1
|
Liu L, Wu X, Tang Q, Miao Y, Bai X, Li J, Li K, Dan X, Wu Y, Yan P, Wan Q. Positive Association of Pulse Pressure with Presence of Albuminuria in Chinese Adults with Prediabetes: A Community-Based Study. Metab Syndr Relat Disord 2024; 22:302-314. [PMID: 38683639 DOI: 10.1089/met.2023.0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
Purpose: There has been limited evidence for the association between pulse pressure (PP) and proteinuria in prediabetes. The aim of our study was to explore the association between PP and albuminuria in community-dwelling Chinese adults with prediabetes. Materials and Methods: PP and urinary albumin-to-creatinine ratio (ACR) were measured in 2012 prediabetic patients and 3596 control subjects with normal glucose tolerance. Multivariate logistic regression models were used to evaluate the possible association of PP with the risk of presence of albuminuria. Results: PP was positively associated with the presence of albuminuria, and subjects in the higher PP quartiles had higher urinary ACR and presence of albuminuria as compared with those in the lowest quartile in both prediabetes and control groups (all P < 0.01). Multivariate logistic regression analysis demonstrated that the highest PP quartile was positively associated with increased risk of presence of albuminuria in all prediabetic subjects [odds ratio (OR): 2.289, 95% confidence interval (CI) 1.364-3.842, P < 0.01) and prediabetic subjects without anti-hypertensive drugs (OR: 1.932, 95% CI 1.116-3.343, P < 0.01), whereas higher PP quartile has nothing to do with the risk of presence of albuminuria in control subjects with and without anti-hypertensive drugs after adjustment for potential confounders (all P > 0.01). Consistently, stratified analysis showed that in the prediabetes group, the risks of presence of albuminuria progressively elevated with increasing PP quartiles in men, those aged 60 years or older, and with overweight/obesity, normal high-density lipoprotein cholesterol, and appropriate low-density lipoprotein cholesterol (all P for trend <0.05). Conclusion: Higher PP is independently related to increased risk of presence of albuminuria in community-dwelling Chinese adults with prediabetes.
Collapse
Affiliation(s)
- Lilan Liu
- Department of Endocrinology, Hejiang People's Hospital, Luzhou, China
| | - Xian Wu
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Qian Tang
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Ying Miao
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Xue Bai
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Jia Li
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Ke Li
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Xiaofang Dan
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Yuru Wu
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Pijun Yan
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Qin Wan
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| |
Collapse
|
2
|
Misra S, Wagner R, Ozkan B, Schön M, Sevilla-Gonzalez M, Prystupa K, Wang CC, Kreienkamp RJ, Cromer SJ, Rooney MR, Duan D, Thuesen ACB, Wallace AS, Leong A, Deutsch AJ, Andersen MK, Billings LK, Eckel RH, Sheu WHH, Hansen T, Stefan N, Goodarzi MO, Ray D, Selvin E, Florez JC, Meigs JB, Udler MS. Precision subclassification of type 2 diabetes: a systematic review. COMMUNICATIONS MEDICINE 2023; 3:138. [PMID: 37798471 PMCID: PMC10556101 DOI: 10.1038/s43856-023-00360-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Heterogeneity in type 2 diabetes presentation and progression suggests that precision medicine interventions could improve clinical outcomes. We undertook a systematic review to determine whether strategies to subclassify type 2 diabetes were associated with high quality evidence, reproducible results and improved outcomes for patients. METHODS We searched PubMed and Embase for publications that used 'simple subclassification' approaches using simple categorisation of clinical characteristics, or 'complex subclassification' approaches which used machine learning or 'omics approaches in people with established type 2 diabetes. We excluded other diabetes subtypes and those predicting incident type 2 diabetes. We assessed quality, reproducibility and clinical relevance of extracted full-text articles and qualitatively synthesised a summary of subclassification approaches. RESULTS Here we show data from 51 studies that demonstrate many simple stratification approaches, but none have been replicated and many are not associated with meaningful clinical outcomes. Complex stratification was reviewed in 62 studies and produced reproducible subtypes of type 2 diabetes that are associated with outcomes. Both approaches require a higher grade of evidence but support the premise that type 2 diabetes can be subclassified into clinically meaningful subtypes. CONCLUSION Critical next steps toward clinical implementation are to test whether subtypes exist in more diverse ancestries and whether tailoring interventions to subtypes will improve outcomes.
Collapse
Affiliation(s)
- Shivani Misra
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, UK.
| | - Robert Wagner
- Department of Endocrinology and Diabetology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Bige Ozkan
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Martin Schön
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Magdalena Sevilla-Gonzalez
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Katsiaryna Prystupa
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Caroline C Wang
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Raymond J Kreienkamp
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Diabetes Unit, Division of Endocrinology, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
| | - Sara J Cromer
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Diabetes Unit, Division of Endocrinology, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Mary R Rooney
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Daisy Duan
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anne Cathrine Baun Thuesen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amelia S Wallace
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Aaron Leong
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Diabetes Unit, Division of Endocrinology, Massachusetts General Hospital, Boston, MA, USA
- Division of General Internal Medicine, Massachusetts General Hospital, 100 Cambridge St 16th Floor, Boston, MA, USA
| | - Aaron J Deutsch
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Diabetes Unit, Division of Endocrinology, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Mette K Andersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Liana K Billings
- Division of Endocrinology, Diabetes and Metabolism, NorthShore University Health System, Skokie, IL, USA
- Department of Medicine, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Robert H Eckel
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Wayne Huey-Herng Sheu
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli County, Taiwan, ROC
- Division of Endocrinology and Metabolism, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
- Division of Endocrinology and Metabolism, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Norbert Stefan
- German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- University Hospital of Tübingen, Tübingen, Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM), Helmholtz Center Munich, Neuherberg, Germany
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Debashree Ray
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Elizabeth Selvin
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jose C Florez
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Diabetes Unit, Division of Endocrinology, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - James B Meigs
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of General Internal Medicine, Massachusetts General Hospital, 100 Cambridge St 16th Floor, Boston, MA, USA
| | - Miriam S Udler
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Diabetes Unit, Division of Endocrinology, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|