pressure overload-induced CH. Furthermore, in vivo animal studies using a TAC mouse model of CH showed that Ndufs1 expression was significantly downregulated in hypertrophic heart tissue compared to that in normal controls. In an in vitro model of angiotensin II- (Ang II-) induced cardiomyocyte hypertrophy, Ang II treatment significantly downregulated the expression of Ndufs1 in cardiomyocytes. In vitro mechanistic studies showed that Ndufs1 knockdown induced CH; decreased the mitochondrial DNA content, mitochondrial membrane potential (MMP), and mitochondrial mass; and increased the production of mitochondrial reactive oxygen species (ROS) in cardiomyocytes. On the other hand, Ang II treatment upregulated the expression levels of atrial natriuretic peptide, brain natriuretic peptide, and myosin heavy chain beta; decreased the mitochondrial DNA content, MMP, and mitochondrial mass; and increased mitochondrial ROS production in cardiomyocytes. The Ang II-mediated effects were significantly attenuated by overexpression of Ndufs1 in rat cardiomyocytes. In conclusion, our results demonstrate downregulation of Ndufs1 in hypertrophic heart tissue, and the results of mechanistic studies suggest that Ndufs1 deficiency may cause mitochondrial dysfunction in cardiomyocytes, which may be associated with the development and progression of CH.
Collapse
Affiliation(s)
- Rongjun Zou
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Jun Tao
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Junxiong Qiu
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Wanting Shi
- Department of Paediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Minghui Zou
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Weidan Chen
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Wenlei Li
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Na Zhou
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Shaoli Wang
- Department of Surgical Nursing, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Li Ma
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Xinxin Chen
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| |
Collapse
|
9
|
Omega-3 fatty acids ameliorate cognitive dysfunction in schizophrenia patients with metabolic syndrome. Brain Behav Immun 2020; 88:529-534. [PMID: 32304881 DOI: 10.1016/j.bbi.2020.04.034] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 11/23/2022] Open
Abstract
Our previous study showed that metabolic abnormalities reduced the levels of brain-derived neurotrophic factor (BDNF) and deteriorated cognitive performance in patients with schizophrenia. Inflammation may play a key role in this process. Omega-3 fatty acids have been documented to ameliorate inflammation. Therefore, we hypothesized that omega-3 fatty acids may be of value in enhancing BDNF levels and improving cognitive function in patients with schizophrenia with metabolic syndrome (MetS). We recruited 80 patients with both schizophrenia and MetS who received long-term olanzapine monotherapy. The enzyme-linked immunosorbent assay was used to measure the plasma levels of C-reactive protein (CRP), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α). The patients were randomly assigned to the OMG-3 group (n = 40) or the placebo group (n = 40). Of the 80 patients who consented to the study, 72 completed this 12-week RCT. The primary outcome was the changes from baseline to 12 weeks in clinical characteristics and the levels of BDNF, CRP, IL-6 and TNF-α. There was a significant correlation between omega-3 fatty acid treatment and enhanced delayed memory factor in the RBANS assessment (Fgroup×time = 6.82; df = 1, 66; P = 0.01) when the patients completed this study. Along with cognitive improvement, omega-3 fatty acids enhanced BDNF (Fgroup×time = 4.93; df = 1, 66; P = 0.03) and reduced CRP (Fgroup×time = 17.11; df = 1, 66; P < 0.01), IL-6 (Fgroup×time = 9.71; df = 1, 66; P < 0.004) and TNF-α (Fgroup×time = 6.71; df = 1, 66; P = 0.012) levels after 12 weeks of treatment. The changes in BDNF levels are negatively correlated with the changes in TNF-α levels (r = -0.37, P = 0.03) but not with the changes in CRP and IL-6 levels. Our findings provide suggestive evidence that omega-3 fatty acids have beneficial effects on cognitive function in patients with MetS, which is paralleled by enhanced BDNF levels.
Collapse
|
10
|
Bergman O, Karry R, Milhem J, Ben-Shachar D. NDUFV2 pseudogene (NDUFV2P1) contributes to mitochondrial complex I deficits in schizophrenia. Mol Psychiatry 2020; 25:805-820. [PMID: 30531937 DOI: 10.1038/s41380-018-0309-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/06/2018] [Accepted: 11/14/2018] [Indexed: 12/18/2022]
Abstract
Mitochondria together with other cellular components maintain a constant crosstalk, modulating transcriptional and posttranslational processes. We and others demonstrated mitochondrial multifaceted dysfunction in schizophrenia, with aberrant complex I (CoI) as a major cause. Here we show deficits in CoI activity and homeostasis in schizophrenia-derived cell lines. Focusing on a core CoI subunit, NDUFV2, one of the most severely affected subunits in schizophrenia, we observed reduced protein level and functioning, with no change in mRNA transcripts. We further show that NDUFV2 pseudogene (NDUFV2P1) expression is increased in schizophrenia-derived cells and in postmortem brain specimens. In schizophrenia and controls pooled samples, NDUFV2P1 level demonstrated a significant inverse correlation with NDUFV2 pre- and matured protein level and with CoI-driven cellular respiration. Our data suggest a role for a pseudogene in its parent-gene regulation and possibly in CoI dysfunction in schizophrenia. The abnormal expression of the pseudogene may be one element of a vicious circle in which CoI deficits lead to mitochondrial dysfunction potentially affecting genome-wide regulation of gene expression, including the expression of pseudogenes.
Collapse
Affiliation(s)
- Oded Bergman
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, B. Rappaport Faculty of Medicine and Rappaport Family Institute for Research in Medical Sciences, Technion-Israel Institute of Technology, Haifa, Israel
| | - Rachel Karry
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, B. Rappaport Faculty of Medicine and Rappaport Family Institute for Research in Medical Sciences, Technion-Israel Institute of Technology, Haifa, Israel
| | - Jumana Milhem
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, B. Rappaport Faculty of Medicine and Rappaport Family Institute for Research in Medical Sciences, Technion-Israel Institute of Technology, Haifa, Israel
| | - Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, B. Rappaport Faculty of Medicine and Rappaport Family Institute for Research in Medical Sciences, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
11
|
Effects of omega-3 fatty acids on metabolic syndrome in patients with schizophrenia: a 12-week randomized placebo-controlled trial. Psychopharmacology (Berl) 2019; 236:1273-1279. [PMID: 30519766 DOI: 10.1007/s00213-018-5136-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/22/2018] [Indexed: 12/11/2022]
Abstract
RATIONALE Individuals with schizophrenia are at increased risk of developing metabolic syndrome (MetS) due to their lifestyle and antipsychotic treatment. Our previous study showed that patients with both schizophrenia and MetS present an increased expression and production of tumor necrosis factor-alpha (TNF-alpha). Omega-3 fatty acids have a documented role in suppressing TNF-alpha; therefore, we hypothesized that they may be of value in relieving inflammation and improving metabolic disturbance in patients with both schizophrenia and MetS. OBJECTIVES This study employed a randomized placebo-controlled trial to investigate the effects of omega-3 fatty acids on MetS in patients with schizophrenia. METHODS We recruited 80 patients with both schizophrenia and MetS who received long-term olanzapine monotherapy. The patients were randomly assigned to the OMG-3 group (n = 40) or the placebo group (n = 40). RESULTS Patients with both schizophrenia and MetS had significantly higher levels of TNF-alpha than the control subjects (Z = - 4.37, P < 0.01). There was a significant correlation between omega-3 fatty acid treatment and reduced triglyceride (TG) levels (Fgroup × time = 13.42; df = 1, 66; P < 0.01) when the patients completed this study. Along with metabolic improvement, omega-3 fatty acids decreased TNF-alpha levels after 12 weeks of treatment (Fgroup × time = 6.71; df = 1, 66; P = 0.012). We also found that the extent of TNF-alpha decrease was significantly correlated with that of TG decrease (r = 0.38, P = 0.001). CONCLUSIONS Our findings provide suggestive evidence that omega-3 fatty acids have beneficial effects on TG metabolism in patients with both schizophrenia and MetS that parallel decreased inflammation levels.
Collapse
|
12
|
Zhang Y, Fang X, Fan W, Tang W, Cai J, Song L, Zhang C. Brain-derived neurotrophic factor as a biomarker for cognitive recovery in acute schizophrenia: 12-week results from a prospective longitudinal study. Psychopharmacology (Berl) 2018; 235:1191-1198. [PMID: 29392373 DOI: 10.1007/s00213-018-4835-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/14/2018] [Indexed: 12/22/2022]
Abstract
RATIONALE It is generally accepted that impaired cognitive function is a core feature of schizophrenia. There is evidence for the role of brain-derived neurotrophic factor (BDNF) in cognitive function. Olanzapine was reported to yield cognitive improvement in patients with schizophrenia. OBJECTIVES In this study, we performed a prospective, open-label, 12-week observation trial to investigate whether peripheral BDNF may represent a potential biomarker for the effect of cognitive improvement induced by olanzapine in patients with schizophrenia. METHODS In total, 95 patients with acute schizophrenia were enrolled in the study. We also recruited 72 healthy individuals for a control group. The Positive and Negative Syndrome Scale (PANSS) was used to evaluate symptom severity and treatment response. Cognitive function was evaluated using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Plasma BDNF levels were measured with an enzyme-linked immunosorbent assay. RESULTS Of the 95 patients consented into the study, 68 completed the 12-week follow up. Our results showed that schizophrenia patients with acute exacerbation had significantly poorer performance than that of the controls (Ps < 0.01). A significantly decreased plasma level of BDNF in patients was observed compared with the controls (F = 7.77, P = 0.006). A significant improvement in each PANSS subscore and total score was observed when the patients completed this study (Ps < 0.01). Additionally, 12-week olanzapine treatment exhibited significant improvements in RBANS immediate memory, attention, and total scores (P = 0.018, 0.001, and 0.007, respectively). Along with the clinical improvement, plasma BDNF levels after 12-week olanzapine monotherapy (4.67 ± 1.74 ng/ml) were also significantly increased compared with those at baseline (3.38 ± 2.11 ng/ml) (P < 0.01). Spearman's correlation analysis showed that the increase in plasma levels of BDNF is significantly correlated with the change in the RBANS total scores (r = 0.28, P = 0.02) but not with the change in the PANSS total scores (r = - 0.18, P = 0.13). There is a significant correlation of BDNF increase with the change of RBANS attention subscore (r = 0.27, P = 0.028). CONCLUSIONS Our findings suggest that olanzapine improves psychiatric symptoms and cognitive dysfunction, particularly attention and immediate memory, in patients with acute schizophrenia, in parallel with increased plasma BDNF levels. Plasma BDNF levels may be a potential biomarker for cognitive recovery in acute schizophrenia.
Collapse
Affiliation(s)
- Yi Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Fang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weixing Fan
- Department of Psychiatry, Jinhua Second Hospital, Jinhua, Zhejiang, China
| | - Wei Tang
- Department of Psychiatry, Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jun Cai
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lisheng Song
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
13
|
Lu W, Zhang Y, Fang X, Fan W, Tang W, Cai J, Song L, Zhang C. Genetic association analysis of microRNA137 and its target complex 1 with schizophrenia in Han Chinese. Sci Rep 2017; 7:15084. [PMID: 29118371 PMCID: PMC5678134 DOI: 10.1038/s41598-017-15315-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/24/2017] [Indexed: 12/21/2022] Open
Abstract
Recent genome-wide association studies (GWAS) have identified a strong association signal of microRNA137 host gene (MIR137) with schizophrenia. MIR137 dysfunction results in downregulation of presynaptic target gene complexin 1 (CPLX1) and impairs synaptic plasticity in the hippocampus. In this study, we aimed to investigate whether the variants of MIR137 and CPLX1 confer susceptibility to schizophrenia in Han Chinese. This study employed 736 patients with schizophrenia patients and 751 well-matched healthy subjects for genetic analysis, and genotyped 12 SNPs within MIR137 and CPLX1. SZDB database was used to performed brain eQTL analysis. There were no significant differences of CPLX1 expression in hippocampus, prefrontal cortex or stratum between the schizophrenia patients and control subjects. No significant differences were observed in allele and genotype frequencies in studied SNPs between the case and control groups. Gene interaction analysis showed that MIR137 SNP rs1625579 did not affect schizophrenia susceptibility in interaction with the CPLX1 polymorphic variants. Our findings do not support MIR137 and CPLX1 conferring susceptibility to schizophrenia in Han Chinese.
Collapse
Affiliation(s)
- Weihong Lu
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Fang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weixing Fan
- Department of Psychiatry, Jinhua Second Hospital, Jinhua, Zhejiang, China
| | - Wei Tang
- Department of Psychiatry, Wenzhou Kangning Hospital, Wenzhou, Zhejiang, China
| | - Jun Cai
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lisheng Song
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
14
|
Xavier RM, Vorderstrasse A. Genetic Basis of Positive and Negative Symptom Domains in Schizophrenia. Biol Res Nurs 2017; 19:559-575. [PMID: 28691507 DOI: 10.1177/1099800417715907] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Schizophrenia is a highly heritable disorder, the genetic etiology of which has been well established. Yet despite significant advances in genetics research, the pathophysiological mechanisms of this disorder largely remain unknown. This gap has been attributed to the complexity of the polygenic disorder, which has a heterogeneous clinical profile. Examining the genetic basis of schizophrenia subphenotypes, such as those based on particular symptoms, is thus a useful strategy for decoding the underlying mechanisms. This review of literature examines the recent advances (from 2011) in genetic exploration of positive and negative symptoms in schizophrenia. We searched electronic databases PubMed, Web of Science, and Cumulative Index to Nursing and Allied Health Literature using key words schizophrenia, symptoms, positive symptoms, negative symptoms, cognition, genetics, genes, genetic predisposition, and genotype in various combinations. We identified 115 articles, which are included in the review. Evidence from these studies, most of which are genetic association studies, identifies shared and unique gene associations for the symptom domains. Genes associated with neurotransmitter systems and neuronal development/maintenance primarily constitute the shared associations. Needed are studies that examine the genetic basis of specific symptoms within the broader domains in addition to functional mechanisms. Such investigations are critical to developing precision treatment and care for individuals afflicted with schizophrenia.
Collapse
Affiliation(s)
| | - Allison Vorderstrasse
- 2 Duke Center for Applied Genomics and Precision Medicine, Duke University School of Nursing, Durham, NC, USA
| |
Collapse
|
15
|
Zhang C, Fang X, Yao P, Mao Y, Cai J, Zhang Y, Chen M, Fan W, Tang W, Song L. Metabolic adverse effects of olanzapine on cognitive dysfunction: A possible relationship between BDNF and TNF-alpha. Psychoneuroendocrinology 2017; 81:138-143. [PMID: 28477447 DOI: 10.1016/j.psyneuen.2017.04.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/17/2017] [Accepted: 04/21/2017] [Indexed: 11/15/2022]
Abstract
OBJECTIVE There is accumulating evidence indicating that long-term treatment with second-generation antipsychotics (SGAs) results in metabolic syndrome (MetS) and cognitive impairment. This evidence suggests an intrinsic link between antipsychotic-induced MetS and cognitive dysfunction in schizophrenia patients. Olanzapine is a commonly prescribed SGA with a significantly higher MetS risk than that of most antipsychotics. In this study, we hypothesized that olanzapine-induced MetS may exacerbate cognitive dysfunction in patients with schizophrenia. METHODS A sample of 216 schizophrenia patients receiving long-term olanzapine monotherapy were divided into two groups, MetS and non-MetS, based on the diagnostic criteria of the National Cholesterol Education Program's Adult Treatment Panel III. We also recruited 72 healthy individuals for a control group. Cognitive function was evaluated using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Plasma brain-derived neurotrophic factor (BDNF) and tumor necrosis factor-alpha (TNF-alpha) were measured by an enzyme-linked immunosorbent assay for 108 patients and 47 controls. RESULTS Among the 216 schizophrenia patients receiving olanzapine monotherapy, MetS was found in 95/216 (44%). Patients with MetS had more negative symptoms, higher total scores in PANSS (Ps<0.05) and lower immediate memory, attention, delayed memory and total scores in RBANS (Ps<0.01). Stepwise multivariate linear regression analysis revealed that increased glucose was the independent risk factor for cognitive dysfunction (t=-2.57, P=0.01). Patients with MetS had significantly lower BDNF (F=6.49, P=0.012) and higher TNF-alpha (F=5.08, P=0.026) levels than those without MetS. There was a negative correlation between the BDNF and TNF-alpha levels in the patients (r=-0.196, P=0.042). CONCLUSION Our findings provide evidence suggesting that the metabolic adverse effects of olanzapine may aggravate cognitive dysfunction in patients with schizophrenia through an interaction between BDNF and TNF-alpha.
Collapse
Affiliation(s)
- Chen Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xinyu Fang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peifen Yao
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yemeng Mao
- Department of Pharmacology, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Cai
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meijuan Chen
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weixing Fan
- Department of Psychiatry, Jinhua Second Hospital, Jinhua, Zhejiang, China
| | - Wei Tang
- Department of Psychiatry, Wenzhou Kanging Hospital, Wenzhou, Zhejiang, China
| | - Lisheng Song
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
16
|
Wang P, Cai J, Ni J, Zhang J, Tang W, Zhang C. The NCAN gene: schizophrenia susceptibility and cognitive dysfunction. Neuropsychiatr Dis Treat 2016; 12:2875-2883. [PMID: 27853371 PMCID: PMC5104293 DOI: 10.2147/ndt.s118160] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cognitive dysfunction has been recognized as a cardinal feature of schizophrenia. Elucidating the neurobiological substrates of cognitive dysfunction in schizophrenia would help identify the underlying mechanism of this disorder. The rs1064395 single nucleotide polymorphism, within the gene encoding neurocan (NCAN), is reported to be associated with schizophrenia in European populations and may influence brain structure in patients with schizophrenia. METHODS In this study, we aimed to explore whether NCAN rs1064395 confers some risk for schizophrenia and cognitive dysfunction in Han Chinese. We recruited 681 patients with schizophrenia and 699 healthy subjects. Two hundred and fifty-four patients were evaluated according to Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). RESULTS There were no significant differences in genotype or allele distributions of the rs1064395 polymorphism between the schizophrenia and control groups. Patients showed significantly poorer performance than controls on immediate memory, visuospatial skill, language, attention, delayed memory, and total RBANS score. Patients with the A/A or A/G genotype of rs1064395 had lower scores of immediate memory, visuospatial skill, attention, and total RBANS score than those with the G/G genotype. We performed an expression quantitative trait loci analysis and observed a significant association between rs1064395 and NCAN expression in the frontal (P=0.0022, P=0.022 after Bonferroni correction) and cerebellar cortex (P=0.0032, P=0.032 after Bonferroni correction). CONCLUSION Our findings indicate that this single nucleotide polymorphism may be a risk factor for cognitive dysfunction in patients with schizophrenia. Further investigations are warranted for validation purposes and to identify the precise mechanism by which rs1064395 influences cognitive performance in patients with schizophrenia.
Collapse
Affiliation(s)
- Peirong Wang
- Department of Psychiatry, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang
| | - Jun Cai
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Jianliang Ni
- Department of Psychiatry, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang
| | - Jiangtao Zhang
- Department of Psychiatry, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang
| | - Wei Tang
- Wenzhou Kangning Hospital, Wenzhou, Zhejiang, People's Republic of China
| | - Chen Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai
| |
Collapse
|
17
|
Ni J, Hu S, Zhang J, Tang W, Lu W, Zhang C. A Preliminary Genetic Analysis of Complement 3 Gene and Schizophrenia. PLoS One 2015; 10:e0136372. [PMID: 26305563 PMCID: PMC4549269 DOI: 10.1371/journal.pone.0136372] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/03/2015] [Indexed: 12/14/2022] Open
Abstract
Complement pathway activation was found to occur frequently in schizophrenia, and complement 3 (C3) plays a major role in this process. Previous studies have provided evidence for the possible role of C3 in the development of schizophrenia. In this study, we hypothesized that the gene encoding C3 (C3) may confer susceptibility to schizophrenia in Han Chinese. We analyzed 7 common single nucleotide polymorphisms (SNPs) of C3 in 647 schizophrenia patients and 687 healthy controls. Peripheral C3 mRNA expression level was measured in 23 drug-naïve patients with schizophrenia and 24 controls. Two SNPs (rs1047286 and rs2250656) that deviated from Hardy-Weinberg equilibrium were excluded for further analysis. Among the remaining 5 SNPs, there was no significant difference in allele and genotype frequencies between the patient and control groups. Logistic regression analysis showed no significant SNP-gender interaction in either dominant model or recessive model. There was no significant difference in the level of peripheral C3 expression between the drug-naïve schizophrenia patients and healthy controls. In conclusion, the results of this study do not support C3 as a major genetic susceptibility factor in schizophrenia. Other factors in AP may have critical roles in schizophrenia and be worthy of further investigation.
Collapse
Affiliation(s)
- Jianliang Ni
- Tongde Hospital of Zhejiang Province, Zhejiang, China
| | - Shuangfei Hu
- Zhejiang Provincial People’s Hospital, Zhejiang, China
| | | | - Wenxin Tang
- Hangzhou Seventh People’s Hospital, Zhejiang, China
| | - Weihong Lu
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
18
|
Do nuclear-encoded core subunits of mitochondrial complex I confer genetic susceptibility to schizophrenia in Han Chinese populations? Sci Rep 2015; 5:11076. [PMID: 26053550 PMCID: PMC4459149 DOI: 10.1038/srep11076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/15/2015] [Indexed: 01/16/2023] Open
Abstract
Schizophrenia is one of the most prevalent psychiatric disorders with complex genetic etiology. Accumulating evidence suggests that energy metabolism and oxidative stress play important roles in the pathophysiology of schizophrenia. Dysfunction of mitochondrial respiratory chain and altered expression of complex I subunits were frequently reported in schizophrenia. To investigate whether nuclear-encoded core subunit genes of mitochondrial complex I are associated with schizophrenia, we performed a genetic association study in Han Chinese. In total, 46 tag single nucleotide polymorphisms (SNPs) from 7 nuclear-encoded core genes of mitochondrial complex I were genotyped in 918 schizophrenia patients and 1042 healthy controls. We also analyzed these SNPs in a large sample mainly composed of Europeans through using the available GWAS datasets from the Psychiatric Genomics Consortium (PGC). No significant associations were detected between these SNPs and schizophrenia in Han Chinese and the PGC data set. However, we observed nominal significant associations of 2 SNPs in the NDUFS1 gene and 4 SNPs in the NDUFS2 gene with early onset schizophrenia (EOS), but none of these associations survived the Bonferroni correction. Taken together, our results suggested that common SNPs in the nuclear-encoded core subunit genes of mitochondrial complex I may not confer genetic susceptibility to schizophrenia.
Collapse
|
19
|
Cai J, Zhu Y, Zhang W, Wang Y, Zhang C. Comprehensive family therapy: an effective approach for cognitive rehabilitation in schizophrenia. Neuropsychiatr Dis Treat 2015; 11:1247-53. [PMID: 26056456 PMCID: PMC4446020 DOI: 10.2147/ndt.s83569] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Antipsychotic medication has limited abilities to improve the cognitive impairments that accompany schizophrenia. Adding psychosocial treatment may result in marked improvements in cognitive function, as compared to antipsychotic treatment alone. We hypothesized that a combination of individual and family interventions may be a useful cognitive rehabilitation paradigm for schizophrenia. MATERIALS AND METHODS An 18-month follow-up clinical trial of 256 stabilized patients with schizophrenia at six communities in Shanghai, People's Republic of China were randomly assigned to into either a comprehensive family therapy (CFT) group or a usual daily care (UDC) group. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and the Positive and Negative Syndrome Scale (PANSS) were the primary outcome instruments for this study. RESULTS There was no significant difference between the CFT and UDC for all demographic characteristics at the baseline assessment. During the 18-month follow-up observation, changes in RBANS total score indicated that patients undergoing CFT showed greater improvement from baseline to the follow-up assessments in cognitive function than those in the UDC group (F=9.77, P=0.002). Post hoc analysis showed that the CFT group presented with significant differences in the RBANS total score, immediate memory, visuospatial skill, language, attention, and delayed memory sections compared with the UDC after 18 months of follow-up (all P<0.01). CONCLUSION Our findings suggest that CFT can be easily adapted and may prove to be an effective approach for improving cognitive function in patients with schizophrenia. Our program provides a potential paradigm for cognitive rehabilitation for schizophrenia patients in the community.
Collapse
Affiliation(s)
- Jun Cai
- Center for Disease Control and Prevention, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yi Zhu
- Center for Disease Control and Prevention, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Weibo Zhang
- Center for Disease Control and Prevention, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yanfeng Wang
- Center for Disease Control and Prevention, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chen Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|