1
|
Szántó M, Yélamos J, Bai P. Specific and shared biological functions of PARP2 - is PARP2 really a lil' brother of PARP1? Expert Rev Mol Med 2024; 26:e13. [PMID: 38698556 PMCID: PMC11140550 DOI: 10.1017/erm.2024.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024]
Abstract
PARP2, that belongs to the family of ADP-ribosyl transferase enzymes (ART), is a discovery of the millennium, as it was identified in 1999. Although PARP2 was described initially as a DNA repair factor, it is now evident that PARP2 partakes in the regulation or execution of multiple biological processes as inflammation, carcinogenesis and cancer progression, metabolism or oxidative stress-related diseases. Hereby, we review the involvement of PARP2 in these processes with the aim of understanding which processes are specific for PARP2, but not for other members of the ART family. A better understanding of the specific functions of PARP2 in all of these biological processes is crucial for the development of new PARP-centred selective therapies.
Collapse
Affiliation(s)
- Magdolna Szántó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - José Yélamos
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Péter Bai
- HUN-REN-UD Cell Biology and Signaling Research Group, Debrecen, 4032, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| |
Collapse
|
2
|
Antal D, Pór Á, Kovács I, Dull K, Póliska S, Ujlaki G, Demény MÁ, Szöllősi AG, Kiss B, Szegedi A, Bai P, Szántó M. PARP2 promotes inflammation in psoriasis by modulating estradiol biosynthesis in keratinocytes. J Mol Med (Berl) 2023; 101:987-999. [PMID: 37351597 PMCID: PMC10400701 DOI: 10.1007/s00109-023-02338-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/09/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Poly(ADP-ribose) polymerase 2 (PARP2) alongside PARP1 are responsible for the bulk of cellular PARP activity, and they were first described as DNA repair factors. However, research in past decades implicated PARPs in biological functions as diverse as the regulation of cellular energetics, lipid homeostasis, cell death, and inflammation. PARP activation was described in Th2-mediated inflammatory processes, but studies focused on the role of PARP1, while we have little information on PARP2 in inflammatory regulation. In this study, we assessed the role of PARP2 in a Th17-mediated inflammatory skin condition, psoriasis. We found that PARP2 mRNA expression is increased in human psoriatic lesions. Therefore, we studied the functional consequence of decreased PARP2 expression in murine and cellular human models of psoriasis. We observed that the deletion of PARP2 attenuated the imiquimod-induced psoriasis-like dermatitis in mice. Silencing of PARP2 in human keratinocytes prevented their hyperproliferation, maintained their terminal differentiation, and reduced their production of inflammatory mediators after treatment with psoriasis-mimicking cytokines IL17A and TNFα. Underlying these observations, we found that aromatase was induced in the epidermis of PARP2 knock-out mice and in PARP2-deficient human keratinocytes, and the resulting higher estradiol production suppressed NF-κB activation, and hence, inflammation in keratinocytes. Steroidogenic alterations have previously been described in psoriasis, and we extend these observations by showing that aromatase expression is reduced in psoriatic lesions. Collectively, our data identify PARP2 as a modulator of estrogen biosynthesis by epidermal keratinocytes that may be relevant in Th17 type inflammation. KEY MESSAGES : PARP2 mRNA expression is increased in lesional skin of psoriasis patients. PARP2 deletion in mice attenuated IMQ-induced psoriasis-like dermatitis. NF-κB activation is suppressed in PARP2-deficient human keratinocytes. Higher estradiol in PARP2-deficient keratinocytes conveys anti-inflammatory effect.
Collapse
Affiliation(s)
- Dóra Antal
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem ter 1., Elettudomanyi Epulet, H-4032, Debrecen, Hungary
- The Hungarian Academy of Sciences, Center of Excellence, Budapest, Hungary
| | - Ágnes Pór
- Department of Pathology, Gyula Kenézy Campus, Clinical Centre, University of Debrecen, Debrecen, Hungary
| | - Ilona Kovács
- Department of Pathology, Gyula Kenézy Campus, Clinical Centre, University of Debrecen, Debrecen, Hungary
| | - Katalin Dull
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilárd Póliska
- Genomic Medicine and Bioinformatics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gyula Ujlaki
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem ter 1., Elettudomanyi Epulet, H-4032, Debrecen, Hungary
- The Hungarian Academy of Sciences, Center of Excellence, Budapest, Hungary
| | - Máté Ágoston Demény
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem ter 1., Elettudomanyi Epulet, H-4032, Debrecen, Hungary
- The Hungarian Academy of Sciences, Center of Excellence, Budapest, Hungary
| | - Attila Gábor Szöllősi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Borbála Kiss
- Department of Oncology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Szegedi
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Allergology Research Group, University of Debrecen, Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem ter 1., Elettudomanyi Epulet, H-4032, Debrecen, Hungary
- The Hungarian Academy of Sciences, Center of Excellence, Budapest, Hungary
- NKFIH-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group ELKH, Debrecen, Hungary
| | - Magdolna Szántó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem ter 1., Elettudomanyi Epulet, H-4032, Debrecen, Hungary.
- The Hungarian Academy of Sciences, Center of Excellence, Budapest, Hungary.
| |
Collapse
|
3
|
Savelyev NV, Shepelev NM, Lavrik OI, Rubtsova MP, Dontsova OA. PARP1 Regulates the Biogenesis and Activity of Telomerase Complex Through Modification of H/ACA-Proteins. Front Cell Dev Biol 2021; 9:621134. [PMID: 34095104 PMCID: PMC8170401 DOI: 10.3389/fcell.2021.621134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 04/26/2021] [Indexed: 11/23/2022] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) is established as a key regulator of the cellular DNA damage response and apoptosis. In addition, PARP1 participates in the global regulation of DNA repair, transcription, telomere maintenance, and inflammation response by modulating various DNA-protein and protein-protein interactions. Recently, it was reported that PARP1 also influences splicing and ribosomal RNA biogenesis. The H/ACA ribonucleoprotein complex is involved in a variety of cellular processes such as RNA maturation. It contains non-coding RNAs with specific H/ACA domains and four proteins: dyskerin (DKC1), GAR1, NHP2, and NOP10. Two of these proteins, DKC1 and GAR1, are targets of poly(ADP-ribosyl)ation catalyzed by PARP1. The H/ACA RNA-binding proteins are involved in the regulation of maturation and activity of the telomerase complex, which maintains telomere length. In this study, we demonstrated that of poly(ADP-ribosyl)ation influences on RNA-binding properties of DKC1 and GAR1 and telomerase assembly and activity. Our data provide the evidence that poly(ADP-ribosyl)ation regulates telomerase complex assembly and activity, in turn regulating telomere length that may be useful for design and development of anticancer therapeutic approaches that are based on the inhibition of PARP1 and telomerase activities.
Collapse
Affiliation(s)
- Nikita V Savelyev
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Nikita M Shepelev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Maria P Rubtsova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Olga A Dontsova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Kiss B, Szántó M, Hegedűs C, Antal D, Szödényi A, Márton J, Méhes G, Virág L, Szegedi A, Bai P. Poly(ADP-ribose) polymerase-1 depletion enhances the severity of inflammation in an imiquimod-induced model of psoriasis. Exp Dermatol 2019; 29:79-85. [PMID: 31755591 DOI: 10.1111/exd.14061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 10/05/2019] [Accepted: 11/10/2019] [Indexed: 12/21/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP1) is a pro-inflammatory protein, whose pro-inflammatory properties were demonstrated in human. The pro-inflammatory properties of PARP1 were shown in Th1- and Th2-mediated inflammatory pathologies, but not Th17-mediated inflammation. Thus, we studied the role of PARP1 in the imiquimod-induced model of psoriasis. To our surprise, in imiquimod-induced psoriasis, PARP1 acted as an anti-inflammatory factor and its genetic deletion exacerbated symptoms. We showed that in the absence of PARP1, the epidermis thickened and the number of TUNEL-positive cells decreased in the epidermis. These data indicate programmed cell death is decreased in keratinocytes. Changes in involucrin expression suggest that keratinocyte differentiation is hampered. Furthermore, epidermal expression of IL6 increased in the psoriasiform lesions of PARP1 knockout mice, suggesting that the inflammatory response is also derailed in the absence of PARP1. Finally, we showed that PARP1 expression is reduced in human psoriatic lesions compared with control skin samples. In imiquimod-treated HPV-KER keratinocytes, PARP inhibition recapitulated the in vivo findings, namely keratinocyte hyperproliferation; furthermore, the mRNA expression of psoriasis-associated cytokines (IL6, IL1β, IL8, IL17 and IL23A) was also induced. The inhibition of TRPV1 abrogated the effects of the combined imiquimod + PARP inhibitor treatment.
Collapse
Affiliation(s)
- Borbála Kiss
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Magdolna Szántó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary
| | - Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dóra Antal
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Annamária Szödényi
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Márton
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Szegedi
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary.,Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
5
|
Bakondi E, Singh SB, Hajnády Z, Nagy-Pénzes M, Regdon Z, Kovács K, Hegedűs C, Madácsy T, Maléth J, Hegyi P, Demény MÁ, Nagy T, Kéki S, Szabó É, Virág L. Spilanthol Inhibits Inflammatory Transcription Factors and iNOS Expression in Macrophages and Exerts Anti-inflammatory Effects in Dermatitis and Pancreatitis. Int J Mol Sci 2019; 20:4308. [PMID: 31484391 PMCID: PMC6747447 DOI: 10.3390/ijms20174308] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/30/2019] [Accepted: 09/01/2019] [Indexed: 12/13/2022] Open
Abstract
Activated macrophages upregulate inducible nitric oxide synthase (iNOS) leading to the profuse production of nitric oxide (NO) and, eventually, tissue damage. Using macrophage NO production as a biochemical marker of inflammation, we tested different parts (flower, leaf, and stem) of the medicinal plant, Spilanthes acmella. We found that extracts prepared from all three parts, especially the flowers, suppressed NO production in RAW macrophages in response to interferon-γ and lipopolysaccharide. Follow up experiments with selected bioactive molecules from the plant (α-amyrin, β-caryophylline, scopoletin, vanillic acid, trans-ferulic acid, and spilanthol) indicated that the N-alkamide, spilanthol, is responsible for the NO-suppressive effects and provides protection from NO-dependent cell death. Spilanthol reduced the expression of iNOS mRNA and protein and, as a possible underlying mechanism, inhibited the activation of several transcription factors (NFκB, ATF4, FOXO1, IRF1, ETS, and AP1) and sensitized cells to downregulation of Smad (TF array experiments). The iNOS inhibitory effect translated into an anti-inflammatory effect, as demonstrated in a phorbol 12-myristate 13-acetate-induced dermatitis and, to a smaller extent, in cerulein-induced pancreatitis. In summary, we demonstrate that spilanthol inhibits iNOS expression, NO production and suppresses inflammatory TFs. These events likely contribute to the observed anti-inflammatory actions of spilanthol in dermatitis and pancreatitis.
Collapse
Affiliation(s)
- Edina Bakondi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Salam Bhopen Singh
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Zoltán Hajnády
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Máté Nagy-Pénzes
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Zsolt Regdon
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Katalin Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, 4032 Debrecen, Hungary
| | - Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tamara Madácsy
- First Department of Medicine, University of Szeged, 6720 Szeged, Hungary
- HAS-USZ Momentum Epithel Cell Signalling and Secretion Research Group, 6720 Szeged, Hungary
| | - József Maléth
- First Department of Medicine, University of Szeged, 6720 Szeged, Hungary
- HAS-USZ Momentum Epithel Cell Signalling and Secretion Research Group, 6720 Szeged, Hungary
- Department of Public Health, University of Szeged, 6720 Szeged, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine, University of Pécs, Medical School, János Szentágothai Research Centre, 7624 Pécs, Hungary
- Momentum Gastroenterology Multidisciplinary Research Group, Hungarian Academy of Sciences, University of Szeged, 6720 Szeged, Hungary
| | - Máté Á Demény
- MTA-DE Cell Biology and Signaling Research Group, 4032 Debrecen, Hungary
| | - Tibor Nagy
- Department of Applied Chemistry, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary
| | - Sándor Kéki
- Department of Applied Chemistry, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary
| | - Éva Szabó
- Department of Dermatology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
- MTA-DE Cell Biology and Signaling Research Group, 4032 Debrecen, Hungary.
| |
Collapse
|
6
|
El-Sheikh MM, El-Hazek RM, El-Khatib AS, El-Ghazaly MA. Anti-apoptotic effect of 3-aminobenzamide, an inhibitor of poly (ADP-ribose) polymerase, against multiple organ damage induced by gamma irradiation in rats. Int J Radiat Biol 2017; 94:45-53. [DOI: 10.1080/09553002.2018.1408977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Marwa M. El-Sheikh
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Rania M. El-Hazek
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Aiman S. El-Khatib
- Department of Pharmacology, Faculty of Pharmacy, Cairo University, Kasr El-Aieny, Giza, Egypt
| | - Mona A. El-Ghazaly
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Nasr City, Cairo, Egypt
| |
Collapse
|
7
|
Krishnamurthy P, Kaplan MH. STAT6 and PARP Family Members in the Development of T Cell-dependent Allergic Inflammation. Immune Netw 2016; 16:201-10. [PMID: 27574499 PMCID: PMC5002446 DOI: 10.4110/in.2016.16.4.201] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/17/2016] [Accepted: 07/20/2016] [Indexed: 12/11/2022] Open
Abstract
Allergic inflammation requires the orchestration of altered gene expression in the target tissue and in the infiltrating immune cells. The transcription factor STAT6 is critical in activating cytokine gene expression and cytokine signaling both in the immune cells and in target tissue cells including airway epithelia, keratinocytes and esophageal epithelial cells. STAT6 is activated by the cytokines IL-4 and IL-13 to mediate the pathogenesis of allergic disorders such as asthma, atopic dermatitis, food allergy and eosinophilic esophagitis (EoE). In this review, we summarize the role of STAT6 in allergic diseases, its interaction with the co-factor PARP14 and the molecular mechanisms by which STAT6 and PARP14 regulate gene transcription.
Collapse
Affiliation(s)
- Purna Krishnamurthy
- Department of Pediatrics, Wells Center for Pediatric Research, Indianapolis, IN 46202, USA.; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark H Kaplan
- Department of Pediatrics, Wells Center for Pediatric Research, Indianapolis, IN 46202, USA.; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
8
|
Mehrotra P, Krishnamurthy P, Sun J, Goenka S, Kaplan MH. Poly-ADP-ribosyl polymerase-14 promotes T helper 17 and follicular T helper development. Immunology 2015. [PMID: 26222149 DOI: 10.1111/imm.12515] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transcription factors are critical determinants of T helper cell fate and require a variety of co-factors to activate gene expression. We previously identified the ADP ribosyl-transferase poly-ADP-ribosyl polymerase 14 (PARP-14) as a co-factor of signal transducer and activator of transcription (STAT) 6 that is important in B-cell and T-cell responses to interleukin-4, particularly in the differentiation of T helper type 2 (Th2) cells. However, whether PARP-14 functions during the development of other T helper subsets is not known. In this report we demonstrate that PARP-14 is highly expressed in Th17 cells, and that PARP-14 deficiency and pharmacological blockade of PARP activity result in diminished Th17 differentiation in vitro and in a model of allergic airway inflammation. We further show that PARP-14 is expressed in T follicular helper (Tfh) cells and Tfh cell development is impaired in PARP-14-deficient mice following immunization with sheep red blood cells or inactivated influenza virus. Decreases in Th17 and Tfh development are correlated with diminished phospho-STAT3 and decreased expression of the interleukin-6 receptor α-chain in T cells. Together, these studies demonstrate that PARP-14 regulates multiple cytokine responses during inflammatory immunity.
Collapse
Affiliation(s)
- Purvi Mehrotra
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Integrative and Cellular Physiology, Indiana University-Purdue University, Indianapolis, IN, USA
| | - Purna Krishnamurthy
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jie Sun
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shreevrat Goenka
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mark H Kaplan
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
9
|
El-Hamoly T, El-Denshary ES, Saad SM, El-Ghazaly MA. 3-aminobenzamide, a poly (ADP ribose) polymerase inhibitor, enhances wound healing in whole body gamma irradiated model. Wound Repair Regen 2015; 23:672-84. [PMID: 26080614 DOI: 10.1111/wrr.12330] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 06/15/2015] [Indexed: 01/09/2023]
Abstract
The custom use of radiotherapy was found to participate in the development of chronic unhealed wounds. In general, exposure to gamma radiation stimulates the production of reactive oxygen species (ROS) that eventually leads to damaging effect. Conversely, overexpression of a nuclear poly (ADP-ribose) polymerase enzyme (PARP) after oxidative insult extremely brings about cellular injury due to excessive consumption of NAD and ATP. Here, we dedicated our study to investigate the role of 3-aminobenzamide (3-AB), a PARP inhibitor, on pregamma irradiated wounds. Two full-thickness (6 mm diameter) wounds were created on the dorsum of Swiss albino mouse. The progression of wound contraction was monitored by capturing daily photo images. Exposure to gamma radiation (6Gy) exacerbated the normal healing of excisional wounds. Remarkably, topical application of 3-AB cream (50 µM) revealed a marked acceleration in the rate of wound contraction. Likewise, PARP inhibition ameliorated the unbalanced oxidative/nitrosative status of granulated skin tissues. Such effect was significantly revealed by the correction of the reduced antioxidant capacity and the enhanced lipid peroxidation, hydrogen peroxide, and myeloperoxidase contents. Moreover, application of 3-AB modified the cutaneous nitrite content throughout healing process. Conversely, the expressions of pro-inflammatory cytokines were down-regulated by PARP inhibition. The mitochondrial ATP content showed a lower consumption rate on 3-AB-treated wound bed as well. In parallel, the mRNA expressions of Sirt-1 and acyl-COA oxidase-2 (ACOX-2) were up-regulated; whom functions control the mitochondrial ATP synthesis and lipid metabolism. The current data suggested that inhibition of PARP-1 enzyme may accelerate the delayed wound healing in whole body gamma irradiated mice by early modifying the oxidative stress as well as the inflammatory response.
Collapse
Affiliation(s)
- Tarek El-Hamoly
- Cyclotron Project, Nuclear Physics Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.,Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ezzeddin S El-Denshary
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Shokry Mohamed Saad
- Nuclear Physics Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mona A El-Ghazaly
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
10
|
Kiss B, Szántó M, Szklenár M, Brunyánszki A, Marosvölgyi T, Sárosi E, Remenyik É, Gergely P, Virág L, Decsi T, Rühl R, Bai P. Poly(ADP) ribose polymerase-1 ablation alters eicosanoid and docosanoid signaling and metabolism in a murine model of contact hypersensitivity. Mol Med Rep 2014; 11:2861-7. [PMID: 25482287 DOI: 10.3892/mmr.2014.3044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 09/24/2014] [Indexed: 11/05/2022] Open
Abstract
Poly(ADP‑ribose) polymerase (PARP)‑1 is a pro‑inflammatory protein. The inhibition of PARP‑1 reduces the activity of numerous pro‑inflammatory transcription factors, which results in the reduced production of pro‑inflammatory cytokines, chemokines, matrix metalloproteinases and inducible nitric oxide synthase, culminating in reduced inflammation of the skin and other organs. The aim of the present study was to investigate the effects of the deletion of PARP‑1 expression on polyunsaturated fatty acids (PUFA), and PUFA metabolite composition, in mice under control conditions or undergoing an oxazolone (OXA)‑induced contact hypersensitivity reaction (CHS). CHS was elicited using OXA in both the PARP‑1+/+ and PARP‑1/ mice, and the concentration of PUFAs and PUFA metabolites in the diseased skin were assessed using lipidomics experiments. The levels of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) were shown to be increased in the PARP‑1/ mice, as compared with the control, unsensitized PARP‑1+/+ mice. In addition, higher expression levels of fatty acid binding protein 7 (FABP7) were detected in the PARP‑1/ mice. FABP7 is considered to be a specific carrier of DHA and EPA. Furthermore, the levels of the metabolites of DHA and EPA (considered mainly as anti‑inflammatory or pro‑resolving factors) were higher, as compared with the metabolites of arachidonic acid (considered mainly pro‑inflammatory), both in the unsensitized control and OXA‑sensitized PARP‑1/ mice. The results of the present study suggest that the genetic deletion of PARP‑1 may affect the PUFA‑homeostasis of the skin, resulting in an anti‑inflammatory milieu, including increased DHA and EPA levels, and DHA and EPA metabolite levels. This may be an important component of the anti‑inflammatory action of PARP‑1 inhibition.
Collapse
Affiliation(s)
- Borbála Kiss
- Department of Dermatology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Magdolna Szántó
- Department of Medical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | | | - Attila Brunyánszki
- Department of Medical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | | | - Eszter Sárosi
- Department of Pediatrics, University of Pécs, H-7623 Pécs, Hungary
| | - Éva Remenyik
- Department of Dermatology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Pál Gergely
- Department of Medical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - László Virág
- Department of Medical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - Tamás Decsi
- Department of Pediatrics, University of Pécs, H-7623 Pécs, Hungary
| | - Ralph Rühl
- Department of Biochemistry and Molecular Biology, University of Debrecen, H‑4032 Debrecen, Hungary
| | - Peter Bai
- Department of Medical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
11
|
El-Hamoly T, Hegedűs C, Lakatos P, Kovács K, Bai P, El-Ghazaly MA, El-Denshary ES, Szabó É, Virág L. Activation of poly(ADP-ribose) polymerase-1 delays wound healing by regulating keratinocyte migration and production of inflammatory mediators. Mol Med 2014; 20:363-71. [PMID: 25014793 DOI: 10.2119/molmed.2014.00130] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 07/08/2014] [Indexed: 01/13/2023] Open
Abstract
Poly(ADP-ribosyl)ation (PARylation) is a protein modification reaction regulating various diverse cellular functions ranging from metabolism, DNA repair and transcription to cell death. We set out to investigate the role of PARylation in wound healing, a highly complex process involving various cellular and humoral factors. We found that topically applied poly[ADP-ribose] polymerase (PARP) inhibitors 3-aminobenzamide and PJ-34 accelerated wound closure in a mouse model of excision wounding. Moreover, wounds also closed faster in PARP-1 knockout mice as compared with wild-type littermates. Immunofluorescent staining for poly(ADP-ribose) (PAR) indicated increased PAR synthesis in scattered cells of the wound bed. Expression of interleukin (IL)-6, tumor necrosis factor (TNF)-α, inducible nitric oxide synthase and matrix metalloproteinase-9 was lower in the wounds of PARP-1 knockout mice as compared with control, and expression of IL-1β, cyclooxygenase-2, TIMP-1 and -2 also were affected. The level of nitrotyrosine (a marker of nitrating stress) was lower in the wounds of PARP-1 knockout animals as compared with controls. In vitro scratch assays revealed significantly faster migration of keratinocytes treated with 3-aminobenzamide or PJ34 as compared with control cells. These data suggest that PARylation by PARP-1 slows down the wound healing process by increasing the production of inflammatory mediators and nitrating stress and by slowing the migration of keratinocytes.
Collapse
Affiliation(s)
- Tarek El-Hamoly
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary Drug Radiation Research Department, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Petra Lakatos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Katalin Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary MTA-DE Lendület Laboratory of Cellular Metabolism Research Group, Debrecen, Hungary Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Mona A El-Ghazaly
- Drug Radiation Research Department, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Ezzeddin S El-Denshary
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Éva Szabó
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary
| |
Collapse
|
12
|
Xu S, Bai P, Little PJ, Liu P. Poly(ADP-ribose) polymerase 1 (PARP1) in atherosclerosis: from molecular mechanisms to therapeutic implications. Med Res Rev 2013; 34:644-75. [PMID: 24002940 DOI: 10.1002/med.21300] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Poly(ADP-ribosyl)ation reactions, carried out by poly(ADP-ribose) polymerases (PARPs/ARTDs), are reversible posttranslational modifications impacting on numerous cellular processes (e.g., DNA repair, transcription, metabolism, or immune functions). PARP1 (EC 2.4.2.30), the founding member of PARPs, is particularly important for drug development for its role in DNA repair, cell death, and transcription of proinflammatory genes. Recent studies have established a novel concept that PARP1 is critically involved in the formation and destabilization of atherosclerotic plaques in experimental animal models and in humans. Reduction of PARP1 activity by pharmacological or molecular approaches attenuates atherosclerotic plaque development and enhances plaque stability as well as promotes the regression of pre-established atherosclerotic plaques. Mechanistically, PARP1 inhibition significantly reduces monocyte differentiation, macrophage recruitment, Sirtuin 1 (SIRT1) inactivation, endothelial dysfunction, neointima formation, foam cell death, and inflammatory responses within plaques, all of which are central to the pathogenesis of atherosclerosis. This article presents an overview of the multiple roles and underlying mechanisms of PARP1 activation (poly(ADP-ribose) accumulation) in atherosclerosis and emphasizes the therapeutic potential of PARP1 inhibition in preventing or reversing atherosclerosis and its cardiovascular clinical sequalae.
Collapse
Affiliation(s)
- Suowen Xu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | | | | | | |
Collapse
|
13
|
Palicz Z, Jenes Á, Gáll T, Miszti-Blasius K, Kollár S, Kovács I, Emri M, Márián T, Leiter É, Pócsi I, Csősz É, Kalló G, Hegedűs C, Virág L, Csernoch L, Szentesi P. In vivo application of a small molecular weight antifungal protein of Penicillium chrysogenum (PAF). Toxicol Appl Pharmacol 2013; 269:8-16. [DOI: 10.1016/j.taap.2013.02.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/21/2013] [Accepted: 02/22/2013] [Indexed: 01/23/2023]
|
14
|
Cantó C, Sauve AA, Bai P. Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes. Mol Aspects Med 2013; 34:1168-201. [PMID: 23357756 DOI: 10.1016/j.mam.2013.01.004] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/07/2013] [Accepted: 01/17/2013] [Indexed: 01/08/2023]
Abstract
Poly(ADP-ribose) polymerases (PARPs) are NAD(+) dependent enzymes that were identified as DNA repair proteins, however, today it seems clear that PARPs are responsible for a plethora of biological functions. Sirtuins (SIRTs) are NAD(+)-dependent deacetylase enzymes involved in the same biological processes as PARPs raising the question whether PARP and SIRT enzymes may interact with each other in physiological and pathophysiological conditions. Hereby we review the current understanding of the SIRT-PARP interplay in regard to the biochemical nature of the interaction (competition for the common NAD(+) substrate, mutual posttranslational modifications and direct transcriptional effects) and the physiological or pathophysiological consequences of the interactions (metabolic events, oxidative stress response, genomic stability and aging). Finally, we give an overview of the possibilities of pharmacological intervention to modulate PARP and SIRT enzymes either directly, or through modulating NAD(+) homeostasis.
Collapse
Affiliation(s)
- Carles Cantó
- Nestlé Institute of Health Sciences, Lausanne CH-1015, Switzerland
| | | | | |
Collapse
|
15
|
Lakatos P, Szabó É, Hegedűs C, Haskó G, Gergely P, Bai P, Virág L. 3-Aminobenzamide protects primary human keratinocytes from UV-induced cell death by a poly(ADP-ribosyl)ation independent mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:743-51. [PMID: 23246565 DOI: 10.1016/j.bbamcr.2012.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 10/22/2012] [Accepted: 12/03/2012] [Indexed: 12/28/2022]
Abstract
Poly(ADP-ribosyl)ation (PARylation) is a NAD(+)-dependent protein modification carried out by PARP [poly(ADP-ribose) polymerase] enzymes. Here we set out to investigate whether PARylation regulates UVB-induced cell death in primary human keratinocytes. We used the benchmark PARP inhibitor 3-aminobenzamide (3AB) and a more potent and specific inhibitor PJ34 and found that UVB (0.05-0.2J/cm(2)) induced a dose dependent loss of viability that was prevented by 3AB but not by PJ34. Similarly to PJ34, two other new generation PARP inhibitors also failed to protect keratinocytes from UVB-induced loss of viability. Moreover, silencing PARP-1 in HaCaT human keratinocytes sensitized cells to UVB toxicity but 3AB provided protection to both control HaCaT cells and to PARP-1 silenced cells indicating that the photoprotective effect of 3AB is independent of PARP inhibition. Lower UVB doses (0.0125-0.05J/cm(2)) caused inhibition of proliferation of keratinocytes which was prevented by 3AB but augmented by PJ34. UVB-induced keratinocyte death displayed the characteristics of both apoptosis (morphology, caspase activity, DNA fragmentation) and necrosis (morphology, LDH release) with all of these parameters being inhibited by 3AB and apoptotic parameters slightly enhanced by PJ34. UVA also caused apoptotic and necrotic cell death in keratinocytes with 3AB protecting and PJ34 sensitizing cells to UVA-induced toxicity. 3AB prevented UVB-induced mitochondrial membrane depolarization and generation of hydrogen peroxide. In summary, PARylation is a survival mechanism in UV-treated keratinocytes. Moreover, 3-aminobenzamide is photoprotective and acts by a PARP-independent mechanism at a premitochondrial step of phototoxicity.
Collapse
Affiliation(s)
- Petra Lakatos
- Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | |
Collapse
|
16
|
Bai P, Virág L. Role of poly(ADP-ribose) polymerases in the regulation of inflammatory processes. FEBS Lett 2012; 586:3771-7. [PMID: 23022557 DOI: 10.1016/j.febslet.2012.09.026] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/06/2012] [Accepted: 09/16/2012] [Indexed: 12/20/2022]
Abstract
PARP enzymes influence the immune system at several key points and thus modulate inflammatory diseases. PARP enzymes affect immune cell maturation and differentiation and regulate the expression of inflammatory mediators such as cytokines, chemokines, inducible nitric oxide synthase and adhesion molecules. Moreover, PARP enzymes are key regulators of cell death during inflammation-related oxidative and nitrosative stress. Here we provide an overview of the different inflammatory diseases regulated by PARP enzymes.
Collapse
Affiliation(s)
- Péter Bai
- Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen H-4032, Hungary.
| | | |
Collapse
|
17
|
Abstract
Vitamin D metabolites are important immune-modulatory hormones and are able to suppress Th2-mediated allergic airway disease. Some genetic factors that may contribute to asthma are regulated by vitamin D, such as vitamin D receptor (VDR), human leukocyte antigen genes (HLA), human Toll-like receptors (TLR), matrix metalloproteinases (MMPs), a disintegrin and metalloprotein-33 (ADAM-33), and poly(ADP-ribosyl) polymerase- 1 (PARP-1). Vitamin D has also been implicated in asthma through its effects on the obesity, bacillus Calmettee Guérin (BCG) vaccination and high vitamin D level, vitamin D supplement, checkpoint protein kinase 1 (Chk1), plasminogen activator inhibitor-1 (PAI-1) and gamma delta T cells (gdT). Vitamin D plays a role in asthma and exerts its action through either genomic and/or non-genomic ways.
Collapse
|
18
|
Brunyánszki A, Hegedűs C, Szántó M, Erdélyi K, Kovács K, Schreiber V, Gergely S, Kiss B, Szabó É, Virág L, Bai P. Genetic Ablation of PARP-1 Protects Against Oxazolone-Induced Contact Hypersensitivity by Modulating Oxidative Stress. J Invest Dermatol 2010; 130:2629-37. [DOI: 10.1038/jid.2010.190] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|