1
|
Babu A, Smith ZR, Mukhtarova N, Siddappa AM, Kling PJ. Short- and long-term alterations of hematopoietic cell lineages in rats with congenital iron deficiency. Blood Cells Mol Dis 2025; 111:102908. [PMID: 39705841 DOI: 10.1016/j.bcmd.2024.102908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Data support that fetal iron delivery is prioritized to hemoglobin in erythrocytes (RBC). Iron deficiency (ID) during pregnancy can cause congenital ID, i.e., low fetal iron acquisition. Because how congenital ID impacts other fetal hematopoietic cell lineages is unknown our pilot study examined this in a rat congenital ID model. Pregnant dams fed ID diets were compared to iron sufficient (IS) controls. Iron indices, complete cell counts with differentials, and microscopic morphology were studied at birth P2-3, mid-recovery P15 and adolescent post-recovery P45. Compared to IS at birth, ID rats exhibited 350 % higher zinc protoporphyrin/heme, 70 % lower plasma ferritin, 30 % lower hemoglobin, 25 % fewer platelets, but nucleated RBC (nRBC) and reticulocytes did not differ. Compared to IS at birth, ID rats exhibited 36 % fewer white counts (WBC) but proportionate lymphocytes and granulocytes (all P < 0.015). Compared to IS at P45, RBC, platelets, and WBC numbers did not differ, but lymphocytes were relatively lower in ID (P < 0.01). Microscopic morphology differed from IS in ID, with persistent differences at P45. Because altered inflammatory programming was previously reported in congenital ID and because this pilot study found altered WBC populations, this model of congenital ID is well situated to investigate long-term developmental programming.
Collapse
Affiliation(s)
- Anthony Babu
- Pediatrics, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Zachary R Smith
- Pediatrics, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, United States of America; Bronson Children's Hospital, Kalamazoo, MI, United States of America
| | - Narmin Mukhtarova
- Pediatrics, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Ashajyothi M Siddappa
- Pediatrics, Masonic Children's Hospital University of Minnesota and Hennepin Healthcare, both in Minneapolis, MN, United States of America
| | - Pamela J Kling
- Pediatrics, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, United States of America.
| |
Collapse
|
2
|
Mukhtarova N, Babu A, Coe CL, Kling PJ. Influence of Biological Sex and Congenital Iron Deficiency on Neonatal Cytokine Responses. Nutrients 2024; 16:4203. [PMID: 39683596 DOI: 10.3390/nu16234203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Stimulated cord blood mononuclear cell (CBMC) cytokine responses were previously shown to predict the risk of childhood atopic disease. Iron deficiency (ID) at birth may also program atopic disease. Males are at a higher risk of pediatric atopic disease, but it is not known whether congenital ID impacts CBMC immune responses differentially by sex. METHODS Cord blood (CB) samples were collected from healthy term or near-term neonates after elective cesarean deliveries. A transferrin saturation ≤ 25% defined congenital ID. CBMCs were stimulated with either phytohemagglutinin (PHA) or PHA plus an iron chelator. RESULTS Of the 85 neonates, the 26 neonates with congenital ID exhibited lower plasma tumor necrosis factor-α (TNF-α), as well as higher CBMC TNF-α and IL-8 responses than iron-sufficient neonates (p = 0.017, p = 0.013, and p = 0.007, respectively). Higher CBMC TNF-α responses were seen in both males and females with congenital ID. However, females with congenital ID also had lower plasma IL-6, lower plasma TNF-α, and higher CBMC interleukin (IL)-8 responses. Additionally, iron chelation during culture influenced stimulated CBMC IFN-γ and CBMC TNF-α responses. DISCUSSION Congenital ID may influence stimulated CBMC cytokine responses, but results point to a sex-specific regulation of immune balance at birth. Because males are more prone to infantile ID and more likely to develop early childhood asthma, future studies should further investigate how fetal sex and congenital iron status impacts childhood immune responsiveness to infections and antigenic stimulation from the rearing environment.
Collapse
Affiliation(s)
- Narmin Mukhtarova
- Department of Pediatrics, University of Wisconsin Hospitals and Clinics, Madison, WI 53792, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Anthony Babu
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Christopher L Coe
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Pamela J Kling
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53792, USA
| |
Collapse
|
3
|
Vassilopoulou E, Venter C, Roth-Walter F. Malnutrition and Allergies: Tipping the Immune Balance towards Health. J Clin Med 2024; 13:4713. [PMID: 39200855 PMCID: PMC11355500 DOI: 10.3390/jcm13164713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Malnutrition, which includes macro- and micronutrient deficiencies, is common in individuals with allergic dermatitis, food allergies, rhinitis, and asthma. Prolonged deficiencies of proteins, minerals, and vitamins promote Th2 inflammation, setting the stage for allergic sensitization. Consequently, malnutrition, which includes micronutrient deficiencies, fosters the development of allergies, while an adequate supply of micronutrients promotes immune cells with regulatory and tolerogenic phenotypes. As protein and micronutrient deficiencies mimic an infection, the body's innate response limits access to these nutrients by reducing their dietary absorption. This review highlights our current understanding of the physiological functions of allergenic proteins, iron, and vitamin A, particularly regarding their reduced bioavailability under inflamed conditions, necessitating different dietary approaches to improve their absorption. Additionally, the role of most allergens as nutrient binders and their involvement in nutritional immunity will be briefly summarized. Their ability to bind nutrients and their close association with immune cells can trigger exaggerated immune responses and allergies in individuals with deficiencies. However, in nutrient-rich conditions, these allergens can also provide nutrients to immune cells and promote health.
Collapse
Affiliation(s)
- Emilia Vassilopoulou
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece
- Department of Clinical Sciences and Community Health, Univertià degli Studi die Milano, 20122 Milan, Italy
| | - Carina Venter
- Pediatrics, Section of Allergy & Immunology, University of Colorado Denver School of Medicine, Children’s Hospital Colorado, Box B518, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Franziska Roth-Walter
- Messerli Research Institute, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, 1210 Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
4
|
Bradley MC, Gray J, Carpia FL, Idzikowski E, Guyer R, Pethe K, Hod EA, Connors TJ. Dietary iron deficiency impairs effector function of memory T cells following influenza infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604599. [PMID: 39211133 PMCID: PMC11361010 DOI: 10.1101/2024.07.22.604599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The establishment of memory T cell responses is critical to protection against pathogens and is influenced by the conditions under which memory formation occurs. Iron is an essential micronutrient for multiple immunologic processes and nutritional deficiency is a common problem worldwide. Despite its prevalence, the impact of nutritional iron deficiency on the establishment of memory T cell responses is not fully understood. In this study we investigate the impact of nutritional iron deficiency on the generation, phenotype, and function of memory T cell responses using a murine model of dietary iron modulation in the context of influenza infection. Iron deficient mice have decreased systemic iron levels and develop significant anemia. Increased T cell expression of the transferrin receptor (CD71) is seen in iron deficient mice at baseline. During primary influenza infection, iron deficient mice experience increased weight loss and phenotypic evidence of impairments in T cell activation. Following recovery from infection, iron deficient mice generate increased influenza specific memory T cells which exhibit impaired ability to produce IFNγ, most notably within the lung. Importantly, the ability to produce IFNγ and TNFα is not recovered by co-culture with iron replete dendritic cells, suggesting a T cell intrinsic alteration in functional memory formation. Altogether, these results isolate a critical effect of nutritional iron deficiency on T cell memory development and function.
Collapse
|
5
|
Zhao D, Cheng T, Hu D, Xu X, Zhang F, Yu R, Li H, Wen P, Chen L, Fu M, Yang H, Zhang H, Yao J, Jin L. Maternal periodontal diseases affect the leukocyte profiles of umbilical cord blood: A cohort study. Oral Dis 2024; 30:2533-2545. [PMID: 37485723 DOI: 10.1111/odi.14683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023]
Abstract
AIM This study evaluated the connection of periodontal status with the leukocyte profiles of maternal peripheral blood (MPB) and umbilical cord blood (UCB). MATERIALS AND METHODS Ninety-nine pregnant females were recruited, and their data were collected via questionnaire and from medical records, including demographics, systemic conditions, complete blood count (CBC) and C-reaction protein (CRP) level in MPB. Full-mouth periodontal assessment was performed. CBC and CRP levels in UCB were measured after parturition. RESULTS All subjects and their neonates were generally healthy. 30.3% of the participants presented with periodontal health condition, whereas 69.7% had different severities of periodontal diseases. The counts/percentages of eosinophils and monocytes in UCB from the subjects with periodontal diseases elevated, and the percentage of neutrophils decreased referencing to that from the counterparts (p < 0.05). There were positive correlations for total leukocyte count, neutrophils and lymphocytes counts/percentages in MPB and UCB among the periodontally healthy subjects (r > 0.4, p < 0.05), but such findings did not exist in those with periodontal diseases. Moreover, periodontal diseases independently accounted for the counts/percentages of neutrophils and eosinophils in UCB after controlling confounders in four testing models (ANCOVA, p < 0.05). CONCLUSION Maternal periodontal diseases could to some extent disturb the leukocyte profiles of umbilical cord blood.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Implant Dentistry, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
- Division of Periodontology & Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Tianfan Cheng
- Division of Periodontology & Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Dangli Hu
- Division of Obstetrics & Gynecology, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Xiaoyi Xu
- Division of Science & Education, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Feng Zhang
- Division of Stomatology, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Rong Yu
- Division of Science & Education, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Huijun Li
- Division of Stomatology, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Ping Wen
- Division of Science & Education, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Lihua Chen
- Division of Obstetrics & Gynecology, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Mali Fu
- Division of Obstetrics & Gynecology, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Hong Yang
- Division of Obstetrics & Gynecology, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Hanyu Zhang
- Division of Obstetrics & Gynecology, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Jilong Yao
- Division of Obstetrics & Gynecology, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Lijian Jin
- Division of Periodontology & Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Stumpf K, Mirpuri J. Maternal Macro- and Micronutrient Intake During Pregnancy: Does It Affect Allergic Predisposition in Offspring? Immunol Allergy Clin North Am 2023; 43:27-42. [PMID: 36411006 DOI: 10.1016/j.iac.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This review article explores the available literature on the association of maternal nutrient intake with development of allergies in offspring. It examines the mechanisms for maternal diet-mediated effects on offspring immunity and dissects recent human and animal studies that evaluate the role of both maternal macro- and micronutrient intake on offspring susceptibility to asthma, eczema, food allergy, and atopy.
Collapse
Affiliation(s)
- Katherine Stumpf
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Boulevard- Suite F3.302, Dallas, TX 75390-9063, USA.
| | - Julie Mirpuri
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Boulevard- Suite F3.302, Dallas, TX 75390-9063, USA.
| |
Collapse
|
7
|
Peroni DG, Hufnagl K, Comberiati P, Roth-Walter F. Lack of iron, zinc, and vitamins as a contributor to the etiology of atopic diseases. Front Nutr 2023; 9:1032481. [PMID: 36698466 PMCID: PMC9869175 DOI: 10.3389/fnut.2022.1032481] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023] Open
Abstract
Micronutritional deficiencies are common in atopic children suffering from atopic dermatitis, food allergy, rhinitis, and asthma. A lack of iron, in particular, may impact immune activation with prolonged deficiencies of iron, zinc, vitamin A, and vitamin D associated with a Th2 signature, maturation of macrophages and dendritic cells (DCs), and the generation of IgE antibodies. In contrast, the sufficiency of these micronutrients establishes immune resilience, promotion of regulatory cells, and tolerance induction. As micronutritional deficiencies mimic an infection, the body's innate response is to limit access to these nutrients and also impede their dietary uptake. Here, we summarize our current understanding of the physiological function of iron, zinc, and vitamins A and D in relation to immune cells and the clinical consequences of deficiencies in these important nutrients, especially in the perinatal period. Improved dietary uptake of iron is achieved by vitamin C, vitamin A, and whey compounds, whereas zinc bioavailability improves through citrates and proteins. The addition of oil is essential for the dietary uptake of beta-carotene and vitamin D. As for vitamin D, the major source comes via sun exposure and only a small amount is consumed via diet, which should be factored into clinical nutritional studies. We summarize the prevalence of micronutritional deficiencies of iron, zinc, and vitamins in the pediatric population as well as nutritional intervention studies on atopic diseases with whole food, food components, and micronutrients. Dietary uptake via the lymphatic route seems promising and is associated with a lower atopy risk and symptom amelioration. This review provides useful information for clinical studies and concludes/emphasizes that a healthy, varied diet containing dairy products, fish, nuts, fruits, and vegetables as well as supplementing foods or supplementation with micronutrients as needed is essential to combat the atopic march.
Collapse
Affiliation(s)
- Diego G. Peroni
- Section of Paediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Karin Hufnagl
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria,Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Pasquale Comberiati
- Section of Paediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Franziska Roth-Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria,Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria,*Correspondence: Franziska Roth-Walter, ;
| |
Collapse
|
8
|
Serum Ferritin Threshold for Iron Deficiency Screening in One-Year-Old Children. J Pediatr 2022; 245:217-221. [PMID: 35114287 DOI: 10.1016/j.jpeds.2022.01.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 11/23/2022]
Abstract
The American Academy of Pediatrics recommends universal hemoglobin screening for iron deficiency anemia using hemoglobin <110 g/L at the 1-year-old well child visit. Our retrospective study suggests the need for combined hemoglobin and serum ferritin iron deficiency screening and raising the diagnostic serum ferritin threshold to 24-25 μg/L.
Collapse
|
9
|
Roth-Walter F. Iron-Deficiency in Atopic Diseases: Innate Immune Priming by Allergens and Siderophores. FRONTIERS IN ALLERGY 2022; 3:859922. [PMID: 35769558 PMCID: PMC9234869 DOI: 10.3389/falgy.2022.859922] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Although iron is one of the most abundant elements on earth, about a third of the world's population are affected by iron deficiency. Main drivers of iron deficiency are beside the chronic lack of dietary iron, a hampered uptake machinery as a result of immune activation. Macrophages are the principal cells distributing iron in the human body with their iron restriction skewing these cells to a more pro-inflammatory state. Consequently, iron deficiency has a pronounced impact on immune cells, favoring Th2-cell survival, immunoglobulin class switching and primes mast cells for degranulation. Iron deficiency during pregnancy increases the risk of atopic diseases in children, while both children and adults with allergy are more likely to have anemia. In contrast, an improved iron status seems to protect against allergy development. Here, the most important interconnections between iron metabolism and allergies, the effect of iron deprivation on distinct immune cell types, as well as the pathophysiology in atopic diseases are summarized. Although the main focus will be humans, we also compare them with innate defense and iron sequestration strategies of microbes, given, particularly, attention to catechol-siderophores. Similarly, the defense and nutritional strategies in plants with their inducible systemic acquired resistance by salicylic acid, which further leads to synthesis of flavonoids as well as pathogenesis-related proteins, will be elaborated as both are very important for understanding the etiology of allergic diseases. Many allergens, such as lipocalins and the pathogenesis-related proteins, are able to bind iron and either deprive or supply iron to immune cells. Thus, a locally induced iron deficiency will result in immune activation and allergic sensitization. However, the same proteins such as the whey protein beta-lactoglobulin can also transport this precious micronutrient to the host immune cells (holoBLG) and hinder their activation, promoting tolerance and protecting against allergy. Since 2019, several clinical trials have also been conducted in allergic subjects using holoBLG as a food for special medical purposes, leading to a reduction in the allergic symptom burden. Supplementation with nutrient-carrying lipocalin proteins can circumvent the mucosal block and nourish selectively immune cells, therefore representing a new dietary and causative approach to compensate for functional iron deficiency in allergy sufferers.
Collapse
Affiliation(s)
- Franziska Roth-Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University of Vienna, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- *Correspondence: Franziska Roth-Walter ;
| |
Collapse
|
10
|
Gomez HM, Pillar AL, Brown AC, Kim RY, Ali MK, Essilfie AT, Vanders RL, Frazer DM, Anderson GJ, Hansbro PM, Collison AM, Jensen ME, Murphy VE, Johnstone DM, Reid D, Milward EA, Donovan C, Horvat JC. Investigating the Links between Lower Iron Status in Pregnancy and Respiratory Disease in Offspring Using Murine Models. Nutrients 2021; 13:nu13124461. [PMID: 34960012 PMCID: PMC8708709 DOI: 10.3390/nu13124461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Maternal iron deficiency occurs in 40-50% of all pregnancies and is associated with an increased risk of respiratory disease and asthma in children. We used murine models to examine the effects of lower iron status during pregnancy on lung function, inflammation and structure, as well as its contribution to increased severity of asthma in the offspring. A low iron diet during pregnancy impairs lung function, increases airway inflammation, and alters lung structure in the absence and presence of experimental asthma. A low iron diet during pregnancy further increases these major disease features in offspring with experimental asthma. Importantly, a low iron diet increases neutrophilic inflammation, which is indicative of more severe disease, in asthma. Together, our data demonstrate that lower dietary iron and systemic deficiency during pregnancy can lead to physiological, immunological and anatomical changes in the lungs and airways of offspring that predispose to greater susceptibility to respiratory disease. These findings suggest that correcting iron deficiency in pregnancy using iron supplements may play an important role in preventing or reducing the severity of respiratory disease in offspring. They also highlight the utility of experimental models for understanding how iron status in pregnancy affects disease outcomes in offspring and provide a means for testing the efficacy of different iron supplements for preventing disease.
Collapse
Affiliation(s)
- Henry M. Gomez
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, and Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia; (H.M.G.); (A.L.P.); (A.C.B.); (R.Y.K.); (M.K.A.); (R.L.V.); (P.M.H.); (E.A.M.); (C.D.)
| | - Amber L. Pillar
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, and Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia; (H.M.G.); (A.L.P.); (A.C.B.); (R.Y.K.); (M.K.A.); (R.L.V.); (P.M.H.); (E.A.M.); (C.D.)
| | - Alexandra C. Brown
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, and Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia; (H.M.G.); (A.L.P.); (A.C.B.); (R.Y.K.); (M.K.A.); (R.L.V.); (P.M.H.); (E.A.M.); (C.D.)
| | - Richard Y. Kim
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, and Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia; (H.M.G.); (A.L.P.); (A.C.B.); (R.Y.K.); (M.K.A.); (R.L.V.); (P.M.H.); (E.A.M.); (C.D.)
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Md Khadem Ali
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, and Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia; (H.M.G.); (A.L.P.); (A.C.B.); (R.Y.K.); (M.K.A.); (R.L.V.); (P.M.H.); (E.A.M.); (C.D.)
| | - Ama-Tawiah Essilfie
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (A.-T.E.); (D.M.F.); (G.J.A.); (D.R.)
| | - Rebecca L. Vanders
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, and Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia; (H.M.G.); (A.L.P.); (A.C.B.); (R.Y.K.); (M.K.A.); (R.L.V.); (P.M.H.); (E.A.M.); (C.D.)
| | - David M. Frazer
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (A.-T.E.); (D.M.F.); (G.J.A.); (D.R.)
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4067, Australia
| | - Gregory J. Anderson
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (A.-T.E.); (D.M.F.); (G.J.A.); (D.R.)
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, QLD 4067, Australia
| | - Philip M. Hansbro
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, and Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia; (H.M.G.); (A.L.P.); (A.C.B.); (R.Y.K.); (M.K.A.); (R.L.V.); (P.M.H.); (E.A.M.); (C.D.)
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Adam M. Collison
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, and Priority Research Centre for GrowUpWell, The University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia; (A.M.C.); (M.E.J.); (V.E.M.)
| | - Megan E. Jensen
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, and Priority Research Centre for GrowUpWell, The University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia; (A.M.C.); (M.E.J.); (V.E.M.)
| | - Vanessa E. Murphy
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, and Priority Research Centre for GrowUpWell, The University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia; (A.M.C.); (M.E.J.); (V.E.M.)
| | - Daniel M. Johnstone
- School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia;
| | - David Reid
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (A.-T.E.); (D.M.F.); (G.J.A.); (D.R.)
| | - Elizabeth A. Milward
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, and Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia; (H.M.G.); (A.L.P.); (A.C.B.); (R.Y.K.); (M.K.A.); (R.L.V.); (P.M.H.); (E.A.M.); (C.D.)
| | - Chantal Donovan
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, and Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia; (H.M.G.); (A.L.P.); (A.C.B.); (R.Y.K.); (M.K.A.); (R.L.V.); (P.M.H.); (E.A.M.); (C.D.)
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Jay C. Horvat
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, and Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia; (H.M.G.); (A.L.P.); (A.C.B.); (R.Y.K.); (M.K.A.); (R.L.V.); (P.M.H.); (E.A.M.); (C.D.)
- Correspondence: ; Tel.: +612-4042-0220
| |
Collapse
|
11
|
Iron status of full-term infants in early infancy is not associated with maternal ferritin levels nor infant feeding practice. Br J Nutr 2021; 127:1198-1203. [PMID: 34103112 DOI: 10.1017/s0007114521001975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Iron deficiency (ID) in early life is associated with morbidities. Most fetal iron required for infant growth is acquired in the third trimester from maternal iron store. However, how prenatal iron level affects ferritin level in early infancy remains controversial. This study aimed to examine the associations between maternal ferritin levels and cord blood serum ferritin (CBSF) and to compare the ferritin levels between different feeding practices in early infancy. Healthy Chinese mothers with uncomplicated pregnancy and their infants were followed up at 3 months post-delivery for questionnaire completion and infant blood collection. Infants who were predominantly breastfed and those who were predominantly formula fed were included in this analysis. Serum ferritin levels were measured in maternal blood samples collected upon delivery, cord blood and infant blood samples at 3 months of age. Ninety-seven mother-baby dyads were included. Maternal ID is common (56 %) while the CBSF levels were significantly higher than maternal ferritin levels. Only three infants (3 %) had ID at 3 months of age. There were no significant correlations between maternal ferritin levels with CBSF (r 0·168, P = 0·108) nor with infant ferritin levels at 3 months of age (r 0·023, P = 0·828). Infant ferritin levels at 3 months were significantly and independently associated with CBSF (P = 0·007) and birth weight (P < 0·001) after adjusting for maternal age, parity, maternal education, infant sex and feeding practice. In conclusion, maternal ID was common upon delivery. However, maternal ferritin levels were not significantly associated with CBSF concentrations nor infant ferritin concentrations at 3 months of age.
Collapse
|
12
|
Roth-Walter F. Funktionellen Eisenmangel beim Allergiker mit gezielter Mikroernährung ausgleichen. ALLERGO JOURNAL 2021. [DOI: 10.1007/s15007-021-4822-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Quezada-Pinedo HG, Mensink-Bout SM, Reiss IK, Jaddoe VWV, Vermeulen MJ, Duijts L. Maternal iron status during early pregnancy and school-age, lung function, asthma, and allergy: The Generation R Study. Pediatr Pulmonol 2021; 56:1771-1778. [PMID: 33657279 PMCID: PMC8251584 DOI: 10.1002/ppul.25324] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Iron deficiency during early life could affect the developing lung and immune system, and influence child's respiratory or allergy outcomes in later life. OBJECTIVE To examine the associations of maternal iron status during early pregnancy with child's lung function, asthma, inhalant allergic sensitization, and physician-diagnosed inhalant allergy at school-age. METHODS In a population-based cohort study, among 3825 mother-child pairs, ferritin, transferrin concentrations, and transferrin saturation were measured from maternal venous blood samples during early pregnancy. In children at the age of 10 years, spirometry was used to determine child's lung function, current asthma and physician-diagnosed inhalant allergy were assessed by questionnaires, and inhalant allergic sensitization was measured by skin prick tests. We used multivariable regression models to examine the associations. RESULTS After adjustment for gestational age at maternal iron status measurement and sociodemographic or lifestyle-related confounders, a higher maternal transferrin concentration was associated with a higher risk of physician-diagnosed inhalant allergy (odds ratio [95% confidence interval]: 1.13 [1.01 to1.26]), but not with lung function, asthma, or inhalant allergic sensitization. This association did not attenuate after further adjustment for maternal hemoglobin levels or early growth factors. We observed no consistent association of maternal ferritin concentrations or transferrin saturation with child's respiratory or allergy outcomes. CONCLUSION Higher maternal transferrin concentrations during pregnancy, reflecting lower serum iron levels, were associated with an increased risk of child's physician-diagnosed inhalant allergy but not lung outcomes. Underlying mechanisms and clinical implications need to be explored.
Collapse
Affiliation(s)
- Hugo G Quezada-Pinedo
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Division of Neonatology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Sara M Mensink-Bout
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Irwin K Reiss
- Division of Neonatology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marijn J Vermeulen
- Division of Neonatology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Liesbeth Duijts
- Division of Neonatology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
14
|
Ali MK, Kim RY, Brown AC, Mayall JR, Karim R, Pinkerton JW, Liu G, Martin KL, Starkey MR, Pillar AL, Donovan C, Pathinayake PS, Carroll OR, Trinder D, Tay HL, Badi YE, Kermani NZ, Guo YK, Aryal R, Mumby S, Pavlidis S, Adcock IM, Weaver J, Xenaki D, Oliver BG, Holliday EG, Foster PS, Wark PA, Johnstone DM, Milward EA, Hansbro PM, Horvat JC. Crucial role for lung iron level and regulation in the pathogenesis and severity of asthma. Eur Respir J 2020; 55:13993003.01340-2019. [PMID: 32184317 DOI: 10.1183/13993003.01340-2019] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 01/28/2020] [Indexed: 01/08/2023]
Abstract
Accumulating evidence highlights links between iron regulation and respiratory disease. Here, we assessed the relationship between iron levels and regulatory responses in clinical and experimental asthma.We show that cell-free iron levels are reduced in the bronchoalveolar lavage (BAL) supernatant of severe or mild-moderate asthma patients and correlate with lower forced expiratory volume in 1 s (FEV1). Conversely, iron-loaded cell numbers were increased in BAL in these patients and with lower FEV1/forced vital capacity (FVC) ratio. The airway tissue expression of the iron sequestration molecules divalent metal transporter 1 (DMT1) and transferrin receptor 1 (TFR1) are increased in asthma, with TFR1 expression correlating with reduced lung function and increased Type-2 (T2) inflammatory responses in the airways. Furthermore, pulmonary iron levels are increased in a house dust mite (HDM)-induced model of experimental asthma in association with augmented Tfr1 expression in airway tissue, similar to human disease. We show that macrophages are the predominant source of increased Tfr1 and Tfr1+ macrophages have increased Il13 expression. We also show that increased iron levels induce increased pro-inflammatory cytokine and/or extracellular matrix (ECM) responses in human airway smooth muscle (ASM) cells and fibroblasts ex vivo and induce key features of asthma in vivo, including airway hyper-responsiveness (AHR) and fibrosis, and T2 inflammatory responses.Together these complementary clinical and experimental data highlight the importance of altered pulmonary iron levels and regulation in asthma, and the need for a greater focus on the role and potential therapeutic targeting of iron in the pathogenesis and severity of disease.
Collapse
Affiliation(s)
- Md Khadem Ali
- Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, USA.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Richard Y Kim
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.,Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, Australia
| | - Alexandra C Brown
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Jemma R Mayall
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Rafia Karim
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - James W Pinkerton
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.,Respiratory Pharmacology and Toxicology Group, National Heart and Lung Institute, Imperial College London, London, UK
| | - Gang Liu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.,Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, Australia
| | - Kristy L Martin
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Malcolm R Starkey
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.,Dept of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
| | - Amber L Pillar
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.,Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, Australia
| | - Prabuddha S Pathinayake
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
| | - Olivia R Carroll
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Debbie Trinder
- Medical School, Harry Perkins Medical Research Institute, University of Western Australia, Fiona Stanley Hospital, Perth, Australia
| | - Hock L Tay
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Yusef E Badi
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Nazanin Z Kermani
- Data Science Institute, Dept of Computing, Imperial College London, London, UK
| | - Yi-Ke Guo
- Data Science Institute, Dept of Computing, Imperial College London, London, UK
| | - Ritambhara Aryal
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Sharon Mumby
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Stelios Pavlidis
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Jessica Weaver
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Dikaia Xenaki
- Woolcock Institute of Medical Research, University of Sydney and School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Brian G Oliver
- Woolcock Institute of Medical Research, University of Sydney and School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Elizabeth G Holliday
- Hunter Medical Research Institute, New Lambton, Australia.,School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Peter A Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.,Dept of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, Australia
| | - Daniel M Johnstone
- Discipline of Physiology and Bosch Institute, University of Sydney, Sydney, Australia
| | - Elizabeth A Milward
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.,Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, Australia.,These authors contributed equally
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.,These authors contributed equally
| |
Collapse
|
15
|
Roth-Walter F, Pacios LF, Bianchini R, Jensen-Jarolim E. Linking iron-deficiency with allergy: role of molecular allergens and the microbiome. Metallomics 2017; 9:1676-1692. [PMID: 29120476 DOI: 10.1039/c7mt00241f] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Atopic individuals tend to develop a Th2 dominant immune response, resulting in hyperresponsiveness to harmless antigens, termed allergens. In the last decade, epidemiological studies have emerged that connected allergy with a deficient iron-status. Immune activation under iron-deficient conditions results in the expansion of Th2-, but not Th1 cells, can induce class-switching in B-cells and hampers the proper activation of M2, but not M1 macrophages. Moreover, many allergens, in particular with the lipocalin and lipocalin-like folds, seem to be capable of binding iron indirectly via siderophores harboring catechol moieties. The resulting locally restricted iron-deficiency may then lead during immune activation to the generation of Th2-cells and thus prepare for allergic sensitization. Moreover, iron-chelators seem to also influence clinical reactivity: mast cells accumulate iron before degranulation and seem to respond differently depending on the type of the encountered siderophore. Whereas deferoxamine triggers degranulation of connective tissue-type mast cells, catechol-based siderophores reduce activation and degranulation and improve clinical symptoms. Considering the complex interplay of iron, siderophores and immune molecules, it remains to be determined whether iron-deficiencies are the cause or the result of allergy.
Collapse
Affiliation(s)
- Franziska Roth-Walter
- Department of Comparative Medicine, at the Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria.
| | - Luis F Pacios
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Rodolfo Bianchini
- Department of Comparative Medicine, at the Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria.
| | - Erika Jensen-Jarolim
- Department of Comparative Medicine, at the Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria. and Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Shaheen SO, Macdonald-Wallis C, Lawlor DA, Henderson AJ. Haemoglobin concentrations in pregnancy and respiratory and allergic outcomes in childhood: Birth cohort study. Clin Exp Allergy 2017; 47:1615-1624. [PMID: 28940397 PMCID: PMC5725736 DOI: 10.1111/cea.13034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/31/2017] [Accepted: 09/12/2017] [Indexed: 12/23/2022]
Abstract
Background Limited epidemiological evidence suggests that low maternal iron status and anaemia in pregnancy may increase the risk of childhood respiratory and allergic outcomes. Objectives To investigate the relation between maternal haemoglobin concentrations in pregnancy and childhood respiratory and allergic outcomes. Methods In the Avon Longitudinal Study of Parents and Children (ALSPAC), we examined associations of maternal haemoglobin concentrations (g/dL) in pregnancy with hayfever, eczema, wheezing, doctor‐diagnosed asthma, allergic sensitisation and total IgE at 7 years, and with lung function at 8‐9 years in the offspring, after controlling for potential confounders (N = 3234‐5335). Results Maternal haemoglobin was not associated with offspring hayfever, eczema, wheezing or asthma. However, the first haemoglobin measurement in pregnancy (<18 weeks' gestation) and the last measurement (>28 weeks' gestation) were negatively associated with allergic sensitisation (adjusted odds ratio [95% CI] per g/dL 0.91 [0.83 to 0.99] and 0.90 [0.83 to 0.98], respectively). The last haemoglobin measurement was also negatively associated with total IgE (adjusted geometric mean ratio 0.94 [0.88 to 0.99]). Anaemia (haemoglobin <11 g/dL) in late pregnancy was negatively associated with forced vital capacity (difference in standard deviation score −0.07 [−0.13 to −0.01]). Conclusions and Clinical Relevance Lower maternal haemoglobin in pregnancy may be a risk factor for allergic sensitisation, elevated IgE and lower FVC in childhood, which may reflect effects of lower prenatal iron status. However, maternal haemoglobin was not associated with risk of childhood asthma or other allergic disorders.
Collapse
Affiliation(s)
- S O Shaheen
- Centre for Primary Care and Public Health, Barts and The London School of Medicine and Dentistry, London, UK
| | - C Macdonald-Wallis
- School of Social and Community Medicine, University of Bristol, Bristol, UK.,MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
| | - D A Lawlor
- School of Social and Community Medicine, University of Bristol, Bristol, UK.,MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
| | - A J Henderson
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| |
Collapse
|
17
|
Asthma as a disruption in iron homeostasis. Biometals 2016; 29:751-79. [PMID: 27595579 DOI: 10.1007/s10534-016-9948-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 12/28/2022]
Abstract
Over several decades, asthma has evolved from being recognized as a single disease to include a diverse group of phenotypes with dissimilar natural histories, pathophysiologies, responses to treatment, and distinctive molecular pathways. With the application of Occam's razor to asthma, it is proposed that there is one cause underlying the numerous phenotypes of this disease and that the responsible molecular pathway is a deficiency of iron in the lung tissues. This deficiency can be either absolute (e.g. asthma in the neonate and during both pregnancy and menstruation) or functional (e.g. asthma associated with infections, smoking, and obesity). Comparable associations between asthma co-morbidity (e.g. eczema, urticaria, restless leg syndrome, and pulmonary hypertension) with iron deficiency support such a shared mechanistic pathway. Therapies directed at asthma demonstrate a capacity to impact iron homeostasis, further strengthening the relationship. Finally, pathophysiologic events producing asthma, including inflammation, increases in Th2 cells, and muscle contraction, can correlate with iron availability. Recognition of a potential association between asthma and an absolute and/or functional iron deficiency suggests specific therapeutic interventions including inhaled iron.
Collapse
|
18
|
Malan L, Baumgartner J, Calder PC, Smuts CM. Low immune cell ARA and high plasma 12-HETE and 17-HDHA in iron-deficient South African school children with allergy. Prostaglandins Leukot Essent Fatty Acids 2016; 110:35-41. [PMID: 27255641 DOI: 10.1016/j.plefa.2016.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/11/2016] [Accepted: 05/11/2016] [Indexed: 01/20/2023]
Abstract
Allergy has been associated with altered fatty acid and inflammatory status. In this cross-sectional study of 321 rural iron deficient (ID) South African children (aged 6-11 years), a subsample (n=111) of children with parent-reported allergy data were divided into an allergic (n=30) and non-allergic (n=81) group and compared. PBMC arachidonic acid (ARA; P=0.010) and the PBMC ARA to dihomo-gamma-linolenic acid (DGLA) ratio (P=0.035) were lower in the allergic children. Plasma 12-hydroxyeicosatetraenoic acid and 17-hydroxydocosahexaenoic acid (17-HDHA) were higher (P=0.040 and 0.020, respectively) in the allergic group. Thus, a fatty acid composition and lipid mediator levels indicative of increased release of ARA from PBMC membranes, increased inflammation as well as the resolving thereof, were associated with parent-reported allergy symptoms. This study used baseline data of an intervention study which was registered at clinicaltrials.gov as NCT01092377.
Collapse
Affiliation(s)
- L Malan
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa.
| | - J Baumgartner
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - P C Calder
- The Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre in Nutrition, Southampton University Hospital NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - C M Smuts
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| |
Collapse
|
19
|
Dosch NC, Guslits EF, Weber MB, Murray SE, Ha B, Coe CL, Auger AP, Kling PJ. Maternal Obesity Affects Inflammatory and Iron Indices in Umbilical Cord Blood. J Pediatr 2016; 172:20-8. [PMID: 26970931 PMCID: PMC5808508 DOI: 10.1016/j.jpeds.2016.02.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/23/2015] [Accepted: 02/05/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To determine the impact of maternal obesity and gestational weight gain across pregnancy on fetal indices of inflammation and iron status. STUDY DESIGN Eighty-five healthy term newborns delivered via elective cesarean were categorized by 2 maternal body mass index (BMI) thresholds; above or below 30 kg/m(2) or above or below 35 kg/m(2). Umbilical cord plasma levels of C-reactive protein, interleukin (IL)-6, tumor necrosis factor (TNF)-α, ferritin, and hepcidin were assayed. Cytokines released by phytohemagglutinin-stimulated umbilical cord mononuclear cells (MNCs) were assayed. RESULTS Maternal class II obesity, defined as BMI of 35 kg/m(2) and above, predicted higher C-reactive protein and TNF-α in umbilical cord plasma (P < .05 for both), and also proinflammatory cytokines (IL-1β, IL-6, and TNF-α) from stimulated MNC (P < .05 for all). The rise in plasma TNF-α and MNC TNF-α was not linear but occurred when the threshold of BMI 35 kg/m(2) was reached (P < .005, P < .06). Poorer umbilical cord iron indices were associated with maternal obesity. When ferritin was low, IL-6 was higher (P < .04), but this relationship was present primarily when maternal BMI exceeded 35 kg/m(2) (P < .03). Ferritin was correlated with hepcidin (P < .0001), but hepcidin was unrelated to either maternal BMI or inflammatory indices. CONCLUSIONS Class II obesity and above during pregnancy is associated with fetal inflammation in a threshold fashion. Although maternal BMI negatively impacted fetal iron status, hepcidin, related to obesity in adults, was related to iron status and not obesity in fetuses. Pediatricians should be aware of these relationships.
Collapse
Affiliation(s)
| | | | - Morgan B. Weber
- Department of Pediatrics, School of Medicine and Public Health
| | | | - Barbara Ha
- Department of Pediatrics, School of Medicine and Public Health
| | - Christopher L. Coe
- Harlow Center for Biological Psychology and,Department of Psychology, University of Wisconsin, Madison, WI
| | | | - Pamela J. Kling
- Department of Pediatrics, School of Medicine and Public Health
| |
Collapse
|