1
|
Kashiwagi A, Fein MJ, Shimada M. Calpain modulates cyclin-dependent kinase inhibitor 1B (p27(Kip1)) in cells of the osteoblast lineage. Calcif Tissue Int 2011; 89:36-42. [PMID: 21544553 PMCID: PMC3111891 DOI: 10.1007/s00223-011-9491-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 04/15/2011] [Indexed: 02/05/2023]
Abstract
The ubiquitously expressed calpains-1 and -2 belong to a family of calcium-dependent intracellular cysteine proteases. Both calpains are heterodimers consisting of a large catalytic subunit and a small regulatory subunit encoded by the gene Capn4. Ablation of the calpain small subunit eliminates calpain activity and leads to embryonic lethality. We previously created osteoblast-specific Capn4 knockout mice to investigate a physiological role for the calpain small subunit in cells of the osteoblast lineage. Deletion of Capn4 reduced trabecular and cortical bone, mainly due to impaired proliferation and differentiation of cells of the osteoblast lineage. To further investigate an underlining mechanism by which osteoblast-specific Capn4 knockout mice develop an osteoporotic bone phenotype, we established osteoblastic cell lines stably expressing either control or Capn4 RNA interference for this study. Capn4 knockdown cells showed reduced cell proliferation, accumulation of total and phosphorylated cyclin-dependent kinase inhibitor 1B (p27(Kip1)) on serine 10, and reduced phosphorylation of retinoblastoma protein on threonine 821. Moreover, ablation of Capn4 increased 27 ( Kip1 ) mRNA levels, likely due to stabilized binding of Akt to protein phosphatase 2A, which presumably results in reduced phosphorylation of Akt on S473 and forkhead Box O (FoxO) 3A on T32. Collectively, calpain regulates cell proliferative function by modulating both transcription and degradation of p27(Kip1) in osteoblasts. In conclusion, calpain is a critical modulator for regulation of p27(Kip1) in cells of the osteoblast lineage.
Collapse
Affiliation(s)
- Aki Kashiwagi
- Endocrine Unit, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, Massachusetts, 02114
| | - Mikaela J. Fein
- Endocrine Unit, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, Massachusetts, 02114
| | - Masako Shimada
- Endocrine Unit, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, Massachusetts, 02114
| |
Collapse
|
2
|
Parker T, Upton Z, Leavesley D. Vitronectin Modulates Human Mesenchymal Stem Cell Response to Insulin-like Growth Factor-I and Transforming Growth Factor Beta 1 in a Serum-free Environment. Tissue Eng Part A 2009; 15:1415-26. [DOI: 10.1089/ten.tea.2007.0431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tony Parker
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia
| | - Zee Upton
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia
| | - David Leavesley
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia
| |
Collapse
|
3
|
Shimada M, Greer PA, McMahon AP, Bouxsein ML, Schipani E. In vivo targeted deletion of calpain small subunit, Capn4, in cells of the osteoblast lineage impairs cell proliferation, differentiation, and bone formation. J Biol Chem 2008; 283:21002-10. [PMID: 18515801 PMCID: PMC2475719 DOI: 10.1074/jbc.m710354200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 05/29/2008] [Indexed: 12/11/2022] Open
Abstract
Calpains are intracellular cysteine proteases, which include widely expressed mu- and m-calpains (1). Both mu-calpains and m-calpains are heterodimers consisting of a large catalytic subunit and a small regulatory subunit. The calpain small subunit encoded by the gene Capn4 directly binds to the intracellular C-terminal tail (C-tail) of the receptor for parathyroid hormone and parathyroid hormone-related peptide and modulates its cellular functions in osteoblasts in vitro (2). To investigate a potential role of the calpain small subunit in osteoblasts in vivo, we generated osteoblast-specific Capn4 knock-out mice using the Cre-LoxP system (3). Mutant mice had smaller bodies with shorter limbs, reduced trabecular bone with thinner cortices, and decreased osteoblast number. In vitro analysis confirmed that deletion of Capn4 in osteoblasts severely affected multiple osteoblast functions including proliferation, differentiation, and matrix mineralization. Collectively, our findings provide the first in vivo demonstration that the calpain small subunit is essential for proper osteoblast activity and bone remodeling.
Collapse
Affiliation(s)
- Masako Shimada
- Endocrine Unit, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | |
Collapse
|
4
|
Yoshifuji H, Umehara H, Maruyama H, Itoh M, Tanaka M, Kawabata D, Fujii T, Mimori T. Amelioration of experimental arthritis by a calpain-inhibitory compound: regulation of cytokine production by E-64-d in vivo and in vitro. Int Immunol 2005; 17:1327-36. [PMID: 16176933 DOI: 10.1093/intimm/dxh311] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Calpain, a calcium-dependent cysteine proteinase, has been reported to participate in the pathophysiology of rheumatoid arthritis (RA). The aim of this study is to investigate the therapeutic efficacy of calpain-inhibitory compounds in an animal model of RA and to clarify the underlying mechanisms in vivo and in vitro. Arthritis was induced in BALB/c mice with anti-type II collagen mAbs and LPS, and the mice were treated intra-peritoneally with a high dose (9 mg kg(-1) per day) or low dose (3 mg kg(-1) per day) of E-64-d (a membrane-permeable cysteine proteinase inhibitor) or control diluent. As a result, a high dose of E-64-d significantly alleviated the clinical arthritis and the histopathological findings, compared with the control diluent, although a low dose of E-64-d did not have a significant effect. Next, we evaluated the effects of E-64-d on cytokine mRNA expression at the inflamed joints by quantitative reverse transcription-PCR. High dose of E-64-d significantly decreased IL-6 and IL-1beta mRNA levels at the inflamed joints. The regulatory effects of E-64-d on cytokine production were also confirmed in vitro, using a synovial cell line (E11) and crude synoviocytes derived from RA patients. These results suggest the key roles of calpain in the pathophysiology of arthritis and that calpain-inhibitory compounds might be applicable to the treatment of arthritic diseases such as RA.
Collapse
Affiliation(s)
- Hajime Yoshifuji
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Shimada M, Mahon MJ, Greer PA, Segre GV. The receptor for parathyroid hormone and parathyroid hormone-related peptide is hydrolyzed and its signaling properties are altered by directly binding the calpain small subunit. Endocrinology 2005; 146:2336-44. [PMID: 15691895 DOI: 10.1210/en.2004-1637] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We show calcium-dependent, direct binding between the N-terminal portion of the PTH/PTHrP receptor (PTH1R) C-terminal intracellular tail and the calpain small subunit. Binding requires, but may not be limited to, amino acids W474, S475, and W477. The wild-type, full-length rat (r) PTH1R, but not rPTH1R with W474A/W477A substitutions, copurifies with the endogenous calpain small subunit in HEK293 cells. Calpain hydrolyzes delta Nt-rPTH1R, a receptor with a 156-amino acid N-terminal deletion, in a calcium-dependent manner in vitro and in intact cells. Most importantly, PTH stimulation increases the cleavage of delta Nt-rPTH1R and rPTH1R-yellow fluorescent protein in HEK293 cells, and of talin in HEK293 cells expressing rPTH1R-yellow fluorescent protein and in ROS17/2.8 osteoblast-like cells that express rPTH1R endogenously. The absence of calpain in Capn4-null embryonic fibroblasts and the lowered calpain activity in MC3T3-E1 osteoblastic cells due to stable expression of the calpain inhibitor, calpastatin, reduce PTH-stimulated cAMP accumulation. The calpain small subunit is the second protein, in addition to the sodium-hydrogen exchanger regulatory factor, and the first enzyme that binds the PTH1R; PTH1R bound to both of these proteins results in altered PTH signaling.
Collapse
Affiliation(s)
- Masako Shimada
- Endocrine Unit, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
6
|
Powers JC, Asgian JL, Ekici OD, James KE. Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem Rev 2002; 102:4639-750. [PMID: 12475205 DOI: 10.1021/cr010182v] [Citation(s) in RCA: 846] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- James C Powers
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA.
| | | | | | | |
Collapse
|
7
|
Nishihara H, Nakagawa Y, Ishikawa H, Ohba M, Shimizu K, Nakamura T. Matrix vesicles and media vesicles as nonclassical pathways for the secretion of m-Calpain from MC3T3-E1 cells. Biochem Biophys Res Commun 2001; 285:845-53. [PMID: 11453670 DOI: 10.1006/bbrc.2001.5242] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calpain was generally believed to exist and function only in the cytoplasm. However, m-calpain has now been detected in the extracellular spaces of some kinds of tissue. In this study, we demonstrated the existence of m-calpain in the medium surrounding MC3T3-E1 cultures, and its activity by zymography. At the same time, the amount of lactate dehydrogenase in medium of MC3T3-E1 culture was extremely low compared with other cell cultures, suggesting that m-calpain found in the culture medium of MC3T3-E1 cells originated mainly from active secretion. Moreover, the secretion of m-calpain was not blocked by brefeldin A, implying that m-calpain may be secreted by a nonclassical pathway. Recently, MC3T3-E1 has been reported to produce matrix vesicles and media vesicles, and we demonstrated m-calpain in these vesicles produced by MC3T3-E1 cultures. We therefore concluded that these vesicles are partly responsible for the secretion of m-calpain into the culture medium of MC3T3-E1 cells.
Collapse
Affiliation(s)
- H Nishihara
- Department of Orthopedic Surgery, Faculty of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyoku, Kyoto 606-8507, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Murray EJ, Bentley GV, Grisanti MS, Murray SS. The ubiquitin-proteasome system and cellular proliferation and regulation in osteoblastic cells. Exp Cell Res 1998; 242:460-9. [PMID: 9683533 DOI: 10.1006/excr.1998.4090] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 26S proteasome is the macromolecular assembly that mediates ATP- and ubiquitin-dependent extralysosomal intracellular protein degradation in eukaryotes. However, its contribution to the regulation of osteoblast proliferation and hormonal regulation remains poorly defined. Treating osteoblasts with MG-132 or lactacystin (membrane-permeable proteasome inhibitors) attenuates proliferation. Three proteasome activities (peptidylglutamyl-peptide bond hydrolase-, chymotrypsin-, and trypsin-like) were detected in osteoblasts. Catabolic doses of PTH stim-ulated these activities, and cotreatment with PTH and MG-132 blocked stimulation. The proteasome alpha- and beta-subunits, polyubiquitins, and large ubiquitin-protein conjugates were detected by Western blotting. A 90-min treatment with 10 nM PTH had no effect on the amount of proteasome alpha or beta subunit protein, but increased the relative amount of large ubiquitin-protein conjugates by 200%. MG-132 inhibited deubiquitination of large ubiquitin-protein conjugates. The protein kinase A inhibitor SQ22536 blocked much of the PTH-induced stimulation of MCP activities, while dibutyryl cAMP stimulated it, suggesting that protein kinase A-dependent phosphorylation is important in PTH stimulation of proteasome activities. In conclusion, the ubiquitin-proteasome system is essential for osteoblast proliferation under control and PTH-treated conditions. PTH mediates its metabolic effects on the osteoblast, in part, by enhancing ubiquitinylation of protein substrates and stimulating three major proteasome activities by a cAMP-dependent mechanism.
Collapse
Affiliation(s)
- E J Murray
- Geriatric Research, Education and Clinical Center, Department of Veterans Affairs Medical Center, Sepulveda, California, 91343, USA.
| | | | | | | |
Collapse
|
9
|
Murray EJ, Grisanti MS, Bentley GV, Murray SS. E64d, a membrane-permeable cysteine protease inhibitor, attenuates the effects of parathyroid hormone on osteoblasts in vitro. Metabolism 1997; 46:1090-4. [PMID: 9284902 DOI: 10.1016/s0026-0495(97)90284-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Parathyroid hormone (PTH) activates calpains I and II (calcium-activated papain-like proteases) and stimulates the synthesis and secretion of cathepsin B (a lysosomal cysteine protease) in osteoblastic cells. Anabolic doses of PTH also stimulate osteoprogenitor cell proliferation and differentiation into mature, fully functional osteoblasts capable of elaborating bone matrix, whereas catabolic doses of PTH stimulate calcium mobilization and matrix turnover. Previous investigations in other cell types have demonstrated that calcium-activated calpains play a major role in regulating proliferation and differentiation by catalyzing limited regulatory proteolysis of nuclear proteins, transcription factors, and enzymes. We tested the hypothesis that inhibition of intracellular cysteine proteases such as the calpains will ablate PTH-mediated osteoblast proliferation and differentiation, two fundamental indices of bone anabolism. A brief preincubation with the membrane-permeable, irreversible cysteine protease inhibitor E64d (10 micrograms/mL) before short-term PTH treatment blunted PTH-induced cell proliferation in subconfluent cultures and also attenuated proliferation and inhibited differentiation in longer-term confluent cultures. This confirms the hypothesis that cysteine proteases such as the calpains are important in mediating the proliferative and prodifferentiating or anabolic effects of PTH on MC3T3-E1 cells in culture. Immunofluorescent localization demonstrated that calpain I, calpain II, and calpastatin (the endogenous calpain inhibitor) are abundant and widely distributed within actively proliferating MC3T3-E1 preosteoblasts. Since the calpains are active and stable at neutral intracellular pH levels in osteoblasts, whereas cathepsins are not, our results support a role for these calcium-activated regulatory proteases in mediating the anabolic effects of PTH in bone.
Collapse
Affiliation(s)
- E J Murray
- Geriatric Research, Education and Clinical Center, Department of Veterans Affairs Medical Center, Sepulveda, CA 91343, USA
| | | | | | | |
Collapse
|
10
|
Babich M, Foti LR, Mathias KL. Protein kinase C modulator effects on parathyroid hormone-induced intracellular calcium and morphologic changes in UMR 106-H5 osteoblastic cells. J Cell Biochem 1997. [DOI: 10.1002/(sici)1097-4644(199705)65:2<276::aid-jcb13>3.0.co;2-g] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Abstract
It is our hypothesis that osteoblasts play a major role in regulating bone (re)modeling by regulating interstitial fluid (ISF) flow through individual bone compartments. We hypothesize that osteoblasts of the blood-bone membrane lining the bone surfaces are capable of regulating transosseous fluid flow. This regulatory function of the osteoblasts was tested in vitro by culturing a layer of rat calvarial osteoblasts on porous membranes. Such a layer of osteoblasts subjected to 7.3 mm Hg of hydrostatic pressure posed a significant resistance to fluid flow across the cell layer similar in magnitude to the resistance posed by endothelial monolayers in vitro. The hydraulic conductivity, the volumetric fluid flux per unit pressure drop, of the osteoblast layer was altered in response to certain hormones. Hydraulic conductivity decreased approximately 40% in response to 33 nM parathyroid hormone, while it exhibited biphasic behavior in response to calcitonin: increased 40% in response to 100 nM calcitonin and decreased 40% in response to 1000 nM calcitonin. Further, activation of adenylate cyclase by forskolin dramatically increased the hydraulic conductivity, while elevation of intracellular calcium, [Ca2+]i, by the calcium ionophore A23187 initially decreased the hydraulic conductivity at 5 minutes before increasing conductivity by 30 minutes. These results suggest that cyclic adenosine monophosphate (cAMP) and [Ca2+]i may mediate changes in the osteoblast hydraulic conductivity. The increase in hydraulic conductivity in response to 100 nM calcitonin and the decrease in response to PTH suggest that the stimulatory and inhibitory effects on bone formation of calcitonin and parathyroid hormone, respectively, may be due in part to alterations in bone fluid flow.
Collapse
Affiliation(s)
- M V Hillsley
- Department of Chemical Engineering, Pennsylvania State University, University Park, USA
| | | |
Collapse
|
12
|
Murray EJ, Tram KK, Murray SS, Lee DB. Parathyroid hormone-induced retraction of MC3T3-E1 osteoblastic cells is attenuated by the calpain inhibitor N-Ac-Leu-Leu-norleucinal. Metabolism 1995; 44:141-4. [PMID: 7869906 DOI: 10.1016/0026-0495(95)90254-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Parathyroid hormone (PTH) binding to its osteoblastic receptors stimulates cytoplasmic retraction within minutes. We hypothesized that the calpains (calcium-activated papain-like enzymes) contribute to PTH-induced osteoblastic retraction by catalyzing regulatory hydrolysis of cytoskeletal structural proteins or enzymes important in cytokinesis. N-Ac-Leu-Leu-norleucinal (ALLN), a reversible calpain inhibitor, was tested for its ability to inhibit PTH-induced retraction in murine MC3T3-E1 osteoblastic cells. ALLN inhibited PTH-induced retraction for 30 minutes in cells cultured on polystyrene cultureware or gelatin-coated glass cover slips, supporting the hypothesis that PTH-induced activation of the calpains contributes to short-term changes in MC3T3-E1 cell shape. Inhibition of PTH-induced retraction occurred on two substrata, suggesting that interactions between the extracellular matrix and cell surface proteins are not the sole determinants of morphology. Intracellular events, such as hydrolysis of focal adherens junction proteins on the cytoplasmic face of the plasma membrane, may contribute to PTH-induced retraction.
Collapse
Affiliation(s)
- E J Murray
- Geriatric Research, Education and Clinical Center, Department of Veterans Affairs Medical Center, Sepulveda, CA 91343
| | | | | | | |
Collapse
|