1
|
Xie Q, Zhou J, He C, Xu Y, Tao F, Hu M. Unlocking the intricacies: Exploring the complex interplay between platelets and ovarian cancer. Crit Rev Oncol Hematol 2024; 202:104465. [PMID: 39097249 DOI: 10.1016/j.critrevonc.2024.104465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024] Open
Abstract
Ovarian cancer, an aggressive malignancy of the female reproductive tract, is frequently linked to an elevated risk of thrombotic events. This association is manifested by a pronounced rise in platelet counts and activation levels. Current research firmly supports the pivotal role of platelets in the oncogenic processes of ovarian cancer, influencing tumor cell proliferation and metastasis. Platelets influence these processes through direct interactions with tumor cells or by secreting cytokines and growth factors that enhance tumor growth, angiogenesis, and metastasis. This review aims to thoroughly dissect the interactions between platelets and ovarian cancer cells, emphasizing their combined role in tumor progression and associated thrombotic events. Additionally, it summarizes therapeutic strategies targeting platelet-cancer interface which show significant promise. Such approaches could not only be effective in managing the primary ovarian tumor but also play a pivotal role in preventing metastasis and attenuating thrombotic complications associated with ovarian cancer.
Collapse
Affiliation(s)
- Qianxin Xie
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Zhou
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chaonan He
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ye Xu
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangfang Tao
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Mengjiao Hu
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
2
|
Li F, Xu L, Li C, Hu F, Su Y. Immunological role of Gas6/TAM signaling in hemostasis and thrombosis. Thromb Res 2024; 238:161-171. [PMID: 38723521 DOI: 10.1016/j.thromres.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/21/2024]
Abstract
The immune system is an emerging regulator of hemostasis and thrombosis. The concept of immunothrombosis redefines the relationship between coagulation and immunomodulation, and the Gas6/Tyro3-Axl-MerTK (TAM) signaling pathway builds the bridge across them. During coagulation, Gas6/TAM signaling pathway not only activates platelets, but also promotes thrombosis through endothelial cells and vascular smooth muscle cells involved in inflammatory responses. Thrombosis appears to be a common result of a Gas6/TAM signaling pathway-mediated immune dysregulation. TAM TK and its ligands have been found to be involved in coagulation through the PI3K/AKT or JAK/STAT pathway in various systemic diseases, providing new perspectives in the understanding of immunothrombosis. Gas6/TAM signaling pathway serves as a breakthrough target for novel therapeutic strategies to improve disease management. Many preclinical and clinical studies of TAM receptor inhibitors are in process, confirming the pivotal role of Gas6/TAM signaling pathway in immunothrombosis. Therapeutics targeting the TAM receptor show potential both in anticoagulation management and immunotherapy. Here, we review the immunological functions of the Gas6/TAM signaling pathway in coagulation and its multiple mechanisms in diseases identified to date, and discuss the new clinical strategies that may generated by these roles.
Collapse
Affiliation(s)
- Fanshu Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Liling Xu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.
| | - Chun Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China; Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.
| | - Yin Su
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China; Peking University People's Hospital, Qingdao, China
| |
Collapse
|
3
|
Stadler JC, Keller L, Mess C, Bauer AT, Koett J, Geidel G, Heidrich I, Vidal-Y-Sy S, Andreas A, Stramaglia C, Sementsov M, Haberstroh W, Deitert B, Hoehne IL, Reschke R, Haalck T, Pantel K, Gebhardt C, Schneider SW. Prognostic value of von Willebrand factor levels in patients with metastatic melanoma treated by immune checkpoint inhibitors. J Immunother Cancer 2023; 11:jitc-2022-006456. [PMID: 37258039 DOI: 10.1136/jitc-2022-006456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND An increased incidence of thrombotic complications associated with an increased mortality rate has been observed under immune checkpoint inhibition (ICI). Recent investigations on the coagulation pathways have highlighted the direct role of key coagulatory proteins and platelets in cancer initiation, angiogenesis and progression. The aim of this study was to evaluate the prognostic value of von Willebrand factor (vWF) and its regulatory enzyme a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13), D-dimers and platelets in a cohort of patients with metastatic melanoma receiving ICI. METHODS In a prospective cohort of 83 patients with metastatic melanoma, we measured the systemic levels of vWF-antigen (vWF:Ag), ADAMTS13 activity, D-dimers and platelets, before the beginning of the treatment (baseline), and 6, 12 and 24 weeks after. In parallel, we collected standard biological parameters used in clinical routine to monitor melanoma response (lactate deshydrogenase (LDH), S100). The impact of neutrophil-to-lymphocyte ratio (NLR) and C-reactive protein (CRP) on overall survival (OS) in patients receiving ICI was assessed. Univariable and multivariable Cox proportional models were then used to investigate any potential association of these parameters to clinical progression (progression-free survival (PFS) and OS). Baseline values and variations over therapy course were compared between primary responders and resistant patients. RESULTS Patients with melanoma present with dysregulated levels of vWF:Ag, ADAMTS13 activity, D-dimers, LDH, S100 and CRP at the beginning of treatment. With a median clinical follow-up of 26 months, vWF:Ag interrogated as a continuous variable was significantly associated with PFS in univariate and multivariate analysis (HR=1.04; p=0.007). Lower values of vWF:Ag at baseline were observed in the primary responders group (median: 29.4 µg/mL vs 32.9 µg/mL; p=0.048) when compared with primary resistant patients. As for OS, we found an association with D-dimers and ADAMTS13 activity in univariate analysis and vWF:Ag in univariate and multivariate analysis including v-raf murine sarcoma viral oncogene homolog B1 (BRAF) mutation and Eastern Cooperative Oncology Group (ECOG) performance status. Follow-up over the course of treatment depicts different evolution profiles for vWF:Ag between the primary response and resistance groups. CONCLUSIONS In this prospective cohort, coagulatory parameters such as ADAMTS13 activity and D-dimers are associated with OS but baseline vWF:Ag levels appeared as the only parameter associated with response and OS to ICI. This highlights a potential role of vWF as a biomarker to monitor ICI response of patients with malignant melanoma.
Collapse
Affiliation(s)
- Julia-Christina Stadler
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Keller
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Centre de Recherche en Cancerologie de Toulouse, Toulouse, France
| | - Christian Mess
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander T Bauer
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Koett
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Glenn Geidel
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Isabel Heidrich
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Vidal-Y-Sy
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antje Andreas
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carlotta Stramaglia
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mark Sementsov
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wiebcke Haberstroh
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Deitert
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Inka Lilott Hoehne
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robin Reschke
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Haalck
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoffer Gebhardt
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan W Schneider
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
Braun SA, Bauer AT, Németh C, Rózsa A, Rusch L, Erpenbeck L, Schloer S, Silling S, Metze D, Gerber PA, Schneider SW, Gyulai R, Homey B. Immunothrombotic Mechanisms Induced by Ingenol Mebutate Lead to Rapid Necrosis and Clearance of Anogenital Warts. Int J Mol Sci 2022; 23:ijms232113377. [PMID: 36362165 PMCID: PMC9656782 DOI: 10.3390/ijms232113377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/20/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Ingenol mebutate (IM) is highly effective in the treatment of human papillomavirus (HPV)-induced anogenital warts (AGW) leading to fast ablation within hours. However, the exact mode of action is still largely unknown. We performed dermoscopy, in vivo confocal microscopy (CLM), histology, immunohistochemistry, and immunofluorescence to gain insights in mechanisms of IM treatment in AGW. In addition, we used in vitro assays (ELISA, HPV-transfection models) to further investigate in vivo findings. IM treatment leads to a strong recruitment of neutrophils with thrombosis of small skin vessels within 8 h, in a sense of immunothrombosis. In vivo and in vitro analyses showed that IM supports a prothrombotic environment by endothelial cell activation and von Willebrand factor (VWF) secretion, in addition to induction of neutrophil extracellular traps (NETosis). IM superinduces CXCL8/IL-8 expression in HPV-E6/E7 transfected HaCaT cells when compared to non-infected keratinocytes. Rapid ablation of warts after IM treatment can be well explained by the observed immunothrombosis. This new mechanism has so far only been observed in HPV-induced lesions and is completely different from the mechanisms we see in the treatment of transformed keratinocytes in actinic keratosis. Our initial findings indicate an HPV-specific effect, which could be also of interest for the treatment of other HPV-induced lesions. Larger studies are now needed to further investigate the potential of IM in different HPV tumors.
Collapse
Affiliation(s)
- Stephan A. Braun
- Department of Dermatology, University Hospital Muenster, 48149 Muenster, Germany
- Department of Dermatology, Medical Faculty, Heinrich-Heine University, 40225 Duesseldorf, Germany
- Correspondence: ; Tel.: +49-2351-83-58637
| | - Alexander T. Bauer
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Csongor Németh
- Department of Dermatology, Venereology and Oncodermatology, University of Pécs, Medical Center, 7632 Pécs, Hungary
| | - Annamária Rózsa
- Department of Dermatology, Venereology and Oncodermatology, University of Pécs, Medical Center, 7632 Pécs, Hungary
| | - Louisa Rusch
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Luise Erpenbeck
- Department of Dermatology, University Hospital Muenster, 48149 Muenster, Germany
| | - Sebastian Schloer
- Center for Molecular Biology of Inflammation, Institute of Medical Biochemistry, University of Muenster, 48149 Muenster, Germany
- Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Steffi Silling
- Institute of Virology, National Reference Center for Papilloma- and Polyomaviruses, Faculty of Medicine and University Hospital Cologne, 50935 Cologne, Germany
| | - Dieter Metze
- Department of Dermatology, University Hospital Muenster, 48149 Muenster, Germany
| | - Peter A. Gerber
- Department of Dermatology, Medical Faculty, Heinrich-Heine University, 40225 Duesseldorf, Germany
| | - Stefan W. Schneider
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Rolland Gyulai
- Department of Dermatology, Venereology and Oncodermatology, University of Pécs, Medical Center, 7632 Pécs, Hungary
| | - Bernhard Homey
- Department of Dermatology, Medical Faculty, Heinrich-Heine University, 40225 Duesseldorf, Germany
| |
Collapse
|
5
|
The Intriguing Connections between von Willebrand Factor, ADAMTS13 and Cancer. Healthcare (Basel) 2022; 10:healthcare10030557. [PMID: 35327035 PMCID: PMC8953111 DOI: 10.3390/healthcare10030557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/06/2022] [Accepted: 03/14/2022] [Indexed: 12/21/2022] Open
Abstract
von Willebrand factor (VWF) is a complex and large protein that is cleaved by ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motif, member 13), and together they serve important roles in normal hemostasis. Malignancy can result in both a deficiency or excess of VWF, leading to aberrant hemostasis with either increased bleeding or thrombotic complications, as respectively seen with acquired von Willebrand syndrome and cancer-associated venous thromboembolism. There is emerging evidence to suggest VWF also plays a role in inflammation, angiogenesis and tumor biology, and it is likely that VWF promotes tumor metastasis. High VWF levels have been documented in a number of malignancies and in some cases correlate with more advanced disease and poor prognosis. Tumor cells can induce endothelial cells to release VWF and certain tumor cells have the capacity for de novo expression of VWF, leading to a proinflammatory microenvironment that is likely conducive to tumor progression, metastasis and micro-thrombosis. VWF can facilitate tumor cell adhesion to endothelial cells and aids with the recruitment of platelets into the tumor microenvironment, where tumor/platelet aggregates are able to form and facilitate hematogenous spread of cancer. As ADAMTS13 moderates VWF level and activity, it too is potentially involved in the pathophysiology of these events. VWF and ADAMTS13 have been explored as tumor biomarkers for the detection and prognostication of certain malignancies; however, the results are underdeveloped and so currently not utilized for clinical use. Further studies addressing the basic science mechanisms and real word epidemiology are required to better appreciate the intriguing connections between VWF, ADAMTS13 and malignancy. A better understanding of the role VWF and ADAMTS13 play in the promotion and inhibition of cancer and its metastasis will help direct further translational studies to aid with the development of novel cancer prognostic tools and treatment modalities.
Collapse
|
6
|
Mojzisch A, Brehm MA. The Manifold Cellular Functions of von Willebrand Factor. Cells 2021; 10:2351. [PMID: 34572000 PMCID: PMC8466076 DOI: 10.3390/cells10092351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
The plasma glycoprotein von Willebrand factor (VWF) is exclusively synthesized in endothelial cells (ECs) and megakaryocytes, the precursor cells of platelets. Its primary function lies in hemostasis. However, VWF is much more than just a "fishing hook" for platelets and a transporter for coagulation factor VIII. VWF is a true multitasker when it comes to its many roles in cellular processes. In ECs, VWF coordinates the formation of Weibel-Palade bodies and guides several cargo proteins to these storage organelles, which control the release of hemostatic, inflammatory and angiogenic factors. Leukocytes employ VWF to assist their rolling on, adhesion to and passage through the endothelium. Vascular smooth muscle cell proliferation is supported by VWF, and it regulates angiogenesis. The life cycle of platelets is accompanied by VWF from their budding from megakaryocytes to adhesion, activation and aggregation until the end in apoptosis. Some tumor cells acquire the ability to produce VWF to promote metastasis and hide in a shell of VWF and platelets, and even the maturation of osteoclasts is regulated by VWF. This review summarizes the current knowledge on VWF's versatile cellular functions and the resulting pathophysiological consequences of their dysregulation.
Collapse
Affiliation(s)
- Angelika Mojzisch
- Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Maria A. Brehm
- School of Life Sciences, University of Siegen, 57076 Siegen, Germany
| |
Collapse
|
7
|
Local blood coagulation drives cancer cell arrest and brain metastasis in a mouse model. Blood 2021; 137:1219-1232. [PMID: 33270819 DOI: 10.1182/blood.2020005710] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 11/16/2020] [Indexed: 12/23/2022] Open
Abstract
Clinically relevant brain metastases (BMs) frequently form in cancer patients, with limited options for effective treatment. Circulating cancer cells must first permanently arrest in brain microvessels to colonize the brain, but the critical factors in this process are not well understood. Here, in vivo multiphoton laser-scanning microscopy of the entire brain metastatic cascade allowed unprecedented insights into how blood clot formation and von Willebrand factor (VWF) deposition determine the arrest of circulating cancer cells and subsequent brain colonization in mice. Clot formation in brain microvessels occurred frequently (>95%) and specifically at intravascularly arrested cancer cells, allowing their long-term arrest. An extensive clot embedded ∼20% of brain-arrested cancer cells, and those were more likely to successfully extravasate and form a macrometastasis. Mechanistically, the generation of tissue factor-mediated thrombin by cancer cells accounted for local activation of plasmatic coagulation in the brain. Thrombin inhibition by treatment with low molecular weight heparin or dabigatran and an anti-VWF antibody prevented clot formation, cancer cell arrest, extravasation, and the formation of brain macrometastases. In contrast, tumor cells were not able to directly activate platelets, and antiplatelet treatments did reduce platelet dispositions at intravascular cancer cells but did not reduce overall formation of BMs. In conclusion, our data show that plasmatic coagulation is activated early by intravascular tumor cells in the brain with subsequent clot formation, which led us to discover a novel and specific mechanism that is crucial for brain colonization. Direct or indirect thrombin and VWF inhibitors emerge as promising drug candidates for trials on prevention of BMs.
Collapse
|
8
|
Hill CN, Hernández-Cáceres MP, Asencio C, Torres B, Solis B, Owen GI. Deciphering the Role of the Coagulation Cascade and Autophagy in Cancer-Related Thrombosis and Metastasis. Front Oncol 2020; 10:605314. [PMID: 33365273 PMCID: PMC7750537 DOI: 10.3389/fonc.2020.605314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/29/2020] [Indexed: 01/10/2023] Open
Abstract
Thrombotic complications are the second leading cause of death among oncology patients worldwide. Enhanced thrombogenesis has multiple origins and may result from a deregulation of megakaryocyte platelet production in the bone marrow, the synthesis of coagulation factors in the liver, and coagulation factor signaling upon cancer and the tumor microenvironment (TME). While a hypercoagulable state has been attributed to factors such as thrombocytosis, enhanced platelet aggregation and Tissue Factor (TF) expression on cancer cells, further reports have suggested that coagulation factors can enhance metastasis through increased endothelial-cancer cell adhesion and enhanced endothelial cell activation. Autophagy is highly associated with cancer survival as a double-edged sword, as can both inhibit and promote cancer progression. In this review, we shall dissect the crosstalk between the coagulation cascade and autophagic pathway and its possible role in metastasis and cancer-associated thrombosis formation. The signaling of the coagulation cascade through the autophagic pathway within the hematopoietic stem cells, the endothelial cell and the cancer cell are discussed. Relevant to the coagulation cascade, we also examine the role of autophagy-related pathways in cancer treatment. In this review, we aim to bring to light possible new areas of cancer investigation and elucidate strategies for future therapeutic intervention.
Collapse
Affiliation(s)
- Charlotte Nicole Hill
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | | | - Catalina Asencio
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Begoña Torres
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Benjamin Solis
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gareth I Owen
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
9
|
Patmore S, Dhami SPS, O'Sullivan JM. Von Willebrand factor and cancer; metastasis and coagulopathies. J Thromb Haemost 2020; 18:2444-2456. [PMID: 32573945 DOI: 10.1111/jth.14976] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 12/16/2022]
Abstract
Von Willebrand factor (VWF) is a multimeric procoagulant plasma glycoprotein that mediates platelet adhesion along the endothelium. In addition to its role maintaining normal hemostasis, more recently novel biological functions for VWF have been described, including inflammation, angiogenesis, and metastasis. Significantly increased plasma VWF levels have been reported across a variety of cancer patient cohorts. Given that VWF is established as a risk factor for venous thrombosis, this is of direct clinical importance. Moreover, elevated VWF has also been observed localized within the tumor microenvironment, correlating with advanced disease stage and poorer clinical outcome. Critically, evidence suggests that elevated VWF levels in cancer patients may not only contribute to cancer associated coagulopathies but may also mediate cancer progression and metastasis. Studies have shown that VWF can promote pro-inflammatory signaling, regulate angiogenesis and vascular permeability, which may facilitate tumor cell growth and extravasation across the vessel wall. Endothelial secreted VWF multimers contribute to the adhesion and transendothelial migration of tumor cells key for tumor dissemination. In support of this, VWF inhibition attenuated metastasis in vivo. Perhaps most intriguingly, specific tumor cells have been reported to acquire de novo VWF expression which increases tumor-platelet heteroaggregates and confers enhanced metastatic activity. Current knowledge on the roles of VWF in cancer and in particular its contribution to metastasis and cancer associated coagulopathies is summarized in this review.
Collapse
Affiliation(s)
- Sean Patmore
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sukhraj Pal S Dhami
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jamie M O'Sullivan
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
10
|
John A, Robador JR, Vidal-Y-Sy S, Houdek P, Wladykowski E, Günes C, Bolenz C, Schneider SW, Bauer AT, Gorzelanny C. Urothelial Carcinoma of the Bladder Induces Endothelial Cell Activation and Hypercoagulation. Mol Cancer Res 2020; 18:1099-1109. [PMID: 32234826 DOI: 10.1158/1541-7786.mcr-19-1041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/15/2020] [Accepted: 03/26/2020] [Indexed: 11/16/2022]
Abstract
Cancer-related venous thromboembolisms (VTE) are associated with metastasis and reduced survival in patients with urothelial cancer of the bladder. Although previous reports suggest the contribution of tissue factor and podoplanin, the mechanistic linkage between VTE and bladder cancer cell-derived molecules is unknown. Therefore, we compared distinct procoagulant pathways in four different cell lines. In vitro findings were further confirmed by microfluidic experiments mimicking the pathophysiology of tumor blood vessels and in tissue samples of patients with bladder cancer by transcriptome analysis and immunohistology. In vitro and microfluidic experiments identified bladder cancer-derived VEGF-A as highly procoagulant because it promoted the release of von Willebrand factor (VWF) from endothelial cells and thus platelet aggregation. In tissue sections from patients with bladder cancer, we found that VWF-mediated blood vessel occlusions were associated with a poor outcome. Transcriptome data further indicate that elevated expression levels of enzymes modulating VEGF-A availability were significantly connected to a decreased survival in patients with bladder cancer. In comparison with previously postulated molecular players, we identified tumor cell-derived VEGF-A and endothelial VWF as procoagulant mediators in bladder cancer. Therapeutic strategies that prevent the VEGF-A-mediated release of VWF may reduce tumor-associated hypercoagulation and metastasis in patients with bladder cancer. IMPLICATIONS: We identified the VEGF-A-mediated release of VWF from endothelial cells to be associated with bladder cancer progression.
Collapse
Affiliation(s)
- Axel John
- Department of Urology, University of Ulm, Ulm, Germany
| | - José R Robador
- Experimental Dermatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Vidal-Y-Sy
- Experimental Dermatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pia Houdek
- Experimental Dermatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ewa Wladykowski
- Experimental Dermatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cagatay Günes
- Department of Urology, University of Ulm, Ulm, Germany
| | | | - Stefan W Schneider
- Experimental Dermatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander T Bauer
- Experimental Dermatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gorzelanny
- Experimental Dermatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
11
|
Tao L, Zhang L, Peng Y, Tao M, Li G, Xiu D, Yuan C, Ma C, Jiang B. Preoperative neutrophil-to-lymphocyte ratio and tumor-related factors to predict lymph node metastasis in patients with pancreatic ductal adenocarcinoma (PDAC). Oncotarget 2018; 7:74314-74324. [PMID: 27494847 PMCID: PMC5342055 DOI: 10.18632/oncotarget.11031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/19/2016] [Indexed: 12/16/2022] Open
Abstract
As a poor prognosis indicator in patients with pancreatic ductal adenocarcinoma (PDCA), lymph node (LN) metastasis is of great importance in treatment. Present study was performed to evaluate the predictive value of preoperative neutrophil-to-lymphocyte ratio (NLR), Platelet-to-lymphocyte ratio (PLR) and possible clinical parameters on the LN metastasis in PDCA patients. A total of 159 operable patients with PDCA were enrolled in our study. The clinical utility of NLR and other clinical parameters was evaluated by receiver operating characteristic (ROC) curves. Overall survival analysis indicated that LN metastasis is an independent prognostic factor. The logistic analysis was used to determine the independent parameters associated with LN metastasis. Ideal cutoff values for predicting LN metastasis are 2.12 for NLR and 130.96 for PLR according to the ROC curve. Multivariate analyses indicate that NLR (HR 2.588; 95% CI 1.246-5.376; P = 0.011), CA125 (HR 6.348; 95% CI 2.056-19.594; P = 0.001) and CA19-9 (HR 2.738; 95% CI 1.151-6.515; P = 0.023) are associated significantly with LN metastasis independently. Preoperative NLR, CA125 and CA19-9 are useful biomarkers for the prediction of LN metastasis in PDCA patients.
Collapse
Affiliation(s)
- Lianyuan Tao
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Lingfu Zhang
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Ying Peng
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Ming Tao
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Gang Li
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Dianrong Xiu
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Chunhui Yuan
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Chaolai Ma
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Bin Jiang
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| |
Collapse
|
12
|
Goertz L, Schneider SW, Desch A, Mayer FT, Koett J, Nowak K, Karampinis I, Bohlmann MK, Umansky V, Bauer AT. Heparins that block VEGF-A-mediated von Willebrand factor fiber generation are potent inhibitors of hematogenous but not lymphatic metastasis. Oncotarget 2018; 7:68527-68545. [PMID: 27602496 PMCID: PMC5356571 DOI: 10.18632/oncotarget.11832] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 08/21/2016] [Indexed: 12/31/2022] Open
Abstract
Von Willebrand factor (VWF) serves as a nidus for platelet aggregation and thrombosis. We hypothesize that VWF fibers contribute to the development of venous thromboembolism (VTE) and to metastasis formation. Here, we show that vascular and lymphatic endothelial cells (ECs) express VWF in vitro and release VWF fibers after activation by tumor cell supernatants. In contrast, an ex vivo analysis of primary mouse tumors revealed the presence of VWF fibers in the blood microvasculature but not in lymphatic vessels. Unlike the anticoagulant Fondaparinux, an inhibitor of thrombin generation, the low-molecular-weight heparin (LMWH) Tinzaparin inhibited VWF fiber formation and vessel occlusion in tumor vessels by blocking thrombin-induced EC activation and vascular endothelial growth factor-A (VEGF-A)-mediated VWF release. Intradermal tumor cell inoculation in VWF- and ADAMTS13-deficient mice did not alter lymph node metastases compared with wild type animals. Interestingly, multiple tumor-free distal organs exhibited hallmarks of malignancy-related VTE, including luminal VWF fibers, platelet-rich thrombi and vessel occlusions. Furthermore, ADAMTS13 deficiency, characterized by prolonged intraluminal VWF network lifetimes, resulted in a severely increased number of metastatic foci in an experimental model of hematogenous lung seeding. Treatment with Tinzaparin inhibited tumor-induced release of VWF multimers, impeded platelet aggregation and decreased lung metastasis. Thus, our data strongly suggest a critical role of luminal VWF fibers in determining the occurrence of thrombosis and cancer metastasis. Moreover, the findings highlight LMWHs as therapeutic strategy to treat thrombotic complications while executing anti-metastatic activities.
Collapse
Affiliation(s)
- Lukas Goertz
- Experimental Dermatology, Department of Dermatology, Venereology, and Allergy, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Stefan Werner Schneider
- Department of Dermatology and Venereology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Desch
- Experimental Dermatology, Department of Dermatology, Venereology, and Allergy, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Frank Thomas Mayer
- Experimental Dermatology, Department of Dermatology, Venereology, and Allergy, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Julian Koett
- Experimental Dermatology, Department of Dermatology, Venereology, and Allergy, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Kai Nowak
- Department of Surgery, Mannheim University Medical Center, Heidelberg University, Mannheim, Germany
| | - Ioannis Karampinis
- Department of Surgery, Mannheim University Medical Center, Heidelberg University, Mannheim, Germany
| | - Michael K Bohlmann
- Department of Obstetrics and Gynaecology, Mannheim University Medical Center, Heidelberg University, Mannheim, Germany
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Alexander Thomas Bauer
- Experimental Dermatology, Department of Dermatology, Venereology, and Allergy, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
13
|
Yang AJ, Wang M, Wang Y, Cai W, Li Q, Zhao TT, Zhang LH, Houck K, Chen X, Jin YL, Mu JY, Dong JF, Li M. Cancer cell-derived von Willebrand factor enhanced metastasis of gastric adenocarcinoma. Oncogenesis 2018; 7:12. [PMID: 29362409 PMCID: PMC5833464 DOI: 10.1038/s41389-017-0023-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/16/2017] [Indexed: 01/30/2023] Open
Abstract
Cancer prognosis is poor for patients with blood-borne metastasis. Platelets are known to assist cancer cells in transmigrating through the endothelium, but ligands for the platelet-mediated cancer metastasis remain poorly defined. von Willebrand factor (vWF) is a major platelet ligand that has been widely used as a biomarker in cancer and associated inflammation. However, its functional role in cancer growth and metastasis is largely unknown. Here we report that gastric cancer cells from patients and cells from two well-established gastric cancer lines express vWF and secrete it into the circulation, upon which it rapidly becomes cell-bound to mediate cancer-cell aggregation and interaction with platelets and endothelial cells. The vWF-mediated homotypic and heterotypic cell-cell interactions promote the pulmonary graft of vWF-overexpressing gastric cancer BGC823 cells in a mouse model. The metastasis-promoting activity of vWF was blocked by antibodies against vWF and its platelet receptor GP Ibα. It was also reduced by an inhibitory siRNA that suppresses vWF expression. These findings demonstrate a causal role of cancer-cell-derived vWF in mediating gastric cancer metastasis and identify vWF as a new therapeutic target.
Collapse
Affiliation(s)
- Ai-Jun Yang
- Institute of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Min Wang
- Institute of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Provincial Hospital, Lanzhou, China
| | - Wei Cai
- Institute of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Provincial Hospital, Lanzhou, China
| | - Qiang Li
- The First Affiliated Hospital of Lanzhou University, Lanzhou, China
| | - Ting-Ting Zhao
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Li-Han Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Katie Houck
- Bloodworks Research Institute, Seattle, Washington, USA
| | - Xu Chen
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Provincial Hospital, Lanzhou, China
| | - Yan-Ling Jin
- Institute of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Ji-Ying Mu
- Institute of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jing-Fei Dong
- Bloodworks Research Institute, Seattle, Washington, USA. .,Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA.
| | - Min Li
- Institute of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China. .,Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China. .,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, China.
| |
Collapse
|
14
|
Ping Z, Soni A, Williams LA, Pham HP, Basu MK, Zheng XL. Mutations in Coagulation Factor VIII Are Associated with More Favorable Outcome in Patients with Cutaneous Melanoma. TH OPEN 2017; 1:e113-e121. [PMID: 29152610 PMCID: PMC5690574 DOI: 10.1055/s-0037-1607337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Coagulation factor VIII (FVIII), von Willebrand factor (VWF), and ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 repeats 13) play an important role in the regulation of normal hemostasis. However, little is known about their roles in patients with malignancy, particularly with cutaneous melanoma. Whole genome sequencing data are available for 25,719 cases in 126 cancer genomic studies for analysis. All sequencing data and corresponding pathology findings were obtained from The Cancer Genome Atlas. The cBioPortal bioinformatics tools were used for the data analysis. Our results demonstrated that mutations in genes encoding
FVIII
,
VWF
, and
ADAMTS13
were reported in 92 of 126 cancer genomic studies, and high mutation rates in these three genes were observed in patients with cutaneous melanoma from three independent studies. Moreover, high mutation rates in
FVIII
,
VWF
, and
ADAMTS13
were also found in patients with diffuse large B cell lymphoma (22.9%), lung small cell carcinoma (20.7%), and colon adenocarcinoma (19.4%). Among 366 melanoma cases from TCGA provisional, the somatic mutation rates of
FVIII
,
VWF
, and
ADAMTS13
in tumor cells were 15, 14, and 5%, respectively. There was a strong tendency for coexisting mutations of
FVIII
,
VWF
, and
ADAMTS13
. Kaplan–Meier survival analysis demonstrated that melanoma patients with
FVIII
mutations had a more favorable overall survival rate than those without
FVIII
mutations (
p
= 0.02). These findings suggest, for the first time, that the
FVIII
mutation burden may have a prognostic value for patients with cutaneous melanoma. Further studies are warranted to delineate the molecular mechanisms underlying the favorable prognosis associated with
FVIII
mutations.
Collapse
Affiliation(s)
- Zheng Ping
- Divisions of Laboratory Medicine, The University of Alabama at Birmingham, AL 35249
| | - Abha Soni
- Divisions of Laboratory Medicine, The University of Alabama at Birmingham, AL 35249
| | - Lance A Williams
- Divisions of Laboratory Medicine, The University of Alabama at Birmingham, AL 35249
| | - Huy P Pham
- Divisions of Laboratory Medicine, The University of Alabama at Birmingham, AL 35249
| | - Malay K Basu
- Division of Informatics, Department of Pathology, The University of Alabama at Birmingham, AL 35249
| | - X Long Zheng
- Divisions of Laboratory Medicine, The University of Alabama at Birmingham, AL 35249.,Division of Informatics, Department of Pathology, The University of Alabama at Birmingham, AL 35249
| |
Collapse
|
15
|
John A, Gorzelanny C, Bauer AT, Schneider SW, Bolenz C. Role of the Coagulation System in Genitourinary Cancers: Review. Clin Genitourin Cancer 2017; 16:S1558-7673(17)30210-0. [PMID: 28822718 DOI: 10.1016/j.clgc.2017.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/30/2017] [Accepted: 07/21/2017] [Indexed: 12/13/2022]
Abstract
Tumor progression is associated with aberrant hemostasis, and patients with malignant diseases have an elevated risk of developing thrombosis. A crosstalk among the vascular endothelium, components of the coagulation cascade, and cancer cells transforms the intravascular milieu to a prothrombotic, proinflammatory, and cell-adhesive state. We review the existing evidence on activation of the coagulation system and its implication in genitourinary malignancies and discuss the potential therapeutic benefit of antithrombotic agents. A literature review was performed searching the Medline database and the Cochrane Library for original articles and reviews. A second search identified studies reporting on oncological benefit of anticoagulants in genitourinary cancer. An elevated expression of procoagulatory tissue factor on tumor cells and tumor-derived microparticles seems to stimulate cancer development and progression. Several components of the hemostatic system, including D-dimers, von Willebrand Factor, thrombin, fibrin-/ogen, soluble P-selectin, and prothrombin fragments 1 + 2 were either overexpressed or overactive in genitourinary cancers. Hypercoagulation was in general associated with a poorer prognosis. Experimental models and small trials in humans showed reduced cancer progression after treatment with anticoagulants. Main limitations of these studies were heterogeneous experimental methodology, small patient numbers, and a lack of prospective validation. In conclusion, experimental and clinical evidence suggests procoagulatory activity of genitourinary neoplasms, particularly in prostate, bladder and kidney cancer. This may promote the risk of vascular thrombosis but also metastatic progression. Clinical studies linked elevated biomarkers of hemostasis with poor prognosis in patients with genitourinary cancers. Thus, anticoagulation may have a therapeutic role beyond prevention of thromboembolism.
Collapse
Affiliation(s)
- Axel John
- Department of Urology, Ulm University Medical Centre, Ulm, Germany; Experimental Dermatology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | - Christian Gorzelanny
- Experimental Dermatology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Dermatology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander T Bauer
- Experimental Dermatology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Stefan W Schneider
- Department of Dermatology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bolenz
- Department of Urology, Ulm University Medical Centre, Ulm, Germany
| |
Collapse
|
16
|
Desch A, Gebhardt C, Utikal J, Schneider SW. D-dimers in malignant melanoma: Association with prognosis and dynamic variation in disease progress. Int J Cancer 2016; 140:914-921. [PMID: 27813063 DOI: 10.1002/ijc.30498] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 10/07/2016] [Accepted: 10/24/2016] [Indexed: 02/05/2023]
Abstract
Malignant cells elicit a chronic hemostatic activation in disease progress. This procoagulant activity does not only bear a risk for thromboembolism but also facilitates tumor growth and dissemination. An elevated plasma D-dimer level indicates an activated coagulation and fibrinolysis. In this study, the association of D-dimer levels with clinicopathological parameters and patients outcome in melanoma was investigated analyzing in total 533 melanoma patients retrospectively. Using the cut-off point of 0.6 mg/L D-dimer 145 of the total 533 patients (27.2%) were identified with elevated plasma D-dimer levels. This increased D-dimer level positively correlated with tumor thickness (p = 0.0003), lymph node invasion (p = 0.0004) and metastatic state (p <0.0001). To assess the association of D-dimer levels with progression-free survival (PFS) and overall survival (OS), long-rank test and the Cox proportional hazard model was performed. Univariate analyses revealed that elevated D-dimer levels were significantly associated with decreased PFS (HR:2.89, 95% CI (2.07-7.56), p < 0.0001) and OS (HR:2.22, 95% CI (1.06-4.57), p = 0.035). Moreover, multivariate analyses identified elevated D-dimer levels being associated with poor disease outcome (PFS:HR:2.47, 95% CI (1.23-4.98), p = 0.012; OS:HR:2.01, 95% CI (0.09-4.45), p = 0.087). Additionally, D-dimer levels were significantly increased in terminal stage patients when comparing plasma levels 0-8 versus 24-48 weeks before death (p = 0.0003). In summary, this study presents multiple evidence that elevated D-dimer levels in melanoma patients associate with poor prognosis and therefore plasma levels of D-dimers could reveal a more aggressive phenotype of melanoma and may guide the management of anti-melanoma treatment including the concept of an anti-coagulatory therapy in tumor patients.
Collapse
Affiliation(s)
- Anna Desch
- Experimental Dermatology, Department of Dermatology, Venereology, and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Christoffer Gebhardt
- Department of Dermatology, Venereology, and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.,Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jochen Utikal
- Department of Dermatology, Venereology, and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.,Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan W Schneider
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
17
|
Tao L, Zhang L, Peng Y, Tao M, Li L, Xiu D, Yuan C, Ma Z, Jiang B. Neutrophils assist the metastasis of circulating tumor cells in pancreatic ductal adenocarcinoma: A new hypothesis and a new predictor for distant metastasis. Medicine (Baltimore) 2016; 95:e4932. [PMID: 27684834 PMCID: PMC5265927 DOI: 10.1097/md.0000000000004932] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
During our research on circulating tumor cells (CTCs) derived from tumor-adjacent vessels in pancreatic ductal adenocarcinoma (PDAC), we found that CTCs are sometimes surrounded by white blood cells (WBCs) in blood. We hypothesize that such interaction between WBCs and CTCs in blood is a mechanism by which WBCs assist in the metastasis of CTCs. We present our laboratory finding, with our evaluation of the association between the neutrophil-to-lymphocyte ratio (NLR, the most investigated clinical parameter of WBCs) and distant metastasis after curative surgery in PDAC. The laboratory finding was presented through immunofluorescence. In the clinical segment, we performed a retrospective study on PDAC patients with distant metastasis after curative surgery who were referred to Peking University Third Hospital between 2005 and 2014. The data on the possible clinical factors were collected by a retrospective review of the patients' records. Immunofluorescence results showed that CTCs are surrounded by WBCs in tumor-adjacent vessels of PDAC patients. In the clinical segment, 112 (70%) of a total of 160 PDAC patients were found to have developed distant metastases after surgery; among the 112 patients, only 89 had entire data and were enrolled for further analysis (84.3% patients had liver metastasis). No significant association was found between the NLR and overall survival (hazard ratio [HR] = 1.027, 95% confidence interval [CI] 0.723-1.459, P = 0.88); however, a significant relationship between the NLR and distant metastasis after curative surgery was found on the univariate (HR = 1.641, 95% CI 1.058-2.545, P = 0.027) and multivariate analyses (HR = 2.15, 95% CI 1.279-3.615, P = 0.004). Neutrophils might assist in distant metastasis through interaction with CTCs in blood. Moreover, NLR is an effective predictor for distant metastasis after curative surgery for PDAC.
Collapse
Affiliation(s)
| | | | | | | | | | - Dianrong Xiu
- Department of General Surgery, Peking University Third Hospital, Beijing, China
- Correspondence: Xiu Dianrong, Prof of Medicine, Department of General Surgery, Peking University Third Hospital, No. 49, Hua Yuan North Rd, Hai Dian District, Beijing 100191, China (e-mail: )
| | | | | | | |
Collapse
|
18
|
Strozyk EA, Desch A, Poeppelmann B, Magnolo N, Wegener J, Huck V, Schneider SW. Melanoma-derived IL-1 converts vascular endothelium to a proinflammatory and procoagulatory phenotype via NFκB activation. Exp Dermatol 2016; 23:670-6. [PMID: 25041487 DOI: 10.1111/exd.12505] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2014] [Indexed: 01/29/2023]
Abstract
Spreading of melanoma is associated with efficient extravasation of circulating tumor cells from the vascular system into distant target organs. This process is accompanied and supported by proinflammatory and procoagulatory conditions. In this study, we analysed the ability of human melanoma cell lines to activate endothelial cells (ECs) in vitro. Some melanoma cells, that is, MV3, were shown to trigger an prompt calcium-flux-dependent, procoagulatory endothelial response that was accompanied by luminal release of ultra-large von Willebrand factor (ULVWF) fibres that were immobilized to the endothelial surface layer. In contrast to MV3-derived supernatant, prolonged treatment of ECs with WM9-derived supernatant mediated a pronounced activation of nuclear factor kappa B (NFκB). NFκB activation in ECs was dependent on both IL-1α and IL-1β secreted from melanoma cells. Melanoma-derived IL-1 mediated an upregulation of proinflammatory cytokines IL-6 and IL-8, the intercellular adhesion molecule-1 (ICAM-1), the vascular cell adhesion molecule-1 (VCAM-1) and the procoagulatory tissue factor (TF) in ECs. Our data show that melanoma cells activate ECs either directly and within seconds or by an IL-1-mediated NFκB activation. Both pathways of EC activation convert the regular repressive function of ECs on inflammation and coagulation to a proinflammatory and procoagulatory surface that supports tumor progression.
Collapse
Affiliation(s)
- Elwira A Strozyk
- Experimental Dermatology, Department of Dermatology, TU Dresden, Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Guo SW, Du Y, Liu X. Endometriosis-Derived Stromal Cells Secrete Thrombin and Thromboxane A2, Inducing Platelet Activation. Reprod Sci 2016; 23:1044-52. [PMID: 26902428 DOI: 10.1177/1933719116630428] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Platelets have been recently revealed to play important roles in the development of endometriosis. However, it is unclear whether endometriotic lesions can secrete any platelet inducers outside the menstruation window. Hence, this study was undertaken to see whether endometriosis-derived stromal cells secrete platelet activators and cause platelet activation. We employed in vitro experimentation using primary ectopic endometrial stromal cells (EESCs) and platelets from healthy male volunteers and evaluated the extent of platelet aggregation by aggregometer and the platelet activation rate by flow cytometry using supernatants harvested from EESCs of different cell densities. We also measured the concentration of thromboxane B2 (TXB2), a metabolite of thromboxane A2 (TXA2), and thrombin activity in supernatants harvested from EESCs of different densities and evaluated the extent of platelet aggregation after treatment of EESCs with hirudin, Ozagrel, and apyrase. Finally, the concentration of TXB2, thrombin, and transforming growth factor β1 (TGF-β1) in platelets cocultured with different densities of EESCs is measured by enzyme-linked immunosorbent assay. We found that EESCs secrete thrombin and TXA2 and induce platelet activation and aggregation in a density-dependent fashion. Treatment of platelets with EESCs resulted in increased concentration of TXB2, thrombin, and TGF-β1 in a density-dependent manner. Treatment of EESCs with hirudin and Ozagrel, but not apyrase, resulted in significant suppression of platelet aggregation. Thus, given recently reported effects of activated platelets on the cell behaviors of EESCs and endometriotic lesions in general, our findings establish that endometriotic lesions and platelets engage active cross-talks in the development of endometriosis, highlighting the importance of lesion microenvironment in endometriosis.
Collapse
Affiliation(s)
- Sun-Wei Guo
- Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Yanbo Du
- Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
| | - Xishi Liu
- Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| |
Collapse
|
20
|
Prostaglandin E synthase is upregulated by Gas6 during cancer-induced venous thrombosis. Blood 2015; 127:769-77. [PMID: 26585956 DOI: 10.1182/blood-2015-02-628867] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 11/18/2015] [Indexed: 12/21/2022] Open
Abstract
Venous thromboembolism is a common complication of cancer. Based on recent evidence that (1) growth arrest-specific 6 (Gas6) regulates the expression of tissue factor during venous thrombosis, and (2) cancer promotes a procoagulant milieu, we hypothesize that Gas6 may be involved in cancer-induced coagulopathy. Venous thrombi were induced in both wild-type (WT) and Gas6-deficient ((-/-)) mice with cancer. WT mice with cancer developed larger thrombi than their healthy counterparts; these larger thrombi induced by cancer were not seen in Gas6(-/-) mice. Whole genome microarray analysis of differential gene expression in WT and Gas6(-/-) endothelial cells exposed to M27 murine lung carcinoma cells reveal that Gas6 increases prostaglandin E synthase (Ptges) expression in endothelial cells. This was confirmed using real-time polymerase chain reaction and immunofluorescence staining. Culture of WT endothelial cells with M27 increases the secretion of prostaglandin E2 (PGE2), the enzymatic product of Ptges, in WT but not in Gas6(-/-) endothelial cells. In WT endothelial cells, Ptges expression was regulated through extracellular signal-regulated kinase 1/2 phosphorylation (ERK1/2). In vitro, PGE2 activates platelets after binding to its receptor, EP3. In vivo, EP3 receptor antagonism reversed the effect of cancer-induced thrombosis in WT mice. These results show that Gas6, through upregulation of PGE2, contributes to cancer-induced venous thrombosis.
Collapse
|
21
|
|
22
|
Arsenic trioxide downregulates cancer procoagulant activity in MCF-7 and WM-115 cell lines in vitro. Contemp Oncol (Pozn) 2015; 19:108-12. [PMID: 26034387 PMCID: PMC4444438 DOI: 10.5114/wo.2014.41390] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/18/2013] [Accepted: 11/08/2013] [Indexed: 10/28/2022] Open
Abstract
THE AIM OF THE STUDY To analyze human breast cancer cell line MCF-7 and human malignant melanoma cell line WM-115 in order to characterize the cellular expression of CP and to evaluate whether ATO may affect this activity, as well as the viability of the cells. MATERIAL AND METHODS The inhibitory effect of arsenic trioxide on the proliferation of MCF-7 and WM-115 cells were measured with MTT test. The activity of cancer procoagulant after ATO exposure was determined by a specific three-stage chromogenic assay. RESULTS ATO decreased the CP activity in a dose- and time-dependent manner in MCF-7 cells with no effect on cell proliferation at the same time. However, it affected the CP activity of WM-115 cells in a different way. Reduction in CP activity was followed by an increase after 48 h incubation. The cells viability results showed dose-and time-correlated response within high arsenic concentrations. CONCLUSIONS Arsenic trioxide downregulates the CP expression in human breast cancer and melanoma cells.
Collapse
|
23
|
Yang Y, Gorzelanny C, Bauer AT, Halter N, Komljenovic D, Bäuerle T, Borsig L, Roblek M, Schneider SW. Nuclear heparanase-1 activity suppresses melanoma progression via its DNA-binding affinity. Oncogene 2015; 34:5832-42. [PMID: 25745999 DOI: 10.1038/onc.2015.40] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 01/09/2015] [Accepted: 01/14/2015] [Indexed: 12/13/2022]
Abstract
Heparanase-1 (HPSE) plays a pivotal role in structural remodeling of the ECM and the glycocalyx, thus conferring protumorigenic, proangiogenic and prometastatic properties to many cancer entities. In addition to its extracellular function, recent studies suggest an intracellular activity of HPSE with a largely unknown significance during tumor progression. Therefore, we investigated the relevance of the dual functions of HPSE to malignant melanoma in vitro, as well as in different mouse melanoma models based on the intradermal or intravenous injection of melanoma cells. Consistent with its extracellular action, an HPSE deficiency led to a reduced shedding of the glycocalyx accompanied by a reduced availability of vascular endothelial growth factor, affecting tumor growth and vascularization. In contrast, we measured an elevated expression of the protumorigenic factors pentraxin-3, tissue factor, TNF-α and most prominently, MMP-9, upon HPSE knockdown. In vivo, an HPSE deficiency was related to increased lymph node metastasis. Since the inhibition of its extracellular function with heparin was unable to block the gene regulatory impact of HPSE, we proposed an intracellular mechanism. Immunostaining revealed a counter-staining of HPSE and NF-κB in the nucleus, suggesting a close relationship between both proteins. This finding was further supported by the discovery of a direct charge-driven molecular interaction between HPSE and DNA by using atomic force microscopy and a co-precipitation approach. Our findings are novel and point towards a dual function for HPSE in malignant melanoma with a protumorigenic extracellular activity and a tumor-suppressive nuclear action. The identification of molecular strategies to shuttle extracellular HPSE into the nuclei of cancer cells could provide new therapeutic options.
Collapse
Affiliation(s)
- Y Yang
- Department of Dermatology, Experimental Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - C Gorzelanny
- Department of Dermatology, Experimental Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - A T Bauer
- Department of Dermatology, Experimental Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - N Halter
- Department of Dermatology, Experimental Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - D Komljenovic
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - T Bäuerle
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - L Borsig
- Institute of Physiology, University of Zürich and Zürich Center for Integrative Human Physiology, Zürich, Switzerland
| | - M Roblek
- Institute of Physiology, University of Zürich and Zürich Center for Integrative Human Physiology, Zürich, Switzerland
| | - S W Schneider
- Department of Dermatology, Experimental Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
24
|
von Willebrand factor fibers promote cancer-associated platelet aggregation in malignant melanoma of mice and humans. Blood 2015; 125:3153-63. [PMID: 25977583 DOI: 10.1182/blood-2014-08-595686] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 02/03/2015] [Indexed: 12/13/2022] Open
Abstract
Tumor-mediated procoagulatory activity leads to venous thromboembolism and supports metastasis in cancer patients. A prerequisite for metastasis formation is the interaction of cancer cells with endothelial cells (ECs) followed by their extravasation. Although it is known that activation of ECs and the release of the procoagulatory protein von Willebrand factor (VWF) is essential for malignancy, the underlying mechanisms remain poorly understood. We hypothesized that VWF fibers in tumor vessels promote tumor-associated thromboembolism and metastasis. Using in vitro settings, mouse models, and human tumor samples, we showed that melanoma cells activate ECs followed by the luminal release of VWF fibers and platelet aggregation in tumor microvessels. Analysis of human blood samples and tumor tissue revealed that a promoted VWF release combined with a local inhibition of proteolytic activity and protein expression of ADAMTS13 (a disintegrin-like and metalloproteinase with thrombospondin type I repeats 13) accounts for this procoagulatory milieu. Blocking endothelial cell activation by the low-molecular-weight heparin tinzaparin was accompanied by a lack of VWF networks and inhibited tumor progression in a transgenic mouse model. Our findings implicate a mechanism wherein tumor-derived vascular endothelial growth factor-A (VEGF-A) promotes tumor progression and angiogenesis. Thus, targeting EC activation envisions new therapeutic strategies attenuating tumor-related angiogenesis and coagulation.
Collapse
|
25
|
Itsekson-Hayosh Z, Shavit-Stein E, Last D, Goez D, Daniels D, Bushi D, Gera O, Zibly Z, Mardor Y, Chapman J, Harnof S. Thrombin Activity and Thrombin Receptor in Rat Glioblastoma Model: Possible Markers and Targets for Intervention? J Mol Neurosci 2015; 56:644-51. [PMID: 25691153 DOI: 10.1007/s12031-015-0512-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/04/2015] [Indexed: 11/26/2022]
Abstract
High-grade gliomas constitute a group of aggressive CNS cancers that have high morbidity and mortality rates. Despite extensive research, current therapeutic approaches enable survival beyond 2 years in rare cases only. Thrombin and its main CNS target, protease-activated receptor-1, have been implicated in tumor progression and brain edema. Our aim was to study protease-activated receptor-1 (PAR-1) protein expression and thrombin-like activity levels in both in vitro and in vivo models of glioblastoma and correlate them with the volume of the surrounding edema. We measured the presence of PAR-1 protein using fluorescence immunohistochemistry and assessed thrombin activity in various glial and non-glial cell lines and in a CNS-1 glioma rat model using a thrombin-specific fluorescent assay. Thrombin activity was found to be highly elevated in various high-grade glioma cell lines as well as in non-glial malignant cell lines. In the CNS-1 glioma model, the level of PAR-1 fluorescence in the tumor was significantly elevated compared to adjacent regions of reactive gliosis or distant brain areas. The elevated level of thrombin activity observed in the high-grade glioma positively correlated with tumor-induced brain edema. In conclusion, thrombin is secreted from glioma cells and PAR-1 may be a new biological marker for high-grade gliomas.
Collapse
Affiliation(s)
- Ze'ev Itsekson-Hayosh
- Department of Neurosurgery, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Uppal A, Wightman SC, Ganai S, Weichselbaum RR, An G. Investigation of the essential role of platelet-tumor cell interactions in metastasis progression using an agent-based model. Theor Biol Med Model 2014; 11:17. [PMID: 24725600 PMCID: PMC4022382 DOI: 10.1186/1742-4682-11-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/04/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Metastatic tumors are a major source of morbidity and mortality for most cancers. Interaction of circulating tumor cells with endothelium, platelets and neutrophils play an important role in the early stages of metastasis formation. These complex dynamics have proven difficult to study in experimental models. Prior computational models of metastases have focused on tumor cell growth in a host environment, or prediction of metastasis formation from clinical data. We used agent-based modeling (ABM) to dynamically represent hypotheses of essential steps involved in circulating tumor cell adhesion and interaction with other circulating cells, examine their functional constraints, and predict effects of inhibiting specific mechanisms. METHODS We developed an ABM of Early Metastasis (ABMEM), a descriptive semi-mechanistic model that replicates experimentally observed behaviors of populations of circulating tumor cells, neutrophils, platelets and endothelial cells while incorporating representations of known surface receptor, autocrine and paracrine interactions. Essential downstream cellular processes were incorporated to simulate activation in response to stimuli, and calibrated with experimental data. The ABMEM was used to identify potential points of interdiction through examination of dynamic outcomes such as rate of tumor cell binding after inhibition of specific platelet or tumor receptors. RESULTS The ABMEM reproduced experimental data concerning neutrophil rolling over endothelial cells, inflammation-induced binding between neutrophils and platelets, and tumor cell interactions with these cells. Simulated platelet inhibition with anti-platelet drugs produced unstable aggregates with frequent detachment and re-binding. The ABMEM replicates findings from experimental models of circulating tumor cell adhesion, and suggests platelets play a critical role in this pre-requisite for metastasis formation. Similar effects were observed with inhibition of tumor integrin αV/β3. These findings suggest that anti-platelet or anti-integrin therapies may decrease metastasis by preventing stable circulating tumor cell adhesion. CONCLUSION Circulating tumor cell adhesion is a complex, dynamic process involving multiple cell-cell interactions. The ABMEM successfully captures the essential interactions necessary for this process, and allows for in-silico iterative characterization and invalidation of proposed hypotheses regarding this process in conjunction with in-vitro and in-vivo models. Our results suggest that anti-platelet therapies and anti-integrin therapies may play a promising role in inhibiting metastasis formation.
Collapse
Affiliation(s)
| | | | | | | | - Gary An
- Department of Surgery, The University of Chicago Medicine, 5841 S, Maryland Avenue, MC 5094 S-032, Chicago, IL 60637, USA.
| |
Collapse
|
27
|
Huck V, Schneider MF, Gorzelanny C, Schneider SW. The various states of von Willebrand factor and their function in physiology and pathophysiology. Thromb Haemost 2014; 111:598-609. [PMID: 24573248 DOI: 10.1160/th13-09-0800] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 02/08/2014] [Indexed: 11/05/2022]
Abstract
The specific interactions of von Willebrand factor (VWF) with the vessel wall, platelets or other interfaces strongly depend on (a shear-induced) VWF activation. Shear flow has been shown to induce a conformational transition of VWF, but is modulated by its thermodynamic state (state-function relationship). The state in turn is determined by physical (e.g. vessel geometry), physico-chemical (e.g. pH) and molecular-biological (e.g. mutants, binding) factors. Combining established results with recent insights, we reconstruct VWF biology and its state-function relationship from endothelial cell release to final degradation in the human vasculature. After VWF secretion, endothelial-anchored and shear activated VWF multimers can rapidly interact with surrounding colloids, typically with platelets. Simultaneously, this VWF activation enables ADAMTS13 to cleave VWF multimers thereby limiting VWF binding capacity. The subsequent cell-surface dissociation leads to a VWF recoiling to a globular conformation, shielding from further degradation by ADAMTS13. High local concentrations of these soluble VWF multimers, transported to the downstream vasculature, are capable for an immediate reactivation and re-polymerisation initiating colloid-binding or VWF-colloid aggregation at the site of inflamed endothelium, vessel injuries or pathological high-shear areas. Focusing on these functional steps in the lifecycle of VWF, its qualitative and quantitative deficiencies in the different VWD types will facilitate more precise diagnostics and reliable risk stratification for prophylactic therapies. The underlying biophysical principles are of general character, which broadens prospective studies on the physiological and pathophysiological impact of VWF and VWF-associated diseases and beares hope for a more universal understanding of an entire class of phenomena.
Collapse
Affiliation(s)
| | - Matthias F Schneider
- Prof. Dr. Matthias F. Schneider, Biological Physics Group, Boston University, Department of Mechanical Engineering, 110 Cummington Street, Boston, MA 02215, USA, Tel.: +1 617 353 3951, Fax: +1 617 353 3951, E-mail:
| | | | - Stefan W Schneider
- Prof. Dr. Stefan W. Schneider, Department of Dermatology, Experimental Dermatology, Heidelberg University, Medical Faculty Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany, Tel: +49 621 383 6901, Fax:+49 621 383 6903, E-mail:
| |
Collapse
|
28
|
Tas F, Ciftci R, Kilic L, Bilgin E, Keskin S, Sen F, Yildiz I, Yasasever V. Clinical and prognostic significance of coagulation assays in melanoma. Melanoma Res 2013; 22:368-75. [PMID: 22889867 DOI: 10.1097/cmr.0b013e328357be7c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The activation of coagulation and fibrinolysis is frequently found among cancer patients. Such tumors are considered to be associated with a higher risk of invasion, metastases, and eventually worse outcome. The aim of this study is to explore the clinical and prognostic value of blood coagulation tests for melanoma patients. Pretreatment blood coagulation tests including prothrombin time (PT), activated partial thromboplastin time (APTT), prothrombin activity (PTA), international normalized ratio (INR), D-dimer (DD), fibrinogen (F) levels, and platelet (PLT) counts were carried out. This prospective study included 61 melanoma patients [stage I-II (n=10), stage III (n=14), stage IV (n=37), M1c (n=26) disease], and 50 healthy controls. It included 34 (56%) men, median age 53 years, range 16-88 years. Over half of the patients (54%) were in the metastatic stage and most of them (70%) had M1c. The plasma level of pretreatment blood coagulation tests including DD, F, APTT, INR levels, and PLT counts showed a statistically significant difference between the patient and the control group (P<0.001 for all, but P=0.049 for INR). The levels of INR, DD, F, and PLT counts were higher and APTT was lower in the melanoma group, whereas the PT and PTA levels did not show any significant difference. There was a significant association between PT, PTA, INR, and PLT levels and the age of the patient. Patients with node metastasis in M0 disease had higher levels of PTA and PLT counts (P=0.002 and 0.048, respectively) and lower levels of PT and INR (P=0.056 and 0.046, respectively). The M1c patients tended to have higher plasma F levels (437 vs. 297 mg/dl, P=0.055) than M1a and M1b patients. The 1-year survival rate for all patients was 70%. In association with distant metastasis, advanced metastatic stage (M1c), elevated lactate dehydrogenase, and erythrocyte sedimentation rate, only elevated plasma F levels had a significantly adverse effect on survival among the coagulation parameters (P=0.031). The 1-year survival rates for patients with high and normal F levels were 58 and 88%, respectively. In conclusion, changes in the coagulation-fibrinolytic system are often present in melanoma and elevation in the plasma F level is associated with decreased survival.
Collapse
Affiliation(s)
- Faruk Tas
- Institute of Oncology, University of Istanbul, Istanbul, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
A Kunitz-type FXa inhibitor affects tumor progression, hypercoagulable state and triggers apoptosis. Biomed Pharmacother 2012; 67:192-6. [PMID: 23433900 DOI: 10.1016/j.biopha.2012.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/23/2012] [Indexed: 10/27/2022] Open
Abstract
Cancer is linked to hypercoagulability, and many studies have shown that anticoagulant drugs affect tumor progression. In this study was demonstrated that the Amblyomin-X (which is a recombinant protein that exerts similarity to the Kunitz-type inhibitors and shows pro-apoptotic effects in different tumor cell lines) and heparin (a classic anticoagulant) have similar effects on cancer progression and on normalization of the hypercoagulable state. However, Amblyomin-X showed a distinct mechanism in triggering its effects in vitro, because it exerted a cytotoxic effect in cancer cells by inducing apoptosis and promoting cell cycle arrest.
Collapse
|
30
|
Herrmann E, Weishaupt C, Pöppelmann B, Hillgruber C, Pühse G, Krabbe LM, Feld M, Steinhoff M, Goerge T. New tools for assessing the individual risk of metastasis in renal cell carcinoma. Clin Exp Metastasis 2012; 30:215-24. [PMID: 22915161 DOI: 10.1007/s10585-012-9529-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 08/14/2012] [Indexed: 10/28/2022]
Abstract
Localized renal cell carcinoma (RCC) progresses to metastatic disease in 20-40 % after surgical resection. Affected patients might benefit from adjuvant treatment and have to be reliably identified for treatment indication. However, existing molecular markers and classification nomograms lack sufficient validity for clinical application so far. Therefore, in order to improve diagnostic tools for the identification of patients at risk, we tested invasiveness and the capability to activate vascular endothelium of primary RCC cells as tumor specific functional parameters. As a parameter for cell invasiveness the ability of RCC cells to break-down transepithelial electrical resistance (TEER) of an epithelial cell monolayer was tested. Loss of resistance, calculated as invasivity index, resembled the degree of cell invasiveness. In addition, secretion of Von Willebrand Factor by endothelial cells incubated with RCC cell supernatant was measured as a surrogate marker for endothelial cell activation. TEER-assay results matched clinical status of disease in 9 out of 12 cases. Metastatic tumors and less differentiated tumors had a significant increase of invasivity index (p = 0.007; p = 0.034). Endothelial cell activation and clinical outcome matched in 5 out of 9 samples. In addition, tumor cell induced endothelial cell activation significantly correlated to the pathologic T classification status of RCC tumors (p = 0.009). Taken together, our study validated endothelial cell activation analysis and cell invasiveness as solitary prognostic markers for tumor dissemination. TEER-analysis has proven to be a useful functional assay giving highly relevant individual information on functional tumor cell characteristics that add to pathologic evaluation.
Collapse
Affiliation(s)
- Edwin Herrmann
- Department of Urology, University Hospital of Münster, Albert-Schweitzer-Campus 1, Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Desch A, Strozyk EA, Bauer AT, Huck V, Niemeyer V, Wieland T, Schneider SW. Highly invasive melanoma cells activate the vascular endothelium via an MMP-2/integrin αvβ5-induced secretion of VEGF-A. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:693-705. [PMID: 22659470 DOI: 10.1016/j.ajpath.2012.04.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/21/2012] [Accepted: 04/05/2012] [Indexed: 01/14/2023]
Abstract
Tumor cell extravasation is a critical step in the metastatic cascade and requires interaction between the tumor cell and the endothelium. Although cancer progression depends on a complex network of mechanisms, including inflammation and coagulation, the involvement of tumor-induced endothelium activation and the subsequent release of procoagulatory factors in this process are not well understood. Using tissue sections from patients with malignant melanoma, immunofluorescence studies for the presence of von Willebrand factor (VWF) clearly demonstrated endothelium activation and the formation of ultra-large VWF fibers in these patients. In vitro analyses revealed that supernatants from highly invasive melanoma cells induced an acute endothelium activation measured by VWF, P-selectin, and angiopoietin-2 release. Proteome profiling identified vascular endothelial growth factor A (VEGF-A) as the main mediator of endothelium activation. Inhibition and knock-down of VEGF-A in melanoma cells led to a rigorous decrease in VWF exocytosis. Selective small-interfering RNA to matrix metalloproteinase-2 (MMP-2) inhibited endothelium activation, and this effect correlated with reduced VEGF-A content in the supernatants of melanoma cells. Further experiments showed that active MMP-2 regulates VEGF-A in melanoma cells on a transcriptional level via an integrin αvβ5/phosphoinositide-3-kinase-dependent pathway. In conclusion, these results indicate an important role of VEGF-A in acute endothelium activation and provide clear evidence that MMP-2 plays a pivotal role in the autocrine regulation of VEGF-A expression in melanoma cells.
Collapse
Affiliation(s)
- Anna Desch
- Division of Experimental Dermatology, Department of Dermatology, Venereology, and Allergology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | | | | | | | | | | | | |
Collapse
|
32
|
Dobrovolskaia MA, Patri AK, Potter TM, Rodriguez JC, Hall JB, McNeil SE. Dendrimer-induced leukocyte procoagulant activity depends on particle size and surface charge. Nanomedicine (Lond) 2012; 7:245-56. [DOI: 10.2217/nnm.11.105] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Aims: Thrombogenicity associated with the induction of leukocyte procoagulant activity (PCA) is a common complication in sepsis and cancer. Since nanoparticles are increasingly used for drug delivery, their interaction with coagulation systems is an important part of the safety assessment. The purpose of this study was to investigate the effects of nanoparticle physicochemical properties on leukocyte PCA, and to get insight into the mechanism of PCA induction. Materials & Methods: A total of 12 formulations of polyamidoamine (PAMAM) dendrimers, varying in size and surface charge, were studied in vitro using recalcification time assay. Results: Irrespective of their size, anionic and neutral dendrimers did not induce leukocyte PCA in vitro. Cationic particles induced PCA in a size- and charge-dependent manner. The mechanism of PCA induction was similar to that of doxorubicin. Cationic dendrimers were also found to exacerbate endotoxin-induced PCA. Conclusion: PAMAM dendrimer-induced leukocyte PCA depends on particle size, charge and density of surface groups.
Collapse
Affiliation(s)
- Marina A Dobrovolskaia
- Nanotechnology Characterization Lab SAIC-Frederick Inc., NCI-Frederick 1050 Boyles St., Bldg. 469 Frederick MD, 21702, USA
| | - Anil K Patri
- Nanotechnology Characterization Lab SAIC-Frederick Inc., NCI-Frederick 1050 Boyles St., Bldg. 469 Frederick MD, 21702, USA
| | - Timothy M Potter
- Nanotechnology Characterization Lab SAIC-Frederick Inc., NCI-Frederick 1050 Boyles St., Bldg. 469 Frederick MD, 21702, USA
| | - Jamie C Rodriguez
- Nanotechnology Characterization Lab SAIC-Frederick Inc., NCI-Frederick 1050 Boyles St., Bldg. 469 Frederick MD, 21702, USA
| | - Jennifer B Hall
- Nanotechnology Characterization Lab SAIC-Frederick Inc., NCI-Frederick 1050 Boyles St., Bldg. 469 Frederick MD, 21702, USA
| | - Scott E McNeil
- Nanotechnology Characterization Lab SAIC-Frederick Inc., NCI-Frederick 1050 Boyles St., Bldg. 469 Frederick MD, 21702, USA
| |
Collapse
|
33
|
Lonsdorf AS, Krämer BF, Fahrleitner M, Schönberger T, Gnerlich S, Ring S, Gehring S, Schneider SW, Kruhlak MJ, Meuth SG, Nieswandt B, Gawaz M, Enk AH, Langer HF. Engagement of αIIbβ3 (GPIIb/IIIa) with ανβ3 integrin mediates interaction of melanoma cells with platelets: a connection to hematogenous metastasis. J Biol Chem 2011; 287:2168-78. [PMID: 22102277 DOI: 10.1074/jbc.m111.269811] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A mutual relationship exists between metastasizing tumor cells and components of the coagulation cascade. The exact mechanisms as to how platelets influence blood-borne metastasis, however, remain poorly understood. Here, we used murine B16 melanoma cells to observe functional aspects of how platelets contribute to the process of hematogenous metastasis. We found that platelets interfere with a distinct step of the metastasis cascade, as they promote adhesion of melanoma cells to the endothelium in vitro under shear conditions. Constitutively active platelet receptor GPIIb/IIIa (integrin αIIbβ3) expressed on Chinese hamster ovary cells promoted melanoma cell adhesion in the presence of fibrinogen, whereas blocking antibodies to aνβ3 integrin on melanoma cells or to GPIIb/IIIa significantly reduced melanoma cell adhesion to platelets. Furthermore, using intravital microscopy, we observed functional platelet-melanoma cell interactions, as platelet depletion resulted in significantly reduced melanoma cell adhesion to the injured vascular wall in vivo. Using a mouse model of hematogenous metastasis to the lung, we observed decreased metastasis of B16 melanoma cells to the lung by treatment with a mAb blocking the aν subunit of aνβ3 integrin. This effect was significantly reduced when platelets were depleted in vivo. Thus, the engagement of GPIIb/IIIa with aνβ3 integrin interaction mediates tumor cell-platelet interactions and highlights how this interaction is involved in hematogenous tumor metastasis.
Collapse
Affiliation(s)
- Anke S Lonsdorf
- Department of Dermatology, University Hospital, Ruprecht-Karls University Heidelberg, 69115 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Vascular endothelium is a key regulator of homeostasis. In physiological conditions it mediates vascular dilatation, prevents platelet adhesion, and inhibits thrombin generation. However, endothelial dysfunction caused by physical injury of the vascular wall, for example during balloon angioplasty, acute or chronic inflammation, such as in atherothrombosis, creates a proinflammatory environment which supports leukocyte transmigration toward inflammatory sites. At the same time, the dysfunction promotes thrombin generation, fibrin deposition, and coagulation. The serine protease thrombin plays a pivotal role in the coagulation cascade. However, thrombin is not only the key effector of coagulation cascade; it also plays a significant role in inflammatory diseases. It shows an array of effects on endothelial cells, vascular smooth muscle cells, monocytes, and platelets, all of which participate in the vascular pathophysiology such as atherothrombosis. Therefore, thrombin can be considered as an important modulatory molecule of vascular homeostasis. This review summarizes the existing evidence on the role of thrombin in vascular inflammation.
Collapse
|