1
|
Hiramatsu-Asano S, Sunahori-Watanabe K, Zeggar S, Katsuyama E, Mukai T, Morita Y, Wada J. Deletion of Mir223 Exacerbates Lupus Nephritis by Targeting S1pr1 in Faslpr/lpr Mice. Front Immunol 2021; 11:616141. [PMID: 33574820 PMCID: PMC7871001 DOI: 10.3389/fimmu.2020.616141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/09/2020] [Indexed: 12/29/2022] Open
Abstract
Objective The micro RNAs (miRNAs) and their target mRNAs are differentially expressed in various immune-mediated cells. Here, we investigated the role of Mir223 and sphingosine-1-phosphate receptor 1 (S1pr1) in the pathogenesis of systemic lupus erythematosus. Methods We analyzed miRNA and mRNA profiling data of CD4+ splenic T cells derived from MRL/MpJ-Faslpr /J mice. We performed 3' untranslated region (UTR) luciferase reporter gene assay using human umbilical vein endothelial cells (HUVECs). We generated the B6-Mir223-/-Faslpr/lpr mice and the lupus phenotypes were analyzed. Results In CD4+ splenic T cells, we identified upregulation of miR-223-3p and downregulation of the possible target, S1pr1 by RNA sequencing of MRL/MpJ-Faslpr /J mice. The transfection with miR-223-3p mimic significantly suppressed a luciferase activity in HUVEC treated with a Lentivirus vector containing 3' UTR of S1pr1. The mRNA levels of S1pr1 were significantly decreased after miR-223-3p overexpression. In B6-Mir223-/-Faslpr/lpr mice, the proportion of CD3+ T cells, CD3+CD4-CD8- cells, B cells, plasma cells, and S1PR1+CD4+ T cells in the spleen was significantly increased compared with that in B6-Mir223+/+Faslpr/lpr mice by flow cytometry. B6-Mir223-/-Faslpr/lpr mice demonstrated the elevation of glomerular and renal vascular scores associated with enhanced intraglomerular infiltration of S1PR1+CD4+ T cells. Conclusion Unexpectedly, the deletion of Mir223 exacerbated the lupus phenotypes associated with increased population of S1PR1+CD4+ T in spleen and the enhanced infiltration of S1PR1+CD4+ T cells in inflamed kidney tissues, suggesting compensatory role of Mir223 in the pathogenesis of lupus nephritis.
Collapse
Affiliation(s)
- Sumie Hiramatsu-Asano
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Japan
| | - Katsue Sunahori-Watanabe
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Sonia Zeggar
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Eri Katsuyama
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tomoyuki Mukai
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Japan
| | - Yoshitaka Morita
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
2
|
Grywalska E, Smarz-Widelska I, Korona-Głowniak I, Mertowski S, Gosik K, Hymos A, Ludian J, Niedźwiedzka-Rystwej P, Roliński J, Załuska W. PD-1 and PD-L1 Expression on Circulating Lymphocytes as a Marker of Epstein-Barr Virus Reactivation-Associated Proliferative Glomerulonephritis. Int J Mol Sci 2020; 21:ijms21218001. [PMID: 33121190 PMCID: PMC7663145 DOI: 10.3390/ijms21218001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/22/2022] Open
Abstract
Alterations to the programmed cell death protein-1 (PD-1) pathway were previously shown to be involved in a poorer prognosis for patients with proliferative glomerulonephritis (PGN). Here, we investigated the association between several infectious agents and the expression of PD-1 and its ligand (PD-L1) on T and B lymphocytes in patients with PGN and nonproliferative glomerulonephritis (NPGN). A cohort of 45 newly-diagnosed patients (23 with PGN and 22 with NPGN) and 20 healthy volunteers was enrolled. The percentage of peripheral blood mononuclear cells expressing PD-1 and PD-L1 antigens was determined by flow cytometry. We found PD-1 and PD-L1 expression on T and B lymphocytes was higher in PGN patients than in NPGN patients and controls. We also found that reactivation of the Epstein-Barr virus (EBV) correlated with the expression of PD-1/PD-L1 antigens in patients with PGN. Further receiver operating characteristic analysis indicated that PD-1 expression could distinguish EBV-positive PGN patients from those with NPGN or healthy controls. The use of PD-1 expression as a non-invasive marker of PGN should be further investigated.
Collapse
Affiliation(s)
- Ewelina Grywalska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (K.G.); (J.L.); (J.R.)
- Correspondence: ; Tel.: +48-8144-86420
| | - Iwona Smarz-Widelska
- Department of Nephrology, Cardinal Stefan Wyszynski Provincial Hospital in Lublin, 20-718 Lublin, Poland;
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Sebastian Mertowski
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (K.G.); (J.L.); (J.R.)
| | - Krzysztof Gosik
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (K.G.); (J.L.); (J.R.)
| | - Anna Hymos
- Department of Otolaryngology and Laryngeal Oncology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Jarosław Ludian
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (K.G.); (J.L.); (J.R.)
| | | | - Jacek Roliński
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (K.G.); (J.L.); (J.R.)
| | - Wojciech Załuska
- Department of Nephrology, Medical University of Lublin, 20-954 Lublin, Poland;
| |
Collapse
|
3
|
Zhao Q, Yan T, Chopp M, Venkat P, Chen J. Brain-kidney interaction: Renal dysfunction following ischemic stroke. J Cereb Blood Flow Metab 2020; 40:246-262. [PMID: 31766979 PMCID: PMC7370616 DOI: 10.1177/0271678x19890931] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Stroke is a leading cause of mortality and morbidity, with long-term debilitating effects. Accumulating evidence from experimental studies as well as observational studies in patients suggests a cross talk between the brain and kidney after stroke. Stroke may lead to kidney dysfunction which can adversely impact patient outcome. In this review article, we discuss the epidemiology and mechanisms of brain–kidney interaction following ischemic stroke. Specifically, we discuss the role of the central autonomic network, autoregulation, inflammatory and immune responses, the role of extracellular vesicles and their cargo microRNA, in mediating brain–kidney interaction following stroke. Understanding the bidirectional nature of interaction between the brain and kidney after cerebral injury would have clinical implications for the treatment of stroke and overall patient outcome.
Collapse
Affiliation(s)
- Qiang Zhao
- Tianjin Neurological Institute, Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Yan
- Tianjin Neurological Institute, Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA.,Department of Physics, Oakland University, Rochester, MI, USA
| | - Poornima Venkat
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Jieli Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
4
|
Caster DJ, Powell DW, Miralda I, Ward RA, McLeish KR. Re-Examining Neutrophil Participation in GN. J Am Soc Nephrol 2017; 28:2275-2289. [PMID: 28620081 DOI: 10.1681/asn.2016121271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Significant advances in understanding the pathogenesis of GN have occurred in recent decades. Among those advances is the finding that both innate and adaptive immune cells contribute to the development of GN. Neutrophils were recognized as key contributors in early animal models of GN, at a time when the prevailing view considered neutrophils to function as nonspecific effector cells that die quickly after performing antimicrobial functions. However, advances over the past two decades have shown that neutrophil functions are more complex and sophisticated. Specifically, research has revealed that neutrophil survival is regulated by the inflammatory milieu and that neutrophils demonstrate plasticity, mediate microbial killing through previously unrecognized mechanisms, demonstrate transcriptional activity leading to the release of cytokines and chemokines, interact with and regulate cells of the innate and adaptive immune systems, and contribute to the resolution of inflammation. Therefore, neutrophil participation in glomerular diseases deserves re-evaluation. In this review, we describe advances in understanding classic neutrophil functions, review the expanded roles of neutrophils in innate and adaptive immune responses, and summarize current knowledge of neutrophil contributions to GN.
Collapse
Affiliation(s)
- Dawn J Caster
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, .,Nephrology Section, Medicine Service, Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, and
| | - David W Powell
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Irina Miralda
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Richard A Ward
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Kenneth R McLeish
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky.,Nephrology Section, Medicine Service, Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, and
| |
Collapse
|
5
|
Li M, Tan L, Tang L, Li A, Hu J. Hydrosoluble 50% N-acetylation-thiolated chitosan complex with cobalt as a pH-responsive renal fibrosis targeting drugs. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:972-85. [DOI: 10.1080/09205063.2016.1175405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
6
|
Van-Gils J, Harambat J, Jubert C, Vidaud D, Llanas B, Perel Y, Lacombe D, Goizet C. Atypical hematologic and renal manifestations in Neurofibromatosis type I: Coincidence or pathophysiological link? Eur J Med Genet 2014; 57:639-42. [DOI: 10.1016/j.ejmg.2014.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 09/07/2014] [Indexed: 10/24/2022]
|
7
|
Gaopande VL, Joshi AR, Khandeparkar SGS, Dwiwedi S. Unusual finding of cellular glomeruli infiltrated with lymphocytes in end stage renal disease due to obstructive nephropathy. Indian J Nephrol 2014; 24:266-7. [PMID: 25097349 PMCID: PMC4119349 DOI: 10.4103/0971-4065.133056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- V L Gaopande
- Department of Pathology, Smt. Kashibai Navale Medical College, Narhe, Ambegaon, Pune, Maharashtra, India
| | - A R Joshi
- Department of Pathology, Smt. Kashibai Navale Medical College, Narhe, Ambegaon, Pune, Maharashtra, India
| | - S G S Khandeparkar
- Department of Pathology, Smt. Kashibai Navale Medical College, Narhe, Ambegaon, Pune, Maharashtra, India
| | - S Dwiwedi
- Department of Pathology, Smt. Kashibai Navale Medical College, Narhe, Ambegaon, Pune, Maharashtra, India
| |
Collapse
|
8
|
The immune system and kidney disease: basic concepts and clinical implications. Nat Rev Immunol 2013; 13:738-53. [PMID: 24037418 DOI: 10.1038/nri3523] [Citation(s) in RCA: 506] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The kidneys are frequently targeted by pathogenic immune responses against renal autoantigens or by local manifestations of systemic autoimmunity. Recent studies in rodent models and humans have uncovered several underlying mechanisms that can be used to explain the previously enigmatic immunopathology of many kidney diseases. These mechanisms include kidney-specific damage-associated molecular patterns that cause sterile inflammation, the crosstalk between renal dendritic cells and T cells, the development of kidney-targeting autoantibodies and molecular mimicry with microbial pathogens. Conversely, kidney failure affects general immunity, causing intestinal barrier dysfunction, systemic inflammation and immunodeficiency that contribute to the morbidity and mortality of patients with kidney disease. In this Review, we summarize the recent findings regarding the interactions between the kidneys and the immune system.
Collapse
|
9
|
Couser WG. Basic and translational concepts of immune-mediated glomerular diseases. J Am Soc Nephrol 2012; 23:381-99. [PMID: 22282593 DOI: 10.1681/asn.2011030304] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genetically modified immune responses to infections and self-antigens initiate most forms of GN by generating pathogen- and danger-associated molecular patterns that stimulate Toll-like receptors and complement. These innate immune responses activate circulating monocytes and resident glomerular cells to release inflammatory mediators and initiate adaptive, antigen-specific immune responses that collectively damage glomerular structures. CD4 T cells are needed for B cell-driven antibody production that leads to immune complex formation in glomeruli, complement activation, and injury induced by both circulating inflammatory and resident glomerular effector cells. Th17 cells can also induce glomerular injury directly. In this review, information derived from studies in vitro, well characterized experimental models, and humans summarize and update likely pathogenic mechanisms involved in human diseases presenting as nephritis (postinfectious GN, IgA nephropathy, antiglomerular basement membrane and antineutrophil cytoplasmic antibody-mediated crescentic GN, lupus nephritis, type I membranoproliferative GN), and nephrotic syndrome (minimal change/FSGS, membranous nephropathy, and C3 glomerulopathies). Advances in understanding the immunopathogenesis of each of these entities offer many opportunities for future therapeutic interventions.
Collapse
Affiliation(s)
- William G Couser
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA.
| |
Collapse
|
10
|
Lindenmeyer M, Noessner E, Nelson PJ, Segerer S. Dendritic cells in experimental renal inflammation--Part I. Nephron Clin Pract 2011; 119:e83-90. [PMID: 22133868 DOI: 10.1159/000332029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dendritic cells (DCs) are bone marrow-derived professional antigen-presenting cells that act as master regulators of acquired and innate immune responses. While descriptions of cells with dendritic morphology in rodent kidneys date back to the early 1970s, a network of DCs in the mouse kidney has only recently been described. DCs acquire distinct phenotypic and functional characteristics depending on the microenvironment and the disease stages. Concomitantly, their communication with cells of the adaptive immunity might have tissue-protective or tissue-deleterious consequences. This review summarizes results from recent studies on the role of DCs in experimental renal inflammation.
Collapse
Affiliation(s)
- Maja Lindenmeyer
- Division of Nephrology, University Hospital Zurich, and Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
11
|
Zhang JD, Liu BC. Angiotensin II, a missing node in new pathogenic glomerulotubular feedback loop. Med Hypotheses 2011; 77:595-7. [PMID: 21782349 DOI: 10.1016/j.mehy.2011.06.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 06/16/2011] [Indexed: 10/18/2022]
Abstract
Recently, a pathogenic glomerulotubular feedback loop was proposed to be a mechanism involving in the transition from acute kidney diseases to chronic status, with highlighting immune cells as a center of this loop. Several important limitations largely reduce its applicable content. Here we amended this proposal by introducing Ang II as a missing node into the paradigm. We believe that better understanding key questions such as interactions between Ang II and immune cells may foster new promising therapeutic options in the prevention of acute-to-chronic transition.
Collapse
Affiliation(s)
- Jian-Dong Zhang
- Institute of Nephrology, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | | |
Collapse
|
12
|
Han Y, Ma FY, Tesch GH, Manthey CL, Nikolic-Paterson DJ. c-fms blockade reverses glomerular macrophage infiltration and halts development of crescentic anti-GBM glomerulonephritis in the rat. J Transl Med 2011; 91:978-91. [PMID: 21519331 DOI: 10.1038/labinvest.2011.61] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Depletion and adoptive transfer studies have demonstrated that macrophages induce glomerular lesions in experimental anti-glomerular basement membrane (anti-GBM) glomerulonephritis. However, there is no current therapeutic strategy that can rapidly and selectively remove these cells from the glomerulus in order to halt disease development. This study examined whether inhibition of the receptor for macrophage colony-stimulating factor (known as c-fms), which is selectively expressed by monocyte/macrophages, can eliminate the macrophage infiltrate in a rat model of crescentic anti-GBM glomerulonephritis. Wistar-Kyoto rats were treated with 10 or 30 mg/kg bid of fms-I (a selective c-fms kinase inhibitor) from the time of anti-GBM serum injection until being killed 1, 5 or 14 days later. fms-I treatment had only a minor effect upon the glomerular macrophage infiltrate on day 1 and did not prevent the subsequent induction of proteinuria. However, fms-I treatment reduced the glomerular macrophage infiltrate by 60% at day 5 and completely reversed the macrophage infiltrate by day 14. In addition, fms-I treatment downregulated the glomerular expression of pro-inflammatory molecules (TNF-α, NOS2, MMP-12, CCL2 and IL-12) on days 1 and 5, suggesting a suppression of the macrophage M1-type response. Despite a significant early loss of glomerular podocytes, ongoing proteinuria and glomerular tuft adhesions to Bowman's capsule, the reversal of the macrophage infiltrate prevented the development of glomerulosclerosis, crescent formation, tubulointerstitial damage and renal dysfunction. In conclusion, this study has identified c-fms kinase inhibition as a selective approach to target infiltrating macrophages in acute glomerular injury, which may have therapeutic potential in rapidly progressive crescentic glomerulonephritis.
Collapse
Affiliation(s)
- Yingjie Han
- Department of Nephrology, Monash Medical Centre, Clayton, VIC, Australia
| | | | | | | | | |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW This review will analyze contemporary information concerning the possible pathogenetic mechanisms involved in IgA nephropathy, emphasizing studies in humans rather than experimental animals. RECENT FINDINGS Deposition of IgA in the glomeruli, the hallmark of IgA nephropathy, may be a quite common phenomenon. Aberrant O-linked galactosylation of IgA subclass (IgA1) appears to play a central role and 'auto-immunity' to a conformational epitope related to glycans at the hinge region of IgA1 is apparently required. Both a circulating immune complex and an in-situ immune complex mechanism have been advanced. Mediator systems, such as complement activation and engagement of innate immune system, also play prominent roles in determining the clinical onset and severity of disease. Genetic influences are evident but the fine details of genetic predisposition and its impact on outcomes still need to be further elucidated. SUMMARY Progress in understanding the details of the pathogenesis of IgA nephropathy will lead to a better means of diagnosis (including noninvasive tests for diagnosis), more accurate individualized prognosis and personalized treatment regimens for this globally distributed and very common primary glomerular disease.
Collapse
|
14
|
Sung SSJ, Bolton WK. Editorial: Are men rats? Dendritic cells in autoimmune glomerulonephritis. J Leukoc Biol 2010; 88:831-5. [DOI: 10.1189/jlb.0610356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
15
|
Boor P, Ostendorf T, Floege J. Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nat Rev Nephrol 2010; 6:643-56. [PMID: 20838416 DOI: 10.1038/nrneph.2010.120] [Citation(s) in RCA: 481] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Renal fibrosis is the common end point of virtually all progressive kidney diseases. Renal fibrosis should not be viewed as a simple and uniform 'scar', but rather as a dynamic system that involves extracellular matrix components and many, if not all, renal and infiltrating cell types. The involved cells exhibit enormous plasticity or phenotypic variability-a fact that we are only beginning to appreciate. Only a detailed understanding of the underlying mechanisms of renal fibrosis can facilitate the development of effective treatments. In this Review, we discuss the most recent advances in renal, or more specifically, tubulointerstitial fibrosis. Novel mechanisms as well as potential treatment targets based on different cell types are described. Problems that continue to plague the field are also discussed, including specific therapeutic targeting of the kidney, the development of improved diagnostic methods to assess renal fibrosis and the shortcomings of available animal models.
Collapse
Affiliation(s)
- Peter Boor
- Department of Nephrology, RWTH University of Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | | | | |
Collapse
|
16
|
Anders HJ, Schlondorff DO. Innate immune receptors and autophagy: implications for autoimmune kidney injury. Kidney Int 2010; 78:29-37. [PMID: 20428100 DOI: 10.1038/ki.2010.111] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Inflammation is the immune system's response to infectious or noninfectious sources of danger. Danger recognition is facilitated by various innate immune receptor families including the Toll-like receptors (TLRs), which detect danger signals in extracellular and intracellular compartments. It is an evolving concept that renal damage triggers intrarenal inflammation by immune recognition of molecules that are being released by dying cells. Such danger-associated molecules act as immunostimulatory agonists to TLRs and other innate immune receptors and induce cytokine and chemokine secretion, leukocyte recruitment, and tissue remodeling. As a new entry to this concept, autophagy allows stressed cells to reduce intracellular microorganisms, protein aggregates, and cellular organelles by moving and subsequently digesting them in autophagolysosomes. Within the autophagolysosome, endogenous molecules and danger-associated molecules may be presented to TLRs or loaded onto the major histocompatibility complex and presented as autoantigens. Here we discuss the current evidence for the danger signaling concept in autoimmune kidney injury and propose that autophagy-related processing of self-proteins provides a source of immunostimulatory molecules and autoantigens. A better understanding of danger signaling should enable us to unravel yet unknown triggers for renal immunopathology and progressive kidney disease.
Collapse
|
17
|
Theilig F. Spread of glomerular to tubulointerstitial disease with a focus on proteinuria. Ann Anat 2010; 192:125-32. [PMID: 20400279 DOI: 10.1016/j.aanat.2010.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 03/24/2010] [Indexed: 11/26/2022]
Abstract
Chronic kidney disease is characterized by the decline in renal excretory, homeostatic and endocrine functions. In most instances, the primary event is glomerular injury. With ongoing progression and glomerular extracapillary proliferation, tubulointerstitial damage occurs with consequent nephron loss and development of fibrotic lesions, finally resulting in terminal renal failure. Renal tubulointerstitial damage is the final common pathway in all forms of renal disease leading to CKD. Recent research has focused on how glomerular injury spreads to the tubulointerstitium. Presently, four possible mechanisms are being discussed: (1) obstruction of the urinary pole; (2) proteinuria-induced overload of the proximal tubule; (3) chronic hypoxia and (4) inflammation induced by a glomerulotubular feedback loop. Fibrosis is hypothesized to account for further deterioration of renal functions. As to the role of fibrosis, conflicting results have been published and new data question the damaging character of fibrosis.
Collapse
Affiliation(s)
- Franziska Theilig
- Charité - Universitätsmedizin Berlin, Institut für Vegetative Anatomie, 10115 Berlin, Germany.
| |
Collapse
|