1
|
Friedman P, Mamonova T. The molecular sociology of NHERF1 PDZ proteins controlling renal hormone-regulated phosphate transport. Biosci Rep 2024; 44:BSR20231380. [PMID: 38465463 PMCID: PMC10987488 DOI: 10.1042/bsr20231380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/12/2024] Open
Abstract
Parathyroid hormone (PTH) and fibroblast growth factor-23 (FGF23) control extracellular phosphate levels by regulating renal NPT2A-mediated phosphate transport by a process requiring the PDZ scaffold protein NHERF1. NHERF1 possesses two PDZ domains, PDZ1 and PDZ2, with identical core-binding GYGF motifs explicitly recognizing distinct binding partners that play different and specific roles in hormone-regulated phosphate transport. The interaction of PDZ1 and the carboxy-terminal PDZ-binding motif of NPT2A (C-TRL) is required for basal phosphate transport. PDZ2 is a regulatory domain that scaffolds multiple biological targets, including kinases and phosphatases involved in FGF23 and PTH signaling. FGF23 and PTH trigger disassembly of the NHERF1-NPT2A complex through reversible hormone-stimulated phosphorylation with ensuing NPT2A sequestration, down-regulation, and cessation of phosphate absorption. In the absence of NHERF1-NPT2A interaction, inhibition of FGF23 or PTH signaling results in disordered phosphate homeostasis and phosphate wasting. Additional studies are crucial to elucidate how NHERF1 spatiotemporally coordinates cellular partners to regulate extracellular phosphate levels.
Collapse
Affiliation(s)
- Peter A. Friedman
- Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, U.S.A
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, U.S.A
| | - Tatyana Mamonova
- Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, U.S.A
| |
Collapse
|
2
|
Sneddon WB, Friedman PA, Mamonova T. Mutations in an unrecognized internal NPT2A PDZ motif disrupt phosphate transport and cause congenital hypophosphatemia. Biochem J 2023; 480:685-699. [PMID: 37132631 PMCID: PMC10442799 DOI: 10.1042/bcj20230020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/04/2023]
Abstract
The Na+-dependent phosphate cotransporter-2A (NPT2A, SLC34A1) is a primary regulator of extracellular phosphate homeostasis. Its most prominent structural element is a carboxy-terminal PDZ ligand that binds Na+/H+ Exchanger Regulatory Factor-1 (NHERF1, SLC9A3R1). NHERF1, a multidomain PDZ protein, establishes NPT2A membrane localization and is required for hormone-inhibitable phosphate transport. NPT2A also possesses an uncharacterized internal PDZ ligand. Two recent clinical reports describe congenital hypophosphatemia in children harboring Arg495His or Arg495Cys variants within the internal PDZ motif. The wild-type internal 494TRL496 PDZ ligand binds NHERF1 PDZ2, which we consider a regulatory domain. Ablating the internal PDZ ligand with a 494AAA496 substitution blocked hormone-inhibitable phosphate transport. Complementary approaches, including CRISPR/Cas9 technology, site-directed mutagenesis, confocal microscopy, and modeling, showed that NPT2A Arg495His or Arg495Cys variants do not support PTH or FGF23 action on phosphate transport. Coimmunoprecipitation experiments indicate that both variants bind NHERF1 similarly to WT NPT2A. However, in contrast with WT NPT2A, NPT2A Arg495His, or Arg495Cys variants remain at the apical membrane and are not internalized in response to PTH. We predict that Cys or His substitution of the charged Arg495 changes the electrostatics, preventing phosphorylation of the upstream Thr494, interfering with phosphate uptake in response to hormone action, and inhibiting NPT2A trafficking. We advance a model wherein the carboxy-terminal PDZ ligand defines apical localization NPT2A, while the internal PDZ ligand is essential for hormone-triggered phosphate transport.
Collapse
Affiliation(s)
- W. Bruce Sneddon
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Peter A. Friedman
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Tatyana Mamonova
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| |
Collapse
|
3
|
Sneddon WB, Friedman PA, Mamonova T. Mutations in an unrecognized internal NPT2A PDZ motif disrupt phosphate transport causing congenital hypophosphatemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531332. [PMID: 36945373 PMCID: PMC10028803 DOI: 10.1101/2023.03.06.531332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The Na + -dependent phosphate cotransporter-2A (NPT2A, SLC34A1) is a primary regulator of extracellular phosphate homeostasis. Its most prominent structural element is a carboxy-terminal PDZ ligand that binds Na + /H + Exchanger Regulatory Factor-1 (NHERF1, SLC9A3R1). NHERF1, a multidomain PDZ protein,establishes NPT2A membrane localization and is required for hormone-sensitive phosphate transport. NPT2A also possesses an uncharacterized internal PDZ ligand. Two recent clinical reports describe congenital hypophosphatemia in children harboring Arg 495 His or Arg 495 Cys variants within the internal PDZ motif. The wild-type internal 494 TRL 496 PDZ ligand binds NHERF1 PDZ2, which we consider a regulatory domain. Ablating the internal PDZ ligand with a 494 AAA 496 substitution blocked hormone-sensitive phosphate transport. Complementary approaches, including CRISPR/Cas9 technology, site-directed mutagenesis, confocal microscopy, and modeling, showed that NPT2A Arg 495 His or Arg 495 Cys variants do not support PTH or FGF23 action on phosphate transport. Coimmunoprecipitation experiments indicate that both variants bind NHERF1 similarly to WT NPT2A. However, in contrast to WT NPT2A, NPT2A Arg 495 His or Arg 495 Cys variants remain at the apical membrane and are not internalized in response to PTH. We predict that Cys or His substitution of the charged Arg 495 changes the electrostatics, preventing phosphorylation of the upstream Thr 494 , interfering with phosphate uptake in response to hormone action, and inhibiting NPT2A trafficking. We advance a model wherein the carboxyterminal PDZ ligand defines apical localization NPT2A, while the internal PDZ ligand is essential for hormone-triggered phosphate transport.
Collapse
|
4
|
Abdalbary M, Sobh M, Nagy E, Elnagar S, Elshabrawy N, Shemies R, Abdelsalam M, Asadipooya K, Sabry A, El-Husseini A. Editorial: Management of osteoporosis in patients with chronic kidney disease. Front Med (Lausanne) 2023; 9:1032219. [PMID: 36687458 PMCID: PMC9846323 DOI: 10.3389/fmed.2022.1032219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Affiliation(s)
- Mohamed Abdalbary
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| | - Mahmoud Sobh
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| | - Eman Nagy
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| | - Sherouk Elnagar
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| | - Nehal Elshabrawy
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| | - Rasha Shemies
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| | - Mostafa Abdelsalam
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| | - Kamyar Asadipooya
- Division of Endocrinology, University of Kentucky, Lexington, KY, United States
| | - Alaa Sabry
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| | - Amr El-Husseini
- Division of Nephrology and Bone and Mineral Metabolism, University of Kentucky, Lexington, KY, United States,*Correspondence: Amr El-Husseini ✉
| |
Collapse
|
5
|
Amdur RL, Paul R, Barrows ED, Kincaid D, Muralidharan J, Nobakht E, Centron-Vinales P, Siddiqi M, Patel SS, Raj DS. The potassium regulator patiromer affects serum and stool electrolytes in patients receiving hemodialysis. Kidney Int 2020; 98:1331-1340. [PMID: 32750456 DOI: 10.1016/j.kint.2020.06.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 01/27/2023]
Abstract
Hyperkalemia is a common and an important cause of death in maintenance hemodialysis patients. Here we investigated the effect of patiromer, a synthetic cation exchanger, to regulate potassium homeostasis. Serum and stool electrolytes were measured in 27 anuric patients with hyperkalemia receiving hemodialysis (mainly 2 mEq/L dialysate) during consecutive two weeks of no-treatment, 12 weeks of treatment with patiromer (16.8g once daily), and six weeks of no treatment. The serum potassium decreased from a mean of 5.7 mEq/L pre-treatment to 5.1 mEq/L during treatment and rebounded to 5.4 mEq/L post-treatment. During the treatment phase, serum calcium significantly increased (from 8.9 to 9.1 mg/dL) and serum magnesium significantly decreased (from 2.6 to 2.4 mg/dL) compared to pre-treatment levels. For each one mEg/L increase in serum magnesium, serum potassium increased by 1.07 mEq/L. Stool potassium significantly increased during treatment phase from pre-treatment levels (4132 to 5923 μg/g) and significantly decreased post-treatment to 4246 μg/g. For each one μg/g increase in stool potassium, serum potassium significantly declined by 0.05 mEq/L. Stool calcium was significantly higher during the treatment phase (13017 μg/g) compared to pre-treatment (7874 μg/g) and post-treatment (7635 μg/g) phases. We estimated that 16.8 g of patiromer will increase fecal potassium by 1880 μg/g and reduce serum potassium by 0.5 mEq/L. Thus, there is a complex interaction between stool and blood potassium, calcium and magnesium during patiromer treatment. Long term consequence of patiromer-induced changes in serum calcium and magnesium remains to be studied.
Collapse
Affiliation(s)
- Richard L Amdur
- Department of Surgery, George Washington University School of Medicine, Washington, DC, USA
| | - Rohan Paul
- Division of Kidney Diseases and Hypertension, George Washington University, Washington, DC, USA
| | | | - Danielle Kincaid
- Division of Kidney Diseases and Hypertension, George Washington University, Washington, DC, USA
| | - Jagadeesan Muralidharan
- Division of Kidney Diseases and Hypertension, George Washington University, Washington, DC, USA
| | - Ehsan Nobakht
- Division of Kidney Diseases and Hypertension, George Washington University, Washington, DC, USA
| | | | - Muhammad Siddiqi
- Division of Kidney Diseases and Hypertension, George Washington University, Washington, DC, USA
| | - Samir S Patel
- Division of Nephrology, Veterans Administration Medical Center, Washington, DC, USA
| | - Dominic S Raj
- Division of Kidney Diseases and Hypertension, George Washington University, Washington, DC, USA.
| |
Collapse
|
6
|
Hu JW, Wang Y, Chu C, Mu JJ. Effect of Salt Intervention on Serum Levels of Fibroblast Growth Factor 23 (FGF23) in Chinese Adults: An Intervention Study. Med Sci Monit 2018; 24:1948-1954. [PMID: 29608553 PMCID: PMC5898259 DOI: 10.12659/msm.906489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Fibroblast growth factor 23 (FGF23), a prominent regulator of phosphate and calcium metabolism, regulates sodium excretion in distal tubules through sodium-chloride cotransporter. This effect regulates blood pressure. Salt intake exerts effects on serum levels of FGF23 in mice. The aim of this study was to explore whether salt intervention affects serum concentrations of FGF23 in Chinese adults. Material/Methods We enrolled 44 participants from Lantian, a rural community of Shaanxi, China. All participants were maintained on a three-day normal diet, which was sequentially followed by a seven-day low-Na+ diet and seven-day high-Na+ diet. Serum FGF23 concentrations were assessed by ELISA. Results Serum FGF23 concentrations elevated during low-salt diet compared with levels at baseline (66.20±44.21 pg/mL versus 86.77±53.74 pg/mL, p<0.05) and remarkably decreased when changed from low to high salt intake (86.77±53.74 pg/mL versus 49.26±42.67 pg/mL, p<0.001). Responses of FGF23 to salt intervention were more prominent in normotensive, older than 60 years, BMI <24 kg/m2 and salt-resistant individuals. Furthermore, a significant inverse correlation was observed between 24-hour urinary sodium and serum concentrations of FGF23 after adjusting age, sex, BMI and hypertension status. Conclusions Dietary salt intervention significantly affects serum FGF23 in Chinese adults.
Collapse
Affiliation(s)
- Jia-Wen Hu
- Department of Cardiology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland).,Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, Shaanxi, China (mainland)
| | - Yang Wang
- Department of Cardiology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland).,Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, Shaanxi, China (mainland)
| | - Chao Chu
- Department of Cardiology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland).,Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, Shaanxi, China (mainland)
| | - Jian-Jun Mu
- Department of Cardiology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland).,Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
7
|
Parathyroidectomy in patients with chronic kidney disease: Impacts of different techniques on the biochemical and clinical evolution of secondary hyperparathyroidism. Surgery 2018; 163:381-387. [DOI: 10.1016/j.surg.2017.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/29/2017] [Accepted: 09/13/2017] [Indexed: 11/19/2022]
|
8
|
Yu T, Yang Y, Liu Y, Zhang Y, Xu H, Li M, Ponnusamy M, Wang K, Wang JX, Li PF. A FGFR1 inhibitor patent review: progress since 2010. Expert Opin Ther Pat 2016; 27:439-454. [PMID: 27976968 DOI: 10.1080/13543776.2017.1272574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION FGFR1 is a well known molecular target for anticancer therapy. Many studies have proved that the regulation of FGFR1 activity is a promising therapeutic approach to treat a series of cancers. Therefore, the development of potent inhibitors has consequently become a key focus in the present drug discovery, and it is encouraging that several highly selective FGFR1 inhibitors have been identified from various sources in recent years. Areas covered: This article reviews patents and patent applications related to selective FGFR1 inhibitors published from 2010 to 2016. This summary highlights about 15 patents from different pharmaceutical companies and academic research groups. We used Baidu and NCBI search engines to find relevant patents as a search term. Expert opinion: In the past few years, considerable progress has been made in the identification and development of selective FGFR1 inhibitors in use. At present, at least 10 inhibitors of FGFR1 are in clinical trials, and several agents have shown encouraging results under experimental conditions. Given the fact that FGFR1 plays a crucial role in the regulation of cancer and other diseases, we hope that it will gain further attraction from pharmaceutical companies and encourage development of more novel, safe and efficient FGFR1 inhibitors in the future.
Collapse
Affiliation(s)
- Tao Yu
- a Institute for Translational Medicine , Qingdao University , Qingdao , People's Republic of China
| | - Yanyan Yang
- a Institute for Translational Medicine , Qingdao University , Qingdao , People's Republic of China
| | - Yan Liu
- b Food and Drug Administration of Linyi City , Hedong District Branch , Linyi , People's Republic of China
| | - Yinfeng Zhang
- a Institute for Translational Medicine , Qingdao University , Qingdao , People's Republic of China
| | - Hong Xu
- c Department of Orthodontics , Affiliated Hospital of Qingdao University , People's Republic of China
| | - Mengpeng Li
- a Institute for Translational Medicine , Qingdao University , Qingdao , People's Republic of China
| | - Murugavel Ponnusamy
- a Institute for Translational Medicine , Qingdao University , Qingdao , People's Republic of China
| | - Kun Wang
- a Institute for Translational Medicine , Qingdao University , Qingdao , People's Republic of China
| | - Jian-Xun Wang
- a Institute for Translational Medicine , Qingdao University , Qingdao , People's Republic of China
| | - Pei-Feng Li
- a Institute for Translational Medicine , Qingdao University , Qingdao , People's Republic of China
| |
Collapse
|
9
|
Pulskens WP, Verkaik M, Sheedfar F, van Loon EP, van de Sluis B, Vervloet MG, Hoenderop JG, Bindels RJ. Deregulated Renal Calcium and Phosphate Transport during Experimental Kidney Failure. PLoS One 2015; 10:e0142510. [PMID: 26566277 PMCID: PMC4643984 DOI: 10.1371/journal.pone.0142510] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 10/22/2015] [Indexed: 12/17/2022] Open
Abstract
Impaired mineral homeostasis and inflammation are hallmarks of chronic kidney disease (CKD), yet the underlying mechanisms of electrolyte regulation during CKD are still unclear. Here, we applied two different murine models, partial nephrectomy and adenine-enriched dietary intervention, to induce kidney failure and to investigate the subsequent impact on systemic and local renal factors involved in Ca(2+) and Pi regulation. Our results demonstrated that both experimental models induce features of CKD, as reflected by uremia, and elevated renal neutrophil gelatinase-associated lipocalin (NGAL) expression. In our model kidney failure was associated with polyuria, hypercalcemia and elevated urinary Ca(2+) excretion. In accordance, CKD augmented systemic PTH and affected the FGF23-αklotho-vitamin-D axis by elevating circulatory FGF23 levels and reducing renal αklotho expression. Interestingly, renal FGF23 expression was also induced by inflammatory stimuli directly. Renal expression of Cyp27b1, but not Cyp24a1, and blood levels of 1,25-dihydroxy vitamin D3 were significantly elevated in both models. Furthermore, kidney failure was characterized by enhanced renal expression of the transient receptor potential cation channel subfamily V member 5 (TRPV5), calbindin-D28k, and sodium-dependent Pi transporter type 2b (NaPi2b), whereas the renal expression of sodium-dependent Pi transporter type 2a (NaPi2a) and type 3 (PIT2) were reduced. Together, our data indicates two different models of experimental kidney failure comparably associate with disturbed FGF23-αklotho-vitamin-D signalling and a deregulated electrolyte homeostasis. Moreover, this study identifies local tubular, possibly inflammation- or PTH- and/or FGF23-associated, adaptive mechanisms, impacting on Ca(2+)/Pi homeostasis, hence enabling new opportunities to target electrolyte disturbances that emerge as a consequence of CKD development.
Collapse
Affiliation(s)
- Wilco P. Pulskens
- Dept. of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
- Dept. of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Melissa Verkaik
- Dept. of Nephrology, VU University Medical Center, Amsterdam, The Netherlands
| | - Fareeba Sheedfar
- Dept. of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ellen P. van Loon
- Dept. of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bart van de Sluis
- Dept. of Pediatrics, Molecular Genetics Section, University Medical Center Groningen, Groningen, The Netherlands
| | - Mark G. Vervloet
- Dept. of Nephrology, VU University Medical Center, Amsterdam, The Netherlands
| | - Joost G. Hoenderop
- Dept. of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - René J. Bindels
- Dept. of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
10
|
Abstract
The discovery of the Klotho (KL) gene, which was originally identified as a putative aging-suppressor gene, has generated tremendous interest and has advanced understanding of the aging process. In mice, the overexpression of the KL gene extends the life span, whereas mutations to the KL gene shorten the life span. The human KL gene encodes the α-Klotho protein, which is a multifunctional protein that regulates the metabolism of phosphate, calcium, and vitamin D. α-Klotho also may function as a hormone, although the α-Klotho receptor(s) has not been found. Point mutations of the KL gene in humans are associated with hypertension and kidney disease, which suggests that α-Klotho may be essential to the maintenance of normal renal function. Three α-Klotho protein types with potentially different functions have been identified: a full-length transmembrane α-Klotho, a truncated soluble α-Klotho, and a secreted α-Klotho. Recent evidence suggests that α-Klotho suppresses the insulin and Wnt signaling pathways, inhibits oxidative stress, and regulates phosphatase and calcium absorption. In this review, we provide an update on recent advances in the understanding of the molecular, genetic, biochemical, and physiological properties of the KL gene. Specifically, this review focuses on the structure of the KL gene and the factors that regulate KL gene transcription, the key sites in the regulation of α-Klotho enzyme activity, the α-Klotho signaling pathways, and the molecular mechanisms that underlie α-Klotho function. This current understanding of the molecular biology of the α-Klotho protein may offer new insights into its function and role in aging.
Collapse
Affiliation(s)
- Yuechi Xu
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | | |
Collapse
|
11
|
Yan J, Jingbo C, Wang D, Xie S, Yuan L, Zhong X, Hao L. A correlation between decreased parathyroid α-Klotho and fibroblast growth factor receptor 1 expression with pathological category and parathyroid gland volume in dialysis patients. Int Urol Nephrol 2015; 47:701-6. [DOI: 10.1007/s11255-015-0917-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 01/16/2015] [Indexed: 10/23/2022]
|
12
|
Feger M, Mia S, Pakladok T, Nicolay JP, Alesutan I, Schneider SW, Voelkl J, Lang F. Down-regulation of renal klotho expression by Shiga toxin 2. Kidney Blood Press Res 2014; 39:441-9. [PMID: 25471359 DOI: 10.1159/000368457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Shiga toxin 2 may trigger classical hemolytic uremic syndrome (HUS) eventually leading to renal failure. Klotho, a transmembrane protein, protease and hormone mainly expressed in kidney is involved in the regulation of renal phosphate excretion and also retains renal protective effects. Renal failure is associated with renal depletion of klotho. The present study explored the influence of Shiga toxin 2 on renal klotho expression. METHODS Mice were injected with either solvent or Shiga toxin 2 and urinary flow rate and phosphate excretion were determined in metabolic cages. Renal transcript levels were measured by quantitative RT-PCR and renal protein abundance by Western blotting. Plasma concentrations of 1,25(OH)2D3 and FGF23 were determined by ELISA and plasma phosphate and urea concentrations by photometry. RESULTS Shiga toxin 2 treatment was followed by increase of plasma urea concentration, urinary flow rate and renal phosphate excretion but not of plasma phosphate concentration. Shiga toxin 2 treatment strongly decreased klotho mRNA expression and klotho protein abundance in renal tissue. Shiga toxin 2 treatment further increased tumor necrosis factor (Tnfα) mRNA levels, as well as protein abundance of phosphorylated p38 MAPK in renal tissue. The treatment significantly increased renal Cyp27b1 and decreased renal Cyp24a1 mRNA levels without significantly altering plasma 1,25(OH)2D3 levels. Shiga toxin 2 treatment was further followed by increase of plasma FGF23 concentrations. CONCLUSION Shiga toxin 2 treatment stimulated Tnfα transcription, down-regulated renal klotho expression and increased FGF23 formation, effects presumably contributing to renal tissue injury.
Collapse
Affiliation(s)
- Martina Feger
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Nowak A, Friedrich B, Artunc F, Serra AL, Breidthardt T, Twerenbold R, Peter M, Mueller C. Prognostic value and link to atrial fibrillation of soluble Klotho and FGF23 in hemodialysis patients. PLoS One 2014; 9:e100688. [PMID: 24991914 PMCID: PMC4084634 DOI: 10.1371/journal.pone.0100688] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 05/30/2014] [Indexed: 11/30/2022] Open
Abstract
Deranged calcium-phosphate metabolism contributes to the burden of morbidity and mortality in dialysis patients. This study aimed to assess the association of the phosphaturic hormone fibroblast growth factor 23 (FGF23) and soluble Klotho with all-cause mortality. We measured soluble Klotho and FGF23 levels at enrolment and two weeks later in 239 prevalent hemodialysis patients. The primary hypothesis was that low Klotho and high FGF23 are associated with increased mortality. The association between Klotho and atrial fibrillation (AF) at baseline was explored as secondary outcome. AF was defined as presence of paroxysmal, persistent or permanent AF. During a median follow-up of 924 days, 59 (25%) patients died from any cause. Lower Klotho levels were not associated with mortality in a multivariable adjusted analysis when examined either on a continuous scale (HR 1.25 per SD increase, 95% CI 0.84–1.86) or in tertiles, with tertile 1 as the reference category (HR for tertile two 0.65, 95% CI 0.26–1.64; HR for tertile three 2.18, 95% CI 0.91–2.23). Higher Klotho levels were associated with the absence of AF in a muItivariable logistic regression analysis (OR 0.66 per SD increase, 95% CI 0.41–1.00). Higher FGF23 levels were associated with mortality risk in a multivariable adjusted analysis when examined either on a continuous scale (HR 1.45 per SD increase, 95% CI 1.05–1.99) or in tertiles, with the tertile 1 as the reference category (HR for tertile two 1.63, 95% CI 0.64–4.14; HR for tertile three 3.91, 95% CI 1.28–12.20). FGF23 but not Klotho levels are associated with mortality in hemodialysis patients. Klotho may be protective against AF.
Collapse
Affiliation(s)
- Albina Nowak
- Division of Internal Medicine, University Hospital Zürich, Zürich, Switzerland
- * E-mail:
| | - Björn Friedrich
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University of Tübingen, Tübingen, Germany
- Dialysis center Leonberg, Leonberg, Germany
| | - Ferruh Artunc
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University of Tübingen, Tübingen, Germany
| | - Andreas L. Serra
- Division of Nephrology, University Hospital Zürich, Zürich, Switzerland
| | | | | | - Myriam Peter
- Division of Cardiology, University Hospital Basel, Basel, Switzerland
| | - Christian Mueller
- Division of Cardiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
14
|
Drüeke TB, Olgaard K. Report on 2012 ISN Nexus Symposium: ‘Bone and the Kidney’. Kidney Int 2013; 83:557-62. [DOI: 10.1038/ki.2012.453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Apel A, Rachel P, Cohen O, Mayan H. Digoxin-associated decrease in parathyroid hormone (PTH) concentrations in patients with atrial fibrillation. Eur J Clin Invest 2013; 43:152-8. [PMID: 23240707 DOI: 10.1111/eci.12026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 11/07/2012] [Indexed: 01/02/2023]
Abstract
BACKGROUND Parathyroid hormone (PTH) secretion is regulated mainly by the calcium sensor receptor. Recently, other components of calcium homoeostasis have been revealed, namely the effect of Klotho on stimulation of PTH secretion by the recruitment of Na-K-ATPase and by its being a cofactor in the inhibitory effect of FGF 23 on PTH secretion. It seems that ouabain, a Na-K-ATPase inhibitor, prevents the increase in PTH secretion in a hypocalcemic environment, as observed in mouse and bovine tissues. We hypothesized that digoxin, which is similar to ouabain in its effect on the sodium pump, might decrease PTH levels in humans. METHODS Twenty patients with atrial fibrillation were studied. Ten patients were treated with digoxin and the other ten patients with verapamil. Baseline chemistry parameters were determined and 0·25 mg digoxin injected. Plasma PTH concentrations, ionized calcium concentrations and digoxin levels were recorded at 30 min, 1 h, 2 h and 4 h postinjection. RESULTS Baseline blood parameters were similar in both groups. In the control group plasma PTH concentrations increased, whereas in the digoxin group, they decreased. Ionized calcium concentrations did not change over time in either groups. There seemed to be blunting of the circadian rhythm of PTH levels in the morning hours. CONCLUSIONS Although the patients were normocalcemic, plasma PTH concentrations decreased with digoxin treatment. The effect of the sodium pump on PTH secretion might be important in human PTH homoeostasis and might be a potential target for the treatment of disturbances in calcium homoeostasis.
Collapse
Affiliation(s)
- Arie Apel
- Department of Medicine E, Chaim Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
16
|
Hu MC, Shiizaki K, Kuro-o M, Moe OW. Fibroblast growth factor 23 and Klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annu Rev Physiol 2013; 75:503-33. [PMID: 23398153 PMCID: PMC3770142 DOI: 10.1146/annurev-physiol-030212-183727] [Citation(s) in RCA: 433] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The metabolically active and perpetually remodeling calcium phosphate-based endoskeleton in terrestrial vertebrates sets the demands on whole-organism calcium and phosphate homeostasis that involves multiple organs in terms of mineral flux and endocrine cross talk. The fibroblast growth factor (FGF)-Klotho endocrine networks epitomize the complexity of systems biology, and specifically, the FGF23-αKlotho axis highlights the concept of the skeleton holding the master switch of homeostasis rather than a passive target organ as hitherto conceived. Other than serving as a coreceptor for FGF23, αKlotho circulates as an endocrine substance with a multitude of effects. This review covers recent data on the physiological regulation and function of the complex FGF23-αKlotho network. Chronic kidney disease is a common pathophysiological state in which FGF23-αKlotho, a multiorgan endocrine network, is deranged in a self-amplifying vortex resulting in organ dysfunction of the utmost severity that contributes to its morbidity and mortality.
Collapse
Affiliation(s)
- Ming Chang Hu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- Department of Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390;
| | - Kazuhiro Shiizaki
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Makoto Kuro-o
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- Department of Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390;
| | - Orson W. Moe
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- Department of Physiology University of Texas Southwestern Medical Center, Dallas, Texas 75390
- Department of Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390;
| |
Collapse
|
17
|
Staude H, Jeske S, Schmitz K, Warncke G, Fischer DC. Cardiovascular Risk and Mineral Bone Disorder in Patients with Chronic Kidney Disease. ACTA ACUST UNITED AC 2013; 37:68-83. [DOI: 10.1159/000343402] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2013] [Indexed: 11/19/2022]
|
18
|
Rowe PSN. The chicken or the egg: PHEX, FGF23 and SIBLINGs unscrambled. Cell Biochem Funct 2012; 30:355-75. [PMID: 22573484 PMCID: PMC3389266 DOI: 10.1002/cbf.2841] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/23/2012] [Accepted: 04/18/2012] [Indexed: 12/17/2022]
Abstract
The eggshell is an ancient innovation that helped the vertebrates' transition from the oceans and gain dominion over the land. Coincident with this conquest, several new eggshell and noncollagenous bone-matrix proteins (NCPs) emerged. The protein ovocleidin-116 is one of these proteins with an ancestry stretching back to the Triassic. Ovocleidin-116 is an avian homolog of Matrix Extracellular Phosphoglycoprotein (MEPE) and belongs to a group of proteins called Small Integrin-Binding Ligand Interacting Glycoproteins (SIBLINGs). The genes for these NCPs are all clustered on chromosome 5q in mice and chromosome 4q in humans. A unifying feature of the SIBLING proteins is an Acidic Serine Aspartate-Rich MEPE (ASARM)-associated motif. The ASARM motif and the released ASARM peptide play roles in mineralization, bone turnover, mechanotransduction, phosphate regulation and energy metabolism. ASARM peptides and motifs are physiological substrates for phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX), a Zn metalloendopeptidase. Defects in PHEX are responsible for X-linked hypophosphatemic rickets. PHEX interacts with another ASARM motif containing SIBLING protein, Dentin Matrix Protein-1 (DMP1). DMP1 mutations cause bone-renal defects that are identical with the defects caused by loss of PHEX function. This results in autosomal recessive hypophosphatemic rickets (ARHR). In both X-linked hypophosphatemic rickets and ARHR, increased fibroblast growth factor 23 (FGF23) expression occurs, and activating mutations in FGF23 cause autosomal dominant hypophosphatemic rickets (ADHR). ASARM peptide administration in vitro and in vivo also induces increased FGF23 expression. This review will discuss the evidence for a new integrative pathway involved in bone formation, bone-renal mineralization, renal phosphate homeostasis and energy metabolism in disease and health.
Collapse
Affiliation(s)
- Peter S N Rowe
- Department of Internal Medicine, The Kidney Institute, Division of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
19
|
Rowe PSN. Regulation of bone-renal mineral and energy metabolism: the PHEX, FGF23, DMP1, MEPE ASARM pathway. Crit Rev Eukaryot Gene Expr 2012; 22:61-86. [PMID: 22339660 PMCID: PMC3362997 DOI: 10.1615/critreveukargeneexpr.v22.i1.50] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
More than 300 million years ago, vertebrates emerged from the vast oceans to conquer gravity and the dry land. With this transition, new adaptations occurred that included ingenious changes in reproduction, waste secretion, and bone physiology. One new innovation, the egg shell, contained an ancestral protein (ovocleidin-116) that likely first appeared with the dinosaurs and was preserved through the theropod lineage in modern birds and reptiles. Ovocleidin-116 is an avian homolog of matrix extracellular phosphoglycoprotein (MEPE) and belongs to a group of proteins called short integrin-binding ligand-interacting glycoproteins (SIBLINGs). These proteins are all localized to a defined region on chromosome 5q in mice and chromosome 4q in humans. A unifying feature of SIBLING proteins is an acidic serine aspartate-rich MEPE-associated motif (ASARM). Recent research has shown that the ASARM motif and the released ASARM peptide have regulatory roles in mineralization (bone and teeth), phosphate regulation, vascularization, soft-tissue calcification, osteoclastogenesis, mechanotransduction, and fat energy metabolism. The MEPE ASARM motif and peptide are physiological substrates for PHEX, a zinc metalloendopeptidase. Defects in PHEX are responsible for X-linked hypophosphatemic rickets (HYP). There is evidence that PHEX interacts with another ASARM motif containing SIBLING protein, dentin matrix protein-1 (DMP1). DMP1 mutations cause bone and renal defects that are identical with the defects caused by a loss of PHEX function. This results in autosomal recessive hypophosphatemic rickets (ARHR). In both HYP and ARHR, increased FGF23 expression plays a major role in the disease and in autosomal dominant hypophosphatemic rickets (ADHR), FGF23 half-life is increased by activating mutations. ASARM peptide administration in vitro and in vivo also induces increased FGF23 expression. FGF23 is a member of the fibroblast growth factor (FGF) family of cytokines, which surfaced 500 million years ago with the boney fish (i.e., teleosts) that do not contain SIBLING proteins. In terrestrial vertebrates, FGF23, like SIBLING proteins, is expressed in the osteocyte. The boney fish, however, are an-osteocytic, so a physiological bone-renal link with FGF23 and the SIBLINGs was cemented when life ventured from the oceans to the land during the Triassic period, approximately 300 million years ago. This link has been revealed by recent research that indicates a competitive displacement of a PHEX-DMP1 interaction by an ASARM peptide that leads to increased FGF23 expression. This review discusses the new discoveries that reveal a novel PHEX, DMP1, MEPE, ASARM peptide, and FGF23 bone-renal pathway. This pathway impacts not only bone formation, bone-renal mineralization, and renal phosphate homeostasis but also energy metabolism. The study of this new pathway is relevant for developing therapies for several diseases: bone-teeth mineral loss disorders, renal osteodystrophy, chronic kidney disease and bone mineralization disorders (CKD-MBD), end-stage renal diseases, ectopic arterial-calcification, cardiovascular disease renal calcification, diabetes, and obesity.
Collapse
Affiliation(s)
- Peter S N Rowe
- Department of Internal Medicine, The Kidney Institute and Division of Nephrology-Hypertension, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
20
|
Abstract
Vertebrates evolved elaborating a structure made up of more than 200 bones and cartilages articulated with one another to form the skeleton, through which locomotion, organ protection, lodging of hematopoiesis, and mineral homeostasis are allowed. Skeletogenesis starts at the fetal stage, along with marrow hematopoiesis, and evolves postnatally through modeling and remodeling processes that permit skeletal mass buildup. Preservation of skeletal mass is then implemented by balanced remodeling, which ensures continuous renovation of the tissue to allow its mechanical, structural, and metabolic properties to remain unaltered until ageing or diseases disrupt this equilibrium. Skeletal homeostasis is fulfilled by specialized bone cells in association with systemic and local regulators. Herein I review landmark discoveries that shed light on the intricate mesh connecting bone cells among themselves and with other systems, thus representing the cellular basis of normal and abnormal bone development and homeostasis.
Collapse
Affiliation(s)
- Anna Teti
- Department of Experimental Medicine, University of L'Aquila, Via Vetoio-Coppito 2, 67100, L'Aquila, Italy.
| |
Collapse
|
21
|
Tang C, Pathare G, Michael D, Fajol A, Eichenmüller M, Lang F. Downregulation of Klotho expression by dehydration. Am J Physiol Renal Physiol 2011; 301:F745-50. [PMID: 21734097 DOI: 10.1152/ajprenal.00037.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Klotho, a transmembrane protein, protease, and hormone mainly expressed in renal tissue counteracts aging. Overexpression of Klotho substantially prolongs the life span. Klotho deficiency leads to excessive formation of 1,25(OH)(2)D(3), growth deficit, accelerated aging, and early death. Aging is frequently paralleled by dehydration, which is considered to accelerate the development of age-related disorders. The present study explored the possibility that dehydration influences Klotho expression. Klotho transcript levels were determined by RT-PCR, and Klotho protein abundance was detected by Western blotting in renal tissue from hydrated and 36-h-dehydrated mice as well as in human embryonic kidney (HEK293) cells. Dehydration was followed by a significant decline of renal Klotho transcript levels and protein abundance, accompanied by an increase in plasma osmolarity as well as plasma ADH, aldosterone, and 1,25(OH)(2)D(3) levels. Antidiuretic hormone (ADH; 50 nM) and aldosterone (1 μM) significantly decreased Klotho transcription and protein expression in HEK293 cells. In conclusion, the present observations disclose a powerful effect of dehydration on Klotho expression, an effect at least partially mediated by enhanced release of ADH and aldosterone.
Collapse
|
22
|
Razzaque MS. Osteo-renal regulation of systemic phosphate metabolism. IUBMB Life 2011; 63:240-7. [PMID: 21438115 DOI: 10.1002/iub.437] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 01/29/2011] [Indexed: 01/29/2023]
Abstract
Impaired kidney function and subsequent skeletal responses play a critical role in disrupting phosphate balance in chronic kidney disease (CKD) patients with mineral and bone disorder (CKD-MBD). In patients with CKD-MBD, the inability of the kidney to maintain normal mineral ion balance affects bone remodeling to induce skeletal fracture and extraskeletal vascular calcification. In physiological conditions, bone-derived fibroblast growth factor 23 (FGF23) acts on the kidney to reduce serum phosphate and 1,25-dihydroxyvitamin D levels. In humans, increased bioactivity of FGF23 leads to increased urinary phosphate excretion, which induces hypophosphatemic diseases (e.g., rickets/osteomalacia). However, reduced FGF23 activity is associated with hyperphosphatemic diseases (e.g., tumoral calcinosis). In patients with CKD, high serum levels of FGF23 fail to reduce serum phosphate levels and lead to numerous complications, including vascular calcification, one of the important determinants of mortality of CKD-MBD patients. Of particular significance, molecular, biochemical and morphological changes in patients with CKD-MBD are mostly due to osteo-renal dysregulation of mineral ion metabolism. Furthermore, hyperphosphatemia can partly contribute to the development of secondary hyperparathyroidism in patients with CKD-MBD. Relatively new pharmacological agents including sevelamer hydrochloride, calcitriol analogs and cinacalcet hydrochloride are used either alone, or in combination, to minimize hyperphosphatemia and hyperparathyroidism associated complications to improve morbidity and mortality of CKD-MBD patients. This article will briefly summarize how osteo-renal miscommunication can induce phosphate toxicity, resulting in extensive tissue injuries.
Collapse
Affiliation(s)
- Mohammed Shawkat Razzaque
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|