1
|
Simião GM, Parreira KS, Klein SG, Ferreira FB, Freitas FDS, Silva EFD, Silva NM, Silva MVD, Lima WR. Involvement of Inflammatory Cytokines, Renal NaPi-IIa Cotransporter, and TRAIL Induced-Apoptosis in Experimental Malaria-Associated Acute Kidney Injury. Pathogens 2024; 13:376. [PMID: 38787228 DOI: 10.3390/pathogens13050376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
The murine model of experimental cerebral malaria (ECM) induced by Plasmodium berghei ANKA was used to investigate the relationship among pro-inflammatory cytokines, alterations in renal function biomarkers, and the induction of the TRAIL apoptosis pathway during malaria-associated acute kidney injury (AKI). Renal function was evaluated through the measurement of plasma creatinine and blood urea nitrogen (BUN). The mRNA expression of several cytokines and NaPi-IIa was quantified. Kidney sections were examined and cytokine levels were assessed using cytometric bead array (CBA) assays. The presence of glomerular IgG deposits and apoptosis-related proteins were investigated using in situ immunofluorescence assays and quantitative real-time PCR, respectively. NaPi-IIa downregulation in the kidneys provided novel insights into the pathogenesis of hypophosphatemia during CM. Histopathological analysis revealed characteristic features of severe malaria-associated nephritis, including glomerular collapse and tubular alterations. Pro-inflammatory cytokines, such as TNF-α, IL-1β, and IL-6, were upregulated. The TRAIL apoptosis pathway was significantly activated, implicating its role in renal apoptosis. The observed alterations in renal biomarkers and the downregulation of NaPi-IIa shed light on potential mechanisms contributing to renal dysfunction in ECM. The intricate balance between pro- and anti-inflammatory cytokines, along with the activation of the TRAIL apoptosis pathway, highlights the complexity of malaria-associated AKI and provides new therapeutic targets.
Collapse
Affiliation(s)
- Gustavo Martins Simião
- Faculty of Health Sciences, Federal University of Rondonopolis, Rondonópolis 78736-900, MT, Brazil
| | | | - Sandra Gabriela Klein
- Laboratory of Biotechnology in Experimental Models, Federal University of Uberlandia, Uberlândia 38410-337, MG, Brazil
| | - Flávia Batista Ferreira
- Laboratory of Biotechnology in Experimental Models, Federal University of Uberlandia, Uberlândia 38410-337, MG, Brazil
- Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlândia 38405-318, MG, Brazil
| | | | | | - Neide Maria Silva
- Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlândia 38405-318, MG, Brazil
| | - Murilo Vieira da Silva
- Laboratory of Biotechnology in Experimental Models, Federal University of Uberlandia, Uberlândia 38410-337, MG, Brazil
| | - Wânia Rezende Lima
- Faculty of Health Sciences, Federal University of Rondonopolis, Rondonópolis 78736-900, MT, Brazil
- Institute of Biotechnology, Federal University of Catalao, Catalão 75706-881, GO, Brazil
- Laboratory of Biotechnology in Experimental Models, Federal University of Uberlandia, Uberlândia 38410-337, MG, Brazil
| |
Collapse
|
2
|
Koubar SH, Garcia-Rivera A, Mohamed MMB, Hall JE, Hall ME, Hassanein M. Underlying Mechanisms and Treatment of Hypertension in Glomerular Diseases. Curr Hypertens Rep 2024; 26:119-130. [PMID: 37982994 DOI: 10.1007/s11906-023-01287-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
PURPOSE OF REVIEW This review aims to explore the underlying mechanisms that lead to hypertension in glomerular diseases and the advancements in treatment strategies and to provide clinicians with valuable insights into the pathophysiological mechanisms and evidence-based therapeutic approaches for managing hypertension in patients with glomerular diseases. RECENT FINDINGS In recent years, there have been remarkable advancements in our understanding of the immune and non-immune mechanisms that are involved in the pathogenesis of hypertension in glomerular diseases. Furthermore, this review will encompass the latest data on management strategies, including RAAS inhibition, endothelin receptor blockers, SGLT2 inhibitors, and immune-based therapies. Hypertension (HTN) and cardiovascular diseases are leading causes of mortality in glomerular diseases. The latter are intricately related with hypertension and share common pathophysiological mechanisms. Hypertension in glomerular disease represents a complex and multifaceted interplay between kidney dysfunction, immune-mediated, and non-immune-mediated pathology. Understanding the complex mechanisms involved in this relationship has evolved significantly over the years, shedding light on the pathophysiological processes underlying the development and progression of glomerular disease-associated HTN, and is crucial for developing effective therapeutic strategies and improving patients' outcomes.
Collapse
Affiliation(s)
- Sahar H Koubar
- Division of Nephrology and Hypertension, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Alejandro Garcia-Rivera
- Department of Nephrology. Hospital General Regional 46, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | - Muner M B Mohamed
- Department of Nephrology, Ochsner Health System, New Orleans, LA, USA
- Ochsner Clinical School, The University of Queensland, Brisbane, QLD, Australia
| | - John E Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Michael E Hall
- Division of Cardiovascular Disease, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Mohamed Hassanein
- Division of Nephrology and Hypertension, Department of Medicine, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS, USA.
| |
Collapse
|
3
|
Aufy M, Hussein AM, Stojanovic T, Studenik CR, Kotob MH. Proteolytic Activation of the Epithelial Sodium Channel (ENaC): Its Mechanisms and Implications. Int J Mol Sci 2023; 24:17563. [PMID: 38139392 PMCID: PMC10743461 DOI: 10.3390/ijms242417563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Epithelial sodium channel (ENaC) are integral to maintaining salt and water homeostasis in various biological tissues, including the kidney, lung, and colon. They enable the selective reabsorption of sodium ions, which is a process critical for controlling blood pressure, electrolyte balance, and overall fluid volume. ENaC activity is finely controlled through proteolytic activation, a process wherein specific enzymes, or proteases, cleave ENaC subunits, resulting in channel activation and increased sodium reabsorption. This regulatory mechanism plays a pivotal role in adapting sodium transport to different physiological conditions. In this review article, we provide an in-depth exploration of the role of proteolytic activation in regulating ENaC activity. We elucidate the involvement of various proteases, including furin-like convertases, cysteine, and serine proteases, and detail the precise cleavage sites and regulatory mechanisms underlying ENaC activation by these proteases. We also discuss the physiological implications of proteolytic ENaC activation, focusing on its involvement in blood pressure regulation, pulmonary function, and intestinal sodium absorption. Understanding the mechanisms and consequences of ENaC proteolytic activation provides valuable insights into the pathophysiology of various diseases, including hypertension, pulmonary disorders, and various gastrointestinal conditions. Moreover, we discuss the potential therapeutic avenues that emerge from understanding these mechanisms, offering new possibilities for managing diseases associated with ENaC dysfunction. In summary, this review provides a comprehensive discussion of the intricate interplay between proteases and ENaC, emphasizing the significance of proteolytic activation in maintaining sodium and fluid balance in both health and disease.
Collapse
Affiliation(s)
- Mohammed Aufy
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (A.M.H.); (M.H.K.)
| | - Ahmed M. Hussein
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (A.M.H.); (M.H.K.)
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Tamara Stojanovic
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Christian R. Studenik
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (A.M.H.); (M.H.K.)
| | - Mohamed H. Kotob
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (A.M.H.); (M.H.K.)
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| |
Collapse
|
4
|
Sun Y, Jin D, Zhang Z, Ji H, An X, Zhang Y, Yang C, Sun W, Zhang Y, Duan Y, Kang X, Jiang L, Zhao X, Lian F. N6-methyladenosine (m6A) methylation in kidney diseases: Mechanisms and therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194967. [PMID: 37553065 DOI: 10.1016/j.bbagrm.2023.194967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
The N6-methyladenosine (m6A) modification is regulated by methylases, commonly referred to as "writers," and demethylases, known as "erasers," leading to a dynamic and reversible process. Changes in m6A levels have been implicated in a wide range of cellular processes, including nuclear RNA export, mRNA metabolism, protein translation, and RNA splicing, establishing a strong correlation with various diseases. Both physiologically and pathologically, m6A methylation plays a critical role in the initiation and progression of kidney disease. The methylation of m6A may also facilitate the early diagnosis and treatment of kidney diseases, according to accumulating research. This review aims to provide a comprehensive overview of the potential role and mechanism of m6A methylation in kidney diseases, as well as its potential application in the treatment of such diseases. There will be a thorough examination of m6A methylation mechanisms, paying particular attention to the interplay between m6A writers, m6A erasers, and m6A readers. Furthermore, this paper will elucidate the interplay between various kidney diseases and m6A methylation, summarize the expression patterns of m6A in pathological kidney tissues, and discuss the potential therapeutic benefits of targeting m6A in the context of kidney diseases.
Collapse
Affiliation(s)
- Yuting Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - De Jin
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Ziwei Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hangyu Ji
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuedong An
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehong Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cunqing Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjie Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuqing Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingying Duan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaomin Kang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linlin Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuefei Zhao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
5
|
Rinschen MM, Harder JL, Carter-Timofte ME, Zanon Rodriguez L, Mirabelli C, Demir F, Kurmasheva N, Ramakrishnan SK, Kunke M, Tan Y, Billing A, Dahlke E, Larionov AA, Bechtel-Walz W, Aukschun U, Grabbe M, Nielsen R, Christensen EI, Kretzler M, Huber TB, Wobus CE, Olagnier D, Siuzdak G, Grahammer F, Theilig F. VPS34-dependent control of apical membrane function of proximal tubule cells and nutrient recovery by the kidney. Sci Signal 2022; 15:eabo7940. [PMID: 36445937 PMCID: PMC10350314 DOI: 10.1126/scisignal.abo7940] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The lipid kinase VPS34 orchestrates autophagy, endocytosis, and metabolism and is implicated in cancer and metabolic disease. The proximal tubule in the kidney is a key metabolic organ that controls reabsorption of nutrients such as fatty acids, amino acids, sugars, and proteins. Here, by combining metabolomics, proteomics, and phosphoproteomics analyses with functional and superresolution imaging assays of mice with an inducible deficiency in proximal tubular cells, we revealed that VPS34 controlled the metabolome of the proximal tubule. In addition to inhibiting pinocytosis and autophagy, VPS34 depletion induced membrane exocytosis and reduced the abundance of the retromer complex necessary for proper membrane recycling and lipid retention, leading to a loss of fuel and biomass. Integration of omics data into a kidney cell metabolomic model demonstrated that VPS34 deficiency increased β-oxidation, reduced gluconeogenesis, and enhanced the use of glutamine for energy consumption. Furthermore, the omics datasets revealed that VPS34 depletion triggered an antiviral response that included a decrease in the abundance of apically localized virus receptors such as ACE2. VPS34 inhibition abrogated SARS-CoV-2 infection in human kidney organoids and cultured proximal tubule cells in a glutamine-dependent manner. Thus, our results demonstrate that VPS34 adjusts endocytosis, nutrient transport, autophagy, and antiviral responses in proximal tubule cells in the kidney.
Collapse
Affiliation(s)
- Markus M Rinschen
- Scripps Center for Metabolomics, Scripps Research, La Jolla, CA 92037, USA
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, 50937 Cologne, Germany
- Aarhus Institute for Advanced Studies, Aarhus University, 8000 Aarhus, Denmark
| | - Jennifer L Harder
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | - Carmen Mirabelli
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Fatih Demir
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | | | | | - Madlen Kunke
- Department of Anatomy, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Yifan Tan
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Anja Billing
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Eileen Dahlke
- Department of Anatomy, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Alexey A Larionov
- Department of Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Wibke Bechtel-Walz
- IV Department of Medicine and Faculty of Medicine, University Medical Center Freiburg, 79110 Freiburg, Germany
| | - Ute Aukschun
- IV Department of Medicine and Faculty of Medicine, University Medical Center Freiburg, 79110 Freiburg, Germany
| | - Marlen Grabbe
- IV Department of Medicine and Faculty of Medicine, University Medical Center Freiburg, 79110 Freiburg, Germany
| | - Rikke Nielsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | | | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - David Olagnier
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Gary Siuzdak
- Scripps Center for Metabolomics, Scripps Research, La Jolla, CA 92037, USA
| | - Florian Grahammer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Franziska Theilig
- Department of Anatomy, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
- Department of Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
6
|
Liu J, Li X, Xu N, Han H, Li X. Role of ion channels in the mechanism of proteinuria (Review). Exp Ther Med 2022; 25:27. [PMID: 36561615 PMCID: PMC9748662 DOI: 10.3892/etm.2022.11726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
Proteinuria is a common clinical manifestation of kidney diseases, such as glomerulonephritis, nephrotic syndrome, immunoglobulin A nephropathy and diabetic nephropathy. Therefore, proteinuria is considered to be a risk factor for renal dysfunction. Furthermore, proteinuria is also significantly associated with the progression of kidney diseases and increased mortality. Its occurrence is closely associated with damage to the structure of the glomerular filtration membrane. An impaired glomerular filtration membrane can affect the selective filtration function of the kidneys; therefore, several macromolecular substances, such as proteins, may pass through the filtration membrane and promote the manifestation of proteinuria. It has been reported that ion channels play a significant role in the mechanisms underlying proteinuria. Ion channel mutations or other dysfunctions have been implicated in several diseases, therefore ion channels could be used as major therapeutic targets. The mechanisms underlying the action of ion channels and ion transporters in proteinuria have been overlooked in the literature, despite their importance in identifying novel targets for treating proteinuria and delaying the progression of kidney diseases. The current review article focused on the four key ion channel groups, namely Na+, Ca2+, Cl- and K+ ion channels and the associated ion transporters.
Collapse
Affiliation(s)
- Jie Liu
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Xuewei Li
- Department of Rheumatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Ning Xu
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Huirong Han
- Department of Anesthesiology, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Xiangling Li
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China,Correspondence to: Professor Xiangling Li, Department of Nephrology, Affiliated Hospital of Weifang Medical University, 2428 Yu He Road, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
7
|
Liu T, Zhuang XX, Qin XJ, Wei LB, Gao JR. Alteration of N6-methyladenosine epitranscriptome profile in lipopolysaccharide-induced mouse mesangial cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:445-458. [PMID: 35119478 DOI: 10.1007/s00210-022-02208-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/18/2022] [Indexed: 11/30/2022]
Abstract
N6-Methyladenosine (m6A) is the most prevalent internal modification of messenger RNA (mRNA) in eukaryotes. The underlying molecular mechanisms of m6A modification in chronic glomerulonephritis (CGN) remain unexplored. Here, we performed methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) analyses to assess the alterations of epitranscriptome-wide m6A profile in lipopolysaccharide (LPS)-induced mouse mesangial cells (MMC). The results of our data showed 2153 significantly differential m6A peaks and 358 significantly differentially expressed genes. Furthermore, integrated analysis from MeRIP-seq and RNA-seq identified a total of 64 genes with differential m6A modification and expressed levels, of which 5 genes displayed hypermethylation and upregulation, 42 genes displayed hypermethylation and downregulation, 11 genes displayed hypomethylation and upregulation, and 8 genes displayed hypomethylation and downregulation. Many of them (including Fosl1, Sorbs1, Ambp, Fgfr3, Nedd9, Fgg, Trim13, Fgf22, Mylk, and Muc6) are implicated in the regulation of the immune and inflammatory response. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis found that differential 64 genes were mainly enriched in fatty acid oxidation, apoptosis signaling pathway, complement and coagulation cascades, and PPAR signaling pathway. Together, our study provided a new perspective on the understanding of molecular features of m6A modification in CGN pathogenic pathogenesis.
Collapse
Affiliation(s)
- Tao Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230011, Anhui, China
| | - Xing Xing Zhuang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230011, Anhui, China.,Department of Pharmacy, Chaohu Hospital of Anhui Medical University, Chaohu, 238000, Anhui, China
| | - Xiu Juan Qin
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Liang Bing Wei
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Jia Rong Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China. .,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230031, Anhui, China.
| |
Collapse
|
8
|
Exploring the mechanism of Jianpi Qushi Huayu Formula in the treatment of chronic glomerulonephritis based on network pharmacology. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2451-2470. [PMID: 34618179 DOI: 10.1007/s00210-021-02159-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/13/2021] [Indexed: 01/17/2023]
Abstract
This study was to explore the effective components, potential targets, and pathways of Jianpi Qushi Huayu Formula (JQHF) for the treatment of chronic glomerulonephritics (CGN). First, the Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP), GeneCards, and OMIM databases were used to collect the major active components of JQHF and potential therapeutic targets of CGN. Then, functional enrichment analysis was performed to clarify the mechanisms of the JQHF on CGN. Subsequently, molecular docking was simulated to assess the binding ability of key targets and major active components. Finally, quantitative real-time PCR and western blot were performed for experimental verification of cells in vitro. A total of 55 active ingredients contained and 220 putative identified targets were screened from JQHF, of which 112 overlapped with the targets of CGN and were considered potential therapeutic targets. Then, we found quercetin and kaempferol are two key ingredients of JQHF, which may act on the top 10 screened targets of PPI, affecting CGN through related signal transduction pathways. Subsequently, molecular docking predicted that quercetin and kaempferol bind firm with the top 10 core targets of PPI. Further experiment verified some results and showed that JQHF has protected glomerular mesangial cells from lipopolysaccharide-induced inflammation by inhibiting expressions of IL6, TNF-α, and AKT1, and activating expressions of VEGFA. Based on network pharmacology, we explored the multi-component, multi-target, and multi-pathway characteristics of JQHF in treating CGN, and found that JQHF could act on IL6, TNF-α, VEGFA, and AKT1 to exert the effect of anti-CGN, which provided new ideas and methods for further research on the mechanism of JQHF in treating CGN.
Collapse
|
9
|
Larionov A, Dahlke E, Kunke M, Zanon Rodriguez L, Schiessl IM, Magnin JL, Kern U, Alli AA, Mollet G, Schilling O, Castrop H, Theilig F. Cathepsin B increases ENaC activity leading to hypertension early in nephrotic syndrome. J Cell Mol Med 2019; 23:6543-6553. [PMID: 31368174 PMCID: PMC6787568 DOI: 10.1111/jcmm.14387] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/04/2019] [Accepted: 05/06/2019] [Indexed: 11/28/2022] Open
Abstract
The NPHS2 gene, encoding the slit diaphragm protein podocin, accounts for genetic and sporadic forms of nephrotic syndrome (NS). Patients with NS often present symptoms of volume retention, such as oedema formation or hypertension. The primary dysregulation in sodium handling involves an inappropriate activation of the epithelial sodium channel, ENaC. Plasma proteases in a proteinuria‐dependent fashion have been made responsible; however, referring to the timeline of symptoms occurring and underlying mechanisms, contradictory results have been published. Characterizing the mouse model of podocyte inactivation of NPHS2 (Nphs2∆pod) with respect to volume handling and proteinuria revealed that sodium retention, hypertension and gross proteinuria appeared sequentially in a chronological order. Detailed analysis of Nphs2∆pod during early sodium retention, revealed increased expression of full‐length ENaC subunits and αENaC cleavage product with concomitant increase in ENaC activity as tested by amiloride application, and augmented collecting duct Na+/K+‐ATPase expression. Urinary proteolytic activity was increased and several proteases were identified by mass spectrometry including cathepsin B, which was found to process αENaC. Renal expression levels of precursor and active cathepsin B were increased and could be localized to glomeruli and intercalated cells. Inhibition of cathepsin B prevented hypertension. With the appearance of gross proteinuria, plasmin occurs in the urine and additional cleavage of γENaC is encountered. In conclusion, characterizing the volume handling of Nphs2∆pod revealed early sodium retention occurring independent to aberrantly filtered plasma proteases. As an underlying mechanism cathepsin B induced αENaC processing leading to augmented channel activity and hypertension was identified.
Collapse
Affiliation(s)
- Alexey Larionov
- Institute of Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Eileen Dahlke
- Institute of Anatomy, Christian Albrechts-University Kiel, Kiel, Germany
| | - Madlen Kunke
- Institute of Anatomy, Christian Albrechts-University Kiel, Kiel, Germany
| | | | - Ina M Schiessl
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | | | - Ursula Kern
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Abdel A Alli
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Geraldine Mollet
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Oliver Schilling
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BIOSS Center for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Hayo Castrop
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Franziska Theilig
- Institute of Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland.,Institute of Anatomy, Christian Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
10
|
Pérez-Torres I, Moguel-González B, Soria-Castro E, Guarner-Lans V, Avila-Casado MDC, Goes TIFV. Vascular Hyperactivity in the Rat Renal Aorta Participates in the Association between Immune Complex-Mediated Glomerulonephritis and Systemic Hypertension. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1164. [PMID: 29865287 PMCID: PMC6025240 DOI: 10.3390/ijerph15061164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/24/2018] [Accepted: 05/30/2018] [Indexed: 11/24/2022]
Abstract
Introduction: systemic hypertension (SH) involving endothelial dysfunction contributes to immune complex-mediated glomerulonephritis (ICGN). Objective, we demonstrate a relationship between ICGN and SH by analyzing vascular reactivity in renal aortic rings. Methods: 48 male Wistar rats were divided into four groups: (a) control (C); (b) injected with bovine serum albumin (BSA); (c) receiving 200 mg/L NAME (an analog of arginine that inhibits NO production) in drinking water; and (d) receiving BSA and 200 mg/L NAME. Rats were pre-immunized subcutaneously with BSA and Freund's adjuvant. After 10 days, groups (b) and (c) received 1 mg/mL of BSA in saline intravenous (IV) daily for 35 days. The urine of 24 h was measured at days 0, 15, 30 and 45. Results: vascular reactivity to norepinephrine (NE), acetylcholine (Ach) and NAME were tested. Creatinine clearance, vasodilatation, eNOS and elastic fibers were diminished (p ≤ 0.001). Blood pressure, vasoconstriction, iNOS were increased, and glomerular alterations were observed in groups (b), (c) and (d) when compared to group (a) (p ≤ 0.001). Conclusions: SH contributes to the development of progressive renal disease in ICGN. Alterations of the vascular reactivity are mediated by the endothelium in the renal aorta. Thus, the endothelium plays a determinant role in the production of vasoactive substances such as NO during this process.
Collapse
Affiliation(s)
- Israel Pérez-Torres
- Departamento de Patología, Instituto Nacional de Cardiología "Ignacio Chávez", Ciudad de México 14080, México.
| | - Bernardo Moguel-González
- Departamento de Patología, Instituto Nacional de Cardiología "Ignacio Chávez", Ciudad de México 14080, México.
| | - Elizabeth Soria-Castro
- Departamento de Patología, Instituto Nacional de Cardiología "Ignacio Chávez", Ciudad de México 14080, México.
| | - Verónica Guarner-Lans
- Departamento de Fisiología Instituto Nacional de Cardiología "Ignacio Chávez", Ciudad de México 14080, México.
| | | | - Teresa Imelda Fortoul Vander Goes
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México.
| |
Collapse
|
11
|
Toussaint J, Raval CB, Nguyen T, Fadaifard H, Joshi S, Wolberg G, Quarfordt S, Jan KM, Rumschitzki DS. Chronic hypertension increases aortic endothelial hydraulic conductivity by upregulating endothelial aquaporin-1 expression. Am J Physiol Heart Circ Physiol 2017; 313:H1063-H1073. [PMID: 28733452 PMCID: PMC5792199 DOI: 10.1152/ajpheart.00651.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 07/14/2017] [Accepted: 07/14/2017] [Indexed: 01/22/2023]
Abstract
Numerous studies have examined the role of aquaporins in osmotic water transport in various systems, but virtually none have focused on the role of aquaporin in hydrostatically driven water transport involving mammalian cells save for our laboratory's recent study of aortic endothelial cells. Here, we investigated aquaporin-1 expression and function in the aortic endothelium in two high-renin rat models of hypertension, the spontaneously hypertensive genetically altered Wistar-Kyoto rat variant and Sprague-Dawley rats made hypertensive by two-kidney, one-clip Goldblatt surgery. We measured aquaporin-1 expression in aortic endothelial cells from whole rat aortas by quantitative immunohistochemistry and function by measuring the pressure-driven hydraulic conductivities of excised rat aortas with both intact and denuded endothelia on the same vessel. We used them to calculate the effective intimal hydraulic conductivity, which is a combination of endothelial and subendothelial components. We observed well-correlated enhancements in aquaporin-1 expression and function in both hypertensive rat models as well as in aortas from normotensive rats whose expression was upregulated by 2 h of forskolin treatment. Upregulated aquaporin-1 expression and function may be a response to hypertension that critically determines conduit artery vessel wall viability and long-term susceptibility to atherosclerosis.NEW & NOTEWORTHY The aortic endothelia of two high-renin hypertensive rat models express greater than two times the aquaporin-1 and, at low pressures, have greater than two times the endothelial hydraulic conductivity of normotensive rats. Data are consistent with theory predicting that higher endothelial aquaporin-1 expression raises the critical pressure for subendothelial intima compression and for artery wall hydraulic conductivity to drop.
Collapse
Affiliation(s)
- Jimmy Toussaint
- 1Department of Chemical Engineering, City College of the City University of New York, New York, New York; ,4Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts;
| | - Chirag Bharavi Raval
- 1Department of Chemical Engineering, City College of the City University of New York, New York, New York; ,2Department of Biomedical Engineering, City College of the City University of New York, New York, New York;
| | - Tieuvi Nguyen
- 2Department of Biomedical Engineering, City College of the City University of New York, New York, New York;
| | - Hadi Fadaifard
- 3Department of Computer Science, City College of the City University of New York, New York, New York;
| | - Shripad Joshi
- 1Department of Chemical Engineering, City College of the City University of New York, New York, New York;
| | - George Wolberg
- 3Department of Computer Science, City College of the City University of New York, New York, New York;
| | - Steven Quarfordt
- 1Department of Chemical Engineering, City College of the City University of New York, New York, New York;
| | - Kung-ming Jan
- 5Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York; and
| | - David S. Rumschitzki
- 1Department of Chemical Engineering, City College of the City University of New York, New York, New York; ,5Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York; and ,6Biology (Molecular, Cellular, and Developmental Biology) and Chemistry (Biophysics) Departments, The Graduate School and University Center, City University of New York, New York, New York
| |
Collapse
|
12
|
Theilig F, Wu Q. ANP-induced signaling cascade and its implications in renal pathophysiology. Am J Physiol Renal Physiol 2015; 308:F1047-55. [PMID: 25651559 DOI: 10.1152/ajprenal.00164.2014] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 01/22/2015] [Indexed: 01/06/2023] Open
Abstract
The balance between vasoconstrictor/sodium-retaining and vasodilator/natriuretic systems is essential for maintaining body fluid and electrolyte homeostasis. Natriuretic peptides, such as atrial natriuretic peptide (ANP), belong to the vasodilator/natriuretic system. ANP is produced by the conversion of pro-ANP into ANP, which is achieved by a proteolytical cleavage executed by corin. In the kidney, ANP binds to the natriuretic peptide receptor-A (NPR-A) and enhances its guanylyl cyclase activity, thereby increasing intracellular cyclic guanosine monophosphate production to promote natriuretic and renoprotective responses. In the glomerulus, ANP increases glomerular permeability and filtration rate and antagonizes the deleterious effects of the renin-angiotensin-aldosterone system activation. Along the nephron, natriuretic and diuretic actions of ANP are mediated by inhibiting the basolaterally expressed Na(+)-K(+)-ATPase, reducing apical sodium, potassium, and protein organic cation transporter in the proximal tubule, and decreasing Na(+)-K(+)-2Cl(-) cotransporter activity and renal concentration efficiency in the thick ascending limb. In the medullary collecting duct, ANP reduces sodium reabsorption by inhibiting the cyclic nucleotide-gated cation channels, the epithelial sodium channel, and the heteromeric channel transient receptor potential-vanilloid 4 and -polycystin 2 and diminishes vasopressin-induced water reabsorption. Long-term ANP treatment may lead to NPR-A desensitization and ANP resistance, resulting in augmented sodium and water reabsorption. In mice, corin deficiency impairs sodium excretion and causes salt-sensitive hypertension. Characteristics of ANP resistance and corin deficiency are also encountered in patients with edema-associated diseases, highlighting the importance of ANP signaling in salt-water balance and renal pathophysiology.
Collapse
Affiliation(s)
- Franziska Theilig
- Institute of Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland; and
| | - Qingyu Wu
- Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Ohio
| |
Collapse
|
13
|
Mukhin NA, Glybochko PV, Svistunov AA, Fomin VV, Shilov EM, Lysenko LV. [Acute glomerulonephritis in the 21-st century]. TERAPEVT ARKH 2015; 87:4-9. [PMID: 26281188 DOI: 10.17116/terarkh20158764-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The paper discusses the specific features of the current course of acute glomerulonephritis, the spectrum of its etiological factors, and clinical manifestations. The factors influencing the course and outcomes of acute glomerulonephritis, including the risk of its progression to chronic kidney disease, are specially depicted.
Collapse
Affiliation(s)
- N A Mukhin
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, Moscow, Russia
| | - P V Glybochko
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, Moscow, Russia
| | - A A Svistunov
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, Moscow, Russia
| | - V V Fomin
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, Moscow, Russia
| | - E M Shilov
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, Moscow, Russia
| | - L V Lysenko
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
14
|
Pohl M, Shan Q, Petsch T, Styp-Rekowska B, Matthey P, Bleich M, Bachmann S, Theilig F. Short-term functional adaptation of aquaporin-1 surface expression in the proximal tubule, a component of glomerulotubular balance. J Am Soc Nephrol 2014; 26:1269-78. [PMID: 25270072 DOI: 10.1681/asn.2014020148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/22/2014] [Indexed: 11/03/2022] Open
Abstract
Transepithelial water flow across the renal proximal tubule is mediated predominantly by aquaporin-1 (AQP1). Along this nephron segment, luminal delivery and transepithelial reabsorption are directly coupled, a phenomenon called glomerulotubular balance. We hypothesized that the surface expression of AQP1 is regulated by fluid shear stress, contributing to this effect. Consistent with this finding, we found that the abundance of AQP1 in brush border apical and basolateral membranes was augmented >2-fold by increasing luminal perfusion rates in isolated, microperfused proximal tubules for 15 minutes. Mouse kidneys with diminished endocytosis caused by a conditional deletion of megalin or the chloride channel ClC-5 had constitutively enhanced AQP1 abundance in the proximal tubule brush border membrane. In AQP1-transfected, cultured proximal tubule cells, fluid shear stress or the addition of cyclic nucleotides enhanced AQP1 surface expression and concomitantly diminished its ubiquitination. These effects were also associated with an elevated osmotic water permeability. In sum, we have shown that luminal surface expression of AQP1 in the proximal tubule brush border membrane is regulated in response to flow. Cellular trafficking, endocytosis, an intact endosomal compartment, and controlled protein stability are the likely prerequisites for AQP1 activation by enhanced tubular fluid shear stress, serving to maintain glomerulotubular balance.
Collapse
Affiliation(s)
- Marcus Pohl
- Institute of Anatomy, Charité Universitätsmedizin, Berlin, Germany
| | - Qixian Shan
- Institute of Physiology, Kiel University, Kiel, Germany
| | - Thomas Petsch
- Institute of Anatomy, Charité Universitätsmedizin, Berlin, Germany
| | | | - Patricia Matthey
- Institute of Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Markus Bleich
- Institute of Physiology, Kiel University, Kiel, Germany
| | | | - Franziska Theilig
- Institute of Anatomy, Charité Universitätsmedizin, Berlin, Germany; Institute of Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
15
|
Buhl KB, Friis UG, Svenningsen P, Gulaveerasingam A, Ovesen P, Frederiksen-Møller B, Jespersen B, Bistrup C, Jensen BL. Urinary Plasmin Activates Collecting Duct ENaC Current in Preeclampsia. Hypertension 2012; 60:1346-51. [DOI: 10.1161/hypertensionaha.112.198879] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Kristian B. Buhl
- From the Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Denmark (K.B.B., U.G.F., P.S., A.G., B.F-M., B.L.J.); Departments of Gynecology and Obstetrics (P.O.) and Nephrology (B.J.), Aarhus University Hospital, Skejby, Denmark; and Department of Nephrology, Odense University Hospital, Odense, Denmark (C.B.)
| | - Ulla G. Friis
- From the Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Denmark (K.B.B., U.G.F., P.S., A.G., B.F-M., B.L.J.); Departments of Gynecology and Obstetrics (P.O.) and Nephrology (B.J.), Aarhus University Hospital, Skejby, Denmark; and Department of Nephrology, Odense University Hospital, Odense, Denmark (C.B.)
| | - Per Svenningsen
- From the Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Denmark (K.B.B., U.G.F., P.S., A.G., B.F-M., B.L.J.); Departments of Gynecology and Obstetrics (P.O.) and Nephrology (B.J.), Aarhus University Hospital, Skejby, Denmark; and Department of Nephrology, Odense University Hospital, Odense, Denmark (C.B.)
| | - Ambika Gulaveerasingam
- From the Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Denmark (K.B.B., U.G.F., P.S., A.G., B.F-M., B.L.J.); Departments of Gynecology and Obstetrics (P.O.) and Nephrology (B.J.), Aarhus University Hospital, Skejby, Denmark; and Department of Nephrology, Odense University Hospital, Odense, Denmark (C.B.)
| | - Per Ovesen
- From the Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Denmark (K.B.B., U.G.F., P.S., A.G., B.F-M., B.L.J.); Departments of Gynecology and Obstetrics (P.O.) and Nephrology (B.J.), Aarhus University Hospital, Skejby, Denmark; and Department of Nephrology, Odense University Hospital, Odense, Denmark (C.B.)
| | - Britta Frederiksen-Møller
- From the Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Denmark (K.B.B., U.G.F., P.S., A.G., B.F-M., B.L.J.); Departments of Gynecology and Obstetrics (P.O.) and Nephrology (B.J.), Aarhus University Hospital, Skejby, Denmark; and Department of Nephrology, Odense University Hospital, Odense, Denmark (C.B.)
| | - Bente Jespersen
- From the Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Denmark (K.B.B., U.G.F., P.S., A.G., B.F-M., B.L.J.); Departments of Gynecology and Obstetrics (P.O.) and Nephrology (B.J.), Aarhus University Hospital, Skejby, Denmark; and Department of Nephrology, Odense University Hospital, Odense, Denmark (C.B.)
| | - Claus Bistrup
- From the Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Denmark (K.B.B., U.G.F., P.S., A.G., B.F-M., B.L.J.); Departments of Gynecology and Obstetrics (P.O.) and Nephrology (B.J.), Aarhus University Hospital, Skejby, Denmark; and Department of Nephrology, Odense University Hospital, Odense, Denmark (C.B.)
| | - Boye L. Jensen
- From the Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Denmark (K.B.B., U.G.F., P.S., A.G., B.F-M., B.L.J.); Departments of Gynecology and Obstetrics (P.O.) and Nephrology (B.J.), Aarhus University Hospital, Skejby, Denmark; and Department of Nephrology, Odense University Hospital, Odense, Denmark (C.B.)
| |
Collapse
|
16
|
Svenningsen P, Skøtt O, Jensen BL. Proteinuric diseases with sodium retention: is plasmin the link? Clin Exp Pharmacol Physiol 2011; 39:117-24. [DOI: 10.1111/j.1440-1681.2011.05524.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Abstract
PURPOSE OF REVIEW Activation of epithelial sodium channel (ENaC) by proteolysis appears to be relevant for day-to-day physiological regulation of channel activity in kidney and other epithelial tissues. Pathophysiogical, proteolytic activation of ENaC in kidney has been demonstrated in proteinuric disease. RECENT FINDINGS A variation in sodium and potassium intake or plasma aldosterone changes the number of cleaved α and γ-ENaC subunits and is associated with changes in ENaC currents. The protease furin mediates intracellular cleavage, whereas the channel-activating protease prostasin (CAP-1), which is glycophosphatidylinositol-anchored to the apical cell surface, mediates important extracellular cleavage. Soluble protease activity is very low in urine under physiological conditions but rises in proteinuria. In nephrotic syndrome, the dominant soluble protease activity is plasmin, which is formed from filtered plasminogen via urokinase-type plasminogen activator. Plasmin activates ENaC directly at high concentrations and through prostasin at lower concentrations. SUMMARY The discovery of serine protease-mediated activation of renal ENaC in physiological and pathophysiological conditions opens the way for new understanding of the pathogenesis of proteinuric sodium retention, which may involve plasmin and present several potential new drug targets.
Collapse
|
18
|
Abstract
Kidney disease is commonly associated with hypertension in dogs, cats and other species. There are multiple mechanisms underlying the development of renal hypertension including sodium retention, activation of the renin-angiotensin system and sympathetic nerve stimulation. The relative importance of these and other mechanisms may vary both between species and according to the type of kidney disease that is present. Consideration of underlying disease mechanisms may aid in the rational choice of therapy in hypertensive patients.
Collapse
Affiliation(s)
- Harriet Syme
- Department of Veterinary Clinical Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK.
| |
Collapse
|
19
|
Decreased renal corin expression contributes to sodium retention in proteinuric kidney diseases. Kidney Int 2010; 78:650-9. [PMID: 20613715 DOI: 10.1038/ki.2010.197] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Patients with proteinuric kidney diseases often have symptoms of salt and water retention. It has been hypothesized that dysregulated sodium absorption is due to increased proteolytic cleavage of epithelial sodium channels (ENaCs) and increased Na,K-ATPase expression. Microarray analysis identified a reduction in kidney corin mRNA expression in rat models of puromycin aminonucleoside-induced nephrotic syndrome and acute anti-Thy1 glomerulonephritis (GN). As atrial natriuretic peptide (ANP) resistance is a mechanism accounting for volume retention, we analyzed the renal expression and function of corin; a type II transmembrane serine protease that converts pro-ANP to active ANP. Immunohistochemical analysis found that corin colocalized with ANP. The nephrotic and glomerulonephritic models exhibited concomitant increased pro-ANP and decreased ANP protein levels in the kidney consistent with low amounts of corin. Importantly, kidneys from corin knockout mice had increased amounts of renal β-ENaC and its activators, phosphodiesterase (PDE) 5 and protein kinase G II, when compared to wild-type mice. A similar expression profile was also found in cell culture suggesting the increase in PDE5 and kinase G II could account for the increase in β-ENaC seen in nephrotic syndrome and GN. Thus, we suggest that corin might be involved in the salt retention seen in glomerular diseases.
Collapse
|
20
|
Stoessel A, Himmerkus N, Bleich M, Bachmann S, Theilig F. Connexin 37 is localized in renal epithelia and responds to changes in dietary salt intake. Am J Physiol Renal Physiol 2010; 298:F216-23. [PMID: 19828678 DOI: 10.1152/ajprenal.00295.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Connexins are the main components of gap junction channels, which are important for intercellular communication. In the kidney, several members of the connexin (Cx) family have been identified. Renal vascular expression and hemodynamic impacts have so far been shown for Cx37, Cx40, and Cx43. Additionally, Cx30, Cx30.3, and Cx43 have been identified to be part of tubular epithelial gap junctions and/or hemichannels. However, the localization and role of other Cx family members in renal epithelial structures remain undetermined. We aimed to localize Cx37 in the kidney to obtain information on its epithelial expression and potential functions. Immunohistochemistry in rodent kidney showed characteristic punctate patterns in the vasculature and along the nephron. Strong basolateral expression was found in the thick ascending limb and distal convoluted tubule. Weaker abundances were found in the proximal tubule and the collecting duct also at the basolateral side. In situ hybridization and real-time PCR of isolated nephron segments confirmed this distribution at the mRNA level. Ultrastructurally, Cx37 immunostaining was confined to basolateral cell interdigitations and infoldings. As a functional approach, rats were fed low- or high-salt diets. Compared with control and high-salt diets, rats treated with low-salt diet showed significantly increased Cx37 mRNA and protein levels. This may be indicative of an adaptive tubular response to changes in sodium reabsorption. In summary, renal epithelia express Cx37 in their basolateral membranes. Here, the formation of Cx37 gap junctions may be involved in cellular communication and adjustments of vectorial epithelial transport.
Collapse
MESH Headings
- Animals
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Connexins/metabolism
- Dose-Response Relationship, Drug
- Epithelium/drug effects
- Epithelium/metabolism
- Kidney/cytology
- Kidney/drug effects
- Kidney/metabolism
- Kidney Tubules, Collecting/drug effects
- Kidney Tubules, Collecting/metabolism
- Kidney Tubules, Distal/cytology
- Kidney Tubules, Distal/drug effects
- Kidney Tubules, Distal/metabolism
- Kidney Tubules, Proximal/cytology
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Loop of Henle/cytology
- Loop of Henle/drug effects
- Loop of Henle/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Animal
- Rats
- Rats, Sprague-Dawley
- Sodium Chloride, Dietary/pharmacology
- Gap Junction alpha-4 Protein
Collapse
Affiliation(s)
- Adelina Stoessel
- Institute of Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | |
Collapse
|
21
|
Svenningsen P, Uhrenholt TR, Palarasah Y, Skjødt K, Jensen BL, Skøtt O. Prostasin-dependent activation of epithelial Na+ channels by low plasmin concentrations. Am J Physiol Regul Integr Comp Physiol 2009; 297:R1733-41. [PMID: 19793956 DOI: 10.1152/ajpregu.00321.2009] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several pathophysiological conditions, including nephrotic syndrome, are characterized by increased renal activity of the epithelial Na(+) channel (ENaC). We recently identified plasmin in nephrotic urine as a stimulator of ENaC activity and undertook this study to investigate the mechanism by which plasmin stimulates ENaC activity. Cy3-labeled plasmin was found to bind to the surface of the mouse cortical collecting duct cell line, M-1. Binding depended on a glycosylphosphatidylinositol (GPI)-anchored protein. Biotin-label transfer showed that plasmin interacted with the GPI-anchored protein prostasin on M-1 cells and that plasmin cleaved prostasin. Prostasin activates ENaC by cleavage of the gamma-subunit, which releases an inhibitory peptide from the extracellular domain. Removal of GPI-anchored proteins from the M-1 cells with phosphatidylinositol-specific phospholipase C (PI-PLC) inhibited plasmin-stimulated ENaC current in monolayers of M-1 cells at low plasmin concentration (1-4 microg/ml). At a high plasmin concentration of 30 microg/ml, there was no difference between cell layers treated with or without PI-PLC. Knockdown of prostasin attenuated binding of plasmin to M1 cells and blocked plasmin-stimulated ENaC current in single M-1 cells, as measured by whole-cell patch clamp. In M-1 cells expressing heterologous FLAG-tagged prostasin, gammaENaC and prostasin were colocalized. A monoclonal antibody directed against the inhibitory peptide of gammaENaC produced specific immunofluorescence labeling of M-1 cells. Pretreatment with plasmin abolished labeling of M-1 cells in a prostasin-dependent way. We conclude that, at low concentrations, plasmin interacts with GPI-anchored prostasin, which leads to cleavage of the gamma-subunit and activation of ENaC, while at higher concentrations, plasmin directly activates ENaC.
Collapse
Affiliation(s)
- Per Svenningsen
- Department of Physiology and Pharmacology, Institute of Medical Biology, Univeristy of Southern Denmark, DK-5000 Odense C., Denmark
| | | | | | | | | | | |
Collapse
|