1
|
Alhumaidi R, Huang H, Saade MC, Clark AJ, Parikh SM. NAD + metabolism in acute kidney injury and chronic kidney disease transition. Trends Mol Med 2025:S1471-4914(24)00337-X. [PMID: 39757045 DOI: 10.1016/j.molmed.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/21/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025]
Abstract
Disturbances in kidney tubular cell metabolism are increasingly recognized as a feature of acute kidney injury (AKI). In AKI, tubular epithelial cells undergo abnormal metabolic shifts that notably disrupt NAD+ metabolism. Recent advancements have highlighted the critical role of NAD+ metabolism in AKI, revealing that acute disruptions may lead to lasting cellular changes, thereby promoting the transition to chronic kidney disease (CKD). This review explores the molecular mechanisms underlying metabolic dysfunction in AKI, with a focus on NAD+ metabolism, and proposes several cellular processes through which acute aberrations in NAD+ may contribute to long-term changes in the kidney.
Collapse
Affiliation(s)
- Rahil Alhumaidi
- Division of Nephrology, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Huihui Huang
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Marie Christelle Saade
- Division of Nephrology, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amanda J Clark
- Division of Nephrology, Department of Pediatrics, University of Texas Southwestern and Children's Medical Center, Dallas, TX, USA
| | - Samir M Parikh
- Division of Nephrology, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Yu JB, Padanilam BJ, Kim J. Activation of Yes-Associated Protein Is Indispensable for Transformation of Kidney Fibroblasts into Myofibroblasts during Repeated Administration of Cisplatin. Cells 2024; 13:1475. [PMID: 39273045 PMCID: PMC11393901 DOI: 10.3390/cells13171475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Cisplatin is a potent chemotherapy medication that is used to treat various types of cancer. However, it can cause nephrotoxic side effects, which lead to acute kidney injury (AKI) and subsequent chronic kidney disease (CKD). Although a clinically relevant in vitro model of CKD induced by repeated administration of low-dose cisplatin (RAC) has been established, its underlying mechanisms remain poorly understood. Here, we compared single administration of high-dose cisplatin (SAC) to repeated administration of low-dose cisplatin (RAC) in myofibroblast transformation and cellular morphology in a normal rat kidney fibroblast NRK-49F cell line. RAC instead of SAC transformed the fibroblasts into myofibroblasts as determined by α-smooth muscle actin, enlarged cell size as represented by F-actin staining, and increased cell flattening as expressed by the semidiameter ratio of attached cells to floated cells. Those phenomena, as well as cellular senescence, were significantly detected from the time right before the second administration of cisplatin. Interestingly, inhibition of the interaction between Yes-associated protein (YAP) and the transcriptional enhanced associated domain (TEAD) using Verteporfin remarkedly reduced cell size, cellular senescence, and myofibroblast transformation during RAC. These findings collectively suggest that YAP activation is indispensable for cellular hypertrophy, senescence, and myofibroblast transformation during RAC in kidney fibroblasts.
Collapse
Affiliation(s)
- Jia-Bin Yu
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Republic of Korea;
| | - Babu J. Padanilam
- Department of Urology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Jinu Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Republic of Korea;
- Department of Anatomy, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
3
|
Zhai Y, Chavez JA, D'Aquino KE, Meng R, Nawrocki AR, Pocai A, Wang L, Ma LJ. Kynurenine 3-monooxygenase limits de novo NAD + synthesis through dietary tryptophan in renal proximal tubule epithelial cell models. Am J Physiol Cell Physiol 2024; 326:C1423-C1436. [PMID: 38497113 DOI: 10.1152/ajpcell.00445.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/15/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a pivotal coenzyme, essential for cellular reactions, metabolism, and mitochondrial function. Depletion of kidney NAD+ levels and reduced de novo NAD+ synthesis through the tryptophan-kynurenine pathway are linked to acute kidney injury (AKI), whereas augmenting NAD+ shows promise in reducing AKI. We investigated de novo NAD+ biosynthesis using in vitro, ex vivo, and in vivo models to understand its role in AKI. Two-dimensional (2-D) cultures of human primary renal proximal tubule epithelial cells (RPTECs) and HK-2 cells showed limited de novo NAD+ synthesis, likely due to low pathway enzyme gene expression. Using three-dimensional (3-D) spheroid culture model improved the expression of tubular-specific markers and enzymes involved in de novo NAD+ synthesis. However, de novo NAD+ synthesis remained elusive in the 3-D spheroid culture, regardless of injury conditions. Further investigation revealed that 3-D cultured cells could not metabolize tryptophan (Trp) beyond kynurenine (KYN). Intriguingly, supplementation of 3-hydroxyanthranilic acid into RPTEC spheroids was readily incorporated into NAD+. In a human precision-cut kidney slice (PCKS) ex vivo model, de novo NAD+ synthesis was limited due to substantially downregulated kynurenine 3-monooxygenase (KMO), which is responsible for KYN to 3-hydroxykynurenine conversion. KMO overexpression in RPTEC 3-D spheroids successfully reinstated de novo NAD+ synthesis from Trp. In addition, in vivo study demonstrated that de novo NAD+ synthesis is intact in the kidney of the healthy adult mice. Our findings highlight disrupted tryptophan-kynurenine NAD+ synthesis in in vitro cellular models and an ex vivo kidney model, primarily attributed to KMO downregulation.NEW & NOTEWORTHY Nicotinamide adenine dinucleotide (NAD+) is essential in regulating mitochondrial function. Reduced NAD+ synthesis through the de novo pathway is associated with acute kidney injury (AKI). Our study reveals a disruption in de novo NAD+ synthesis in proximal tubular models, but not in vivo, attributed to downregulation of enzyme kynurenine 3-monooxygenase (KMO). These findings highlight a crucial role of KMO in governing de novo NAD+ biosynthesis within the kidney, shedding light on potential AKI interventions.
Collapse
Affiliation(s)
- Yougang Zhai
- CVMR-PH Discovery, Johnson & Johnson Innovative Medicine Research & Development, Spring House, Pennsylvania, United States
| | - Jose A Chavez
- CVMR-PH Discovery, Johnson & Johnson Innovative Medicine Research & Development, Spring House, Pennsylvania, United States
| | - Katharine E D'Aquino
- CVMR-PH Discovery, Johnson & Johnson Innovative Medicine Research & Development, Spring House, Pennsylvania, United States
| | - Rong Meng
- CVMR-PH Discovery, Johnson & Johnson Innovative Medicine Research & Development, Spring House, Pennsylvania, United States
| | - Andrea R Nawrocki
- CVMR-PH Discovery, Johnson & Johnson Innovative Medicine Research & Development, Spring House, Pennsylvania, United States
| | - Alessandro Pocai
- CVMR-PH Discovery, Johnson & Johnson Innovative Medicine Research & Development, Spring House, Pennsylvania, United States
| | - Lifeng Wang
- CVMR-PH Discovery, Johnson & Johnson Innovative Medicine Research & Development, Spring House, Pennsylvania, United States
| | - Li-Jun Ma
- CVMR-PH Discovery, Johnson & Johnson Innovative Medicine Research & Development, Spring House, Pennsylvania, United States
| |
Collapse
|
4
|
Jang HJ, Park E, Jung HJ, Kwon TH. Poly(ADP-ribose) polymerase-1 affects vasopressin-mediated AQP2 expression in collecting duct cells of the kidney. Am J Physiol Renal Physiol 2024; 326:F69-F85. [PMID: 37855039 PMCID: PMC11194055 DOI: 10.1152/ajprenal.00144.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/22/2023] [Accepted: 10/16/2023] [Indexed: 10/20/2023] Open
Abstract
Poly(ADP-ribosyl)ation (PARylation), as a posttranslational modification mediated by poly(ADP-ribose) polymerases (PARPs) catalyzing the transfer of ADP-ribose from NAD+ molecules to acceptor proteins, involves a number of cellular processes. As mice lacking the PARP-1 gene (Parp1) produce more urine, we investigated the role of PARP-1, the most prevalent member of the PARP family, in the vasopressin-responsive expression of aquaporin-2 (AQP2). In biotin-conjugated nicotinamide adenine dinucleotide (biotin-NAD+) pulldown and immunoprecipitation assays of poly(ADP)-ribose in mpkCCDc14 cells, immunoblots demonstrated that 1-deamino-8-D-arginine vasopressin (dDAVP) induced the PARylation of total proteins, associated with an increase in the cleavage of PARP-1 and cleaved caspase-3 expression. By inhibiting PARP-1 with siRNA, the abundance of dDAVP-induced AQP2 mRNA and protein was significantly diminished. In contrast, despite a substantial decrease in PARylation, the PARP-1 inhibitor (PJ34) had no effect on the dDAVP-induced regulation of AQP2 expression. The findings suggest that PARP-1 protein expression itself, and not PARP-1-mediated PARylation, is necessary for dDAVP-regulated AQP2 expression. Bioinformatic analysis revealed that 408 proteins interact with PARP-1 in the collecting duct (CD) cells of the kidney. Among them, the signaling pathway of the vasopressin V2 receptor was identified for 49 proteins. In particular, β-catenin, which is phosphorylated at Ser552 by dDAVP, was identified as the PARP-1-interacting protein. A significant decrease of β-catenin phosphorylation (Ser552) in response to dDAVP was associated with siRNA-mediated PARP-1 knockdown. Taken together, PARP-1 is likely to play a role in vasopressin-induced AQP2 expression by interacting with β-catenin in renal CD cells.NEW & NOTEWORTHY The poly(ADP-ribose) polymerase (PARP) family catalyzes poly(ADP-ribosylation) (PARylation), which is one of the posttranslational modifications of largely undetermined physiological significance. This study investigated the role of PARP-1, the most prevalent member of the PARP family, in the vasopressin-responsive expression of aquaporin-2 (AQP2). The results demonstrated that PARP-1 protein expression itself, and not PARP-1-mediated PARylation, is necessary for dDAVP-regulated AQP2 expression. β-Catenin, which is phosphorylated at Ser552 by dDAVP, was identified as the PARP-1-interacting protein.
Collapse
Affiliation(s)
- Hyo-Ju Jang
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
- BK21 FOUR KNU Convergence Educational Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Euijung Park
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
- Epithelial Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Hyun Jun Jung
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
- BK21 FOUR KNU Convergence Educational Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Korea
| |
Collapse
|
5
|
Zhang D, Luo G, Jin K, Bao X, Huang L, Ke J. The underlying mechanisms of cisplatin-induced nephrotoxicity and its therapeutic intervention using natural compounds. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2925-2941. [PMID: 37289283 DOI: 10.1007/s00210-023-02559-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 05/28/2023] [Indexed: 06/09/2023]
Abstract
Cisplatin is an effective chemotherapeutic drug widely used for the treatment of various solid tumors; however, its clinical use and efficacy are limited by its inherent nephrotoxicity. The pathogenesis of cisplatin-induced nephrotoxicity is complex and has not been fully elucidated. Cellular uptake and transport, DNA damage, apoptosis, oxidative stress, inflammatory response, and autophagy are involved in the development of cisplatin-induced nephrotoxicity. Currently, despite some deficiencies, hydration regimens remain the major protective measures against cisplatin-induced nephrotoxicity. Therefore, effective drugs must be explored and developed to prevent and treat cisplatin-induced kidney injury. In recent years, many natural compounds with high efficiency and low toxicity have been identified for the treatment of cisplatin-induced nephrotoxicity, including quercetin, saikosaponin D, berberine, resveratrol, and curcumin. These natural agents have multiple targets, multiple effects, and low drug resistance; therefore, they can be safely used as a supplementary regimen or combination therapy for cisplatin-induced nephrotoxicity. This review aimed to comprehensively describe the molecular mechanisms underlying cisplatin-induced nephrotoxicity and summarize natural kidney-protecting compounds to provide new ideas for the development of better therapeutic agents.
Collapse
Affiliation(s)
- Doudou Zhang
- Jinhua Municipal Central Hospital, Jinhua, 321000, China
| | - Guangwen Luo
- Jinhua Municipal Central Hospital, Jinhua, 321000, China.
| | - Kaixiang Jin
- Jinhua Municipal Central Hospital, Jinhua, 321000, China
| | - Xiaodong Bao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lili Huang
- Ningbo Medical Center Lihuili Hospital, Ningbo, 315040, China
| | - Jianghuan Ke
- Jinhua Municipal Central Hospital, Jinhua, 321000, China
| |
Collapse
|
6
|
Zhang D, Zhang S, He Z, Chen Y. Cytosine-phosphate-guanine oligodeoxynucleotides alleviate radiation-induced kidney injury in cervical cancer by inhibiting DNA damage and oxidative stress through blockade of PARP1/XRCC1 axis. J Transl Med 2023; 21:679. [PMID: 37773127 PMCID: PMC10541701 DOI: 10.1186/s12967-023-04548-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Radiotherapy can cause kidney injury in patients with cervical cancer. This study aims to investigate the possible molecular mechanisms by which CpG-ODNs (Cytosine phosphate guanine-oligodeoxynucleotides) regulate the PARP1 (poly (ADP-ribose) polymerase 1)/XRCC1 (X-ray repair cross-complementing 1) signaling axis and its impact on radiation kidney injury (RKI) in cervical cancer radiotherapy. METHODS The GSE90627 dataset related to cervical cancer RKI was obtained from the Gene Expression Omnibus (GEO) database. Bioinformatics databases and R software packages were used to analyze the target genes regulated by CpG-ODNs. A mouse model of RKI was established by subjecting C57BL/6JNifdc mice to X-ray irradiation. Serum blood urea nitrogen (BUN) and creatinine levels were measured using an automated biochemical analyzer. Renal tissue morphology was observed through HE staining, while TUNEL staining was performed to detect apoptosis in renal tubular cells. ELISA was conducted to measure levels of oxidative stress-related factors in mouse serum and cell supernatant. An in vitro cell model of RKI was established using X-ray irradiation on HK-2 cells for mechanism validation. RT-qPCR was performed to determine the relative expression of PARP1 mRNA. Cell proliferation activity was assessed using the CCK-8 assay, and Caspase 3 activity was measured in HK-2 cells. Immunofluorescence was used to determine γH2AX expression. RESULTS Bioinformatics analysis revealed that the downstream targets regulated by CpG-ODNs in cervical cancer RKI were primarily PARP1 and XRCC1. CpG-ODNs may alleviate RKI by inhibiting DNA damage and oxidative stress levels. This resulted in significantly decreased levels of BUN and creatinine in RKI mice, as well as reduced renal tubular and glomerular damage, lower apoptosis rate, decreased DNA damage index (8-OHdG), and increased levels of antioxidant factors associated with oxidative stress (SOD, CAT, GSH, GPx). Among the CpG-ODNs, CpG-ODN2006 had a more pronounced effect. CpG-ODNs mediated the inhibition of PARP1, thereby suppressing DNA damage and oxidative stress response in vitro in HK-2 cells. Additionally, PARP1 promoted the formation of the PARP1 and XRCC1 complex by recruiting XRCC1, which in turn facilitated DNA damage and oxidative stress response in renal tubular cells. Overexpression of either PARP1 or XRCC1 reversed the inhibitory effects of CpG-ODN2006 on DNA damage and oxidative stress in the HK-2 cell model and RKI mouse model. CONCLUSION CpG-ODNs may mitigate cervical cancer RKI by blocking the activation of the PARP1/XRCC1 signaling axis, inhibiting DNA damage and oxidative stress response in renal tubule epithelial cells.
Collapse
Affiliation(s)
- Deyu Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, 110004, China
| | - Shitai Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, 110004, China
| | - Zheng He
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, 110004, China
| | - Ying Chen
- Department of Nephrology, The First Hospital of China Medical University, No. 155 Nanjing Bei Street, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
7
|
Alassaf N, Attia H. Autophagy and necroptosis in cisplatin-induced acute kidney injury: Recent advances regarding their role and therapeutic potential. Front Pharmacol 2023; 14:1103062. [PMID: 36794281 PMCID: PMC9922871 DOI: 10.3389/fphar.2023.1103062] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Cisplatin (CP) is a broad-spectrum antineoplastic agent, used to treat many different types of malignancies due to its high efficacy and low cost. However, its use is largely limited by acute kidney injury (AKI), which, if left untreated, may progress to cause irreversible chronic renal dysfunction. Despite substantial research, the exact mechanisms of CP-induced AKI are still so far unclear and effective therapies are lacking and desperately needed. In recent years, necroptosis, a novel subtype of regulated necrosis, and autophagy, a form of homeostatic housekeeping mechanism have witnessed a burgeoning interest owing to their potential to regulate and alleviate CP-induced AKI. In this review, we elucidate in detail the molecular mechanisms and potential roles of both autophagy and necroptosis in CP-induced AKI. We also explore the potential of targeting these pathways to overcome CP-induced AKI according to recent advances.
Collapse
Affiliation(s)
- Noha Alassaf
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia,*Correspondence: Noha Alassaf,
| | - Hala Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia,Department of Biochemistry, College of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
8
|
Erdem Guzel E, Kaya Tektemur N, Tektemur A, Etem Önalan E. Carbamazepine-induced renal toxicity may be associated with oxidative stress and apoptosis in male rat. Drug Chem Toxicol 2023; 46:136-143. [PMID: 34879783 DOI: 10.1080/01480545.2021.2014859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Carbamazepine (CBZ) is the antiepileptic drug used in epilepsy and some psychiatric disorders. Besides its widely used, many adverse effects have been reported including hematotoxicity, hepatotoxicity, endocrine disorders, and testicular damages due to oxidative stress. However, the role of CBZ on renal toxicity is not fully known. In this study, we attempted to explain the connected mechanisms by focusing on the metabolism of CBZ-induced renal toxicity in rats. Twenty male Wistar-Albino rats were randomized into 2 groups (n = 10); control (1 mL/day distilled water, orally) and CBZ (25 mg/kg/day CBZ, orally) groups. After 60 days, TAS (total oxidant status) and TOS (total oxidant status) levels, histopathological features, some genes involved in apoptosis, 8-hydroxy-2-deoxyguanosine (8-OHdG) activity, and apoptotic cells were assessed of kidney tissue. The oxidative stress index (OSI) was measured from TAS and TOS levels. TOS levels and OSI significantly increased, while TAS levels decreased in the CBZ group relative to the control group. Histopathological observations, Caspase-3 (Casp3), Poly [ADP-ribose] polymerase-1 (PARP-1), 8-OHdG immunoreactivities, and apoptotic cells markedly raised in the CBZ group compared with the control group. Also, mRNA expression of Cytochrome c (Cytc) and CASP3 significantly increased in the CBZ group compared to the control group. In conclusion, long-term use of CBZ may promote renal damage in rats by inducing oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Elif Erdem Guzel
- Department of Midwifery, Faculty of Health Sciences, Mardin Artuklu University, Mardin, Turkey
| | - Nalan Kaya Tektemur
- Department of Histology and Embryology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Ahmet Tektemur
- Department of Medical Biology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Ebru Etem Önalan
- Department of Medical Biology, Faculty of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
9
|
Iskander A, Yan LJ. Cisplatin-Induced Kidney Toxicity: Potential Roles of Major NAD +-Dependent Enzymes and Plant-Derived Natural Products. Biomolecules 2022; 12:1078. [PMID: 36008971 PMCID: PMC9405866 DOI: 10.3390/biom12081078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Cisplatin is an FDA approved anti-cancer drug that is widely used for the treatment of a variety of solid tumors. However, the severe adverse effects of cisplatin, particularly kidney toxicity, restrict its clinical and medication applications. The major mechanisms of cisplatin-induced renal toxicity involve oxidative stress, inflammation, and renal fibrosis, which are covered in this short review. In particular, we review the underlying mechanisms of cisplatin kidney injury in the context of NAD+-dependent redox enzymes including mitochondrial complex I, NAD kinase, CD38, sirtuins, poly-ADP ribosylase polymerase, and nicotinamide nucleotide transhydrogenase (NNT) and their potential contributing roles in the amelioration of cisplatin-induced kidney injury conferred by natural products derived from plants. We also cover general procedures used to create animal models of cisplatin-induced kidney injury involving mice and rats. We highlight the fact that more studies will be needed to dissect the role of each NAD+-dependent redox enzyme and its involvement in modulating cisplatin-induced kidney injury, in conjunction with intensive research in NAD+ redox biology and the protective effects of natural products against cisplatin-induced kidney injury.
Collapse
Affiliation(s)
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
10
|
Molecular Mechanisms of Parthanatos and Its Role in Diverse Diseases. Int J Mol Sci 2022; 23:ijms23137292. [PMID: 35806303 PMCID: PMC9266317 DOI: 10.3390/ijms23137292] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
Differential evolution of apoptosis, programmed necrosis, and autophagy, parthanatos is a form of cell death mediated by poly(ADP-ribose) polymerase 1 (PARP1), which is caused by DNA damage. PARP1 hyper-activation stimulates apoptosis-inducing factor (AIF) nucleus translocation, and accelerates nicotinamide adenine dinucleotide (NAD+) and adenosine triphosphate (ATP) depletion, leading to DNA fragmentation. The mechanisms of parthanatos mainly include DNA damage, PARP1 hyper-activation, PAR accumulation, NAD+ and ATP depletion, and AIF nucleus translocation. Now, it is reported that parthanatos widely exists in different diseases (tumors, retinal diseases, neurological diseases, diabetes, renal diseases, cardiovascular diseases, ischemia-reperfusion injury...). Excessive or defective parthanatos contributes to pathological cell damage; therefore, parthanatos is critical in the therapy and prevention of many diseases. In this work, the hallmarks and molecular mechanisms of parthanatos and its related disorders are summarized. The questions raised by the recent findings are also presented. Further understanding of parthanatos will provide a new treatment option for associated conditions.
Collapse
|
11
|
Yu JT, Hu XW, Yang Q, Shan RR, Zhang Y, Dong ZH, Li HD, Wang JN, Li C, Xie SS, Dong YH, Ni WJ, Jiang L, Liu XQ, Wei B, Wen JG, Liu MM, Chen Q, Yang YR, Zhang GY, Zang HM, Jin J, Wu YG, Zhong X, Li J, Wang W, Meng XM. Insulin-like growth factor binding protein 7 promotes acute kidney injury by alleviating poly ADP ribose polymerase 1 degradation. Kidney Int 2022; 102:828-844. [PMID: 35752325 DOI: 10.1016/j.kint.2022.05.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 12/30/2022]
Abstract
The novel biomarker, insulin-like growth factor binding protein 7 (IGFBP7), is used clinically to predict different types of acute kidney injury (AKI) and has drawn significant attention as a urinary biomarker. However, as a secreted protein in the circulation of patients with AKI, it is unclear whether IGFBP7 acts as a key regulator in AKI progression, and if mechanisms underlying its upregulation still need to be determined. Here we found that IGFBP7 is highly expressed in the blood and urine of patients and mice with AKI possibly via a c-Jun-dependent mechanism, and is positively correlated with kidney dysfunction. Global knockout of IGFBP7 ameliorated kidney dysfunction, inflammatory responses, and programmed cell death in murine models of cisplatin-, kidney ischemia/reperfusion-, and lipopolysaccharide-induced AKI. IGFBP7 mainly originated from kidney tubular epithelial cells. Conditional knockout of IGFBP7 from the kidney protected against AKI. By contrast, rescue of IGFBP7 expression in IGFBP7-knockout mice restored kidney damage and inflammation. IGFBP7 function was determined in vitro using recombinant IGFBP7 protein, IGFBP7 knockdown, or overexpression. Additionally, IGFBP7 was found to bind to poly [ADP-ribose] polymerase 1 (PARP1) and inhibit its degradation by antagonizing the E3 ubiquitin ligase ring finger protein 4 (RNF4). Thus, IGFBP7 in circulation acts as a biomarker and key mediator of AKI by inhibiting RNF4/PARP1-mediated tubular injury and inflammation. Hence, over-activation of the IGFBP7/PARP1 axis represents a promising target for AKI treatment.
Collapse
Affiliation(s)
- Ju-Tao Yu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiao-Wei Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Department of clinical pharmacy, Anhui provincial children's hospital, Hefei 230051, China
| | - Qin Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Department of Clinical Pharmacology, Second Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui, China
| | - Run-Run Shan
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Yao Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ze-Hui Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Hai-di Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Chao Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Shuai-Shuai Xie
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yu-Hang Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wei-Jian Ni
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ling Jiang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Xue-Qi Liu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Biao Wei
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qi Chen
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Ya-Ru Yang
- Department of Clinical Pharmacology, Second Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui, China
| | - Gui-Yang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Hong-Mei Zang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Juan Jin
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Yong-Gui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Xiang Zhong
- Department of Nephrology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, 610072 Chengdu, Sichuan, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wei Wang
- Department of Urology, Institute of Urology, The First Affiliated Hospital of Anhui Medical University; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei City 230032 China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
12
|
Xu S, Jia P, Fang Y, Jin J, Sun Z, Zhou W, Li J, Zhang Y, Wang X, Ren T, Zou Z, Ding X. Nuclear farnesoid X receptor attenuates acute kidney injury through fatty acid oxidation. Kidney Int 2022; 101:987-1002. [DOI: 10.1016/j.kint.2022.01.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 12/14/2022]
|
13
|
Wu W, Fu Y, Liu Z, Shu S, Wang Y, Tang C, Cai J, Dong Z. NAM protects against cisplatin-induced acute kidney injury by suppressing the PARP1/p53 pathway. Toxicol Appl Pharmacol 2021; 418:115492. [PMID: 33722665 DOI: 10.1016/j.taap.2021.115492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 11/20/2022]
Abstract
Cisplatin is a commonly used anti-cancer drug, but it induces nephrotoxicity. As a water-soluble vitamin B family member, nicotinamide (NAM) was recently demonstrated to have beneficial effects for renal injury, but its underlying mechanism remains largely unclear. Here, we suggest that NAM may exert protective effects against cisplatin-induced acute kidney injury (AKI) mainly via suppressing the poly ADP-ribose polymerase 1 (PARP1)/p53 pathway. In our experiment, NAM protected against cisplatin-induced apoptosis both in cultured renal proximal tubular cells and AKI in mice. Mechanistically, NAM suppressed the expression and activation of p53, a known mediator of cisplatin-induced AKI. Upstream of p53, NAM attenuated the induction of γ-H2AX, a hallmark of DNA damage response. Interestingly, PARP1 was activated in cisplatin AKI and this activation was inhibited by NAM. Pharmacological inhibition of PARP1 with PJ34 significantly ameliorated p53 activation and cisplatin-induced cell death in RPTCs and AKI in mice. Thus, NAM may protect against cisplatin-induced AKI by suppressing the PARP1/p53 pathway.
Collapse
Affiliation(s)
- Wenwen Wu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University; Changsha 410011, China
| | - Ying Fu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University; Changsha 410011, China
| | - Zhiwen Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University; Changsha 410011, China
| | - Shaoqun Shu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University; Changsha 410011, China
| | - Ying Wang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University; Changsha 410011, China
| | - Chengyuan Tang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University; Changsha 410011, China
| | - Juan Cai
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University; Changsha 410011, China.
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University; Changsha 410011, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA..
| |
Collapse
|
14
|
Kim MJ, Moon D, Jung S, Lee J, Kim J. Cisplatin nephrotoxicity is induced via poly(ADP-ribose) polymerase activation in adult zebrafish and mice. Am J Physiol Regul Integr Comp Physiol 2020; 318:R843-R854. [PMID: 32186196 DOI: 10.1152/ajpregu.00130.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cisplatin is a well-known chemotherapy medication used to treat numerous cancers. However, treatment with cisplatin in cancer therapy has major side effects, such as nephrotoxic acute kidney injury. Adult vertebrate kidneys are commonly used as models of cisplatin-induced nephrotoxic acute kidney injury. Embryonic zebrafish kidney is more simplified and is composed simply of two nephrons and thus is an excellent model for the investigation of cisplatin nephrotoxicity. Here, we developed a novel model to induce cisplatin nephrotoxicity in adult zebrafish and demonstrated that intraperitoneal injection of cisplatin caused a decline in kidney proximal tubular function based on fluorescein-labeled dextran uptake and alkaline phosphatase staining. We also showed that cisplatin induced histological injury of the kidney tubules, quantified by tubular injury scores on the periodic acid-Schiff-stained kidney sections. As shown in a mouse model of cisplatin-induced nephrotoxicity, the activation of poly(ADP-ribose) polymerase (PARP), an enzyme implicated in cisplatin-induced cell death, was markedly increased after cisplatin injection in adult zebrafish. Furthermore, pharmacological inhibition of PARP using a specific PARP inhibitor PJ 34 hydrochloride (PJ34) or 3-aminobenzamide ameliorated kidney proximal tubular functional and histological damages in cisplatin-injected adult zebrafish kidneys. Administration of a combination of PARP inhibitors PJ34 and 3-aminobenzamide additively protected renal function and histology in zebrafish and mouse models of cisplatin nephrotoxicity. In conclusion, these data suggest that adult zebrafish are not only suitable for drug screening and genetic manipulation but also useful as a simplified but powerful model to study the pathophysiology of cisplatin nephrotoxicity and establish new therapies for treating human kidney diseases.
Collapse
Affiliation(s)
- Myoung-Jin Kim
- Department of Marine Life Sciences and Fish Vaccine Research Center, Jeju National University, Jeju, Republic of Korea.,School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Daeun Moon
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences and Fish Vaccine Research Center, Jeju National University, Jeju, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences and Fish Vaccine Research Center, Jeju National University, Jeju, Republic of Korea
| | - Jinu Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, Republic of Korea.,Department of Anatomy, Jeju National University School of Medicine, Jeju Self-Governing Province, Republic of Korea
| |
Collapse
|
15
|
Jang HS, Noh MR, Jung EM, Kim WY, Southekal S, Guda C, Foster KW, Oupicky D, Ferrer FA, Padanilam BJ. Proximal tubule cyclophilin D regulates fatty acid oxidation in cisplatin-induced acute kidney injury. Kidney Int 2020; 97:327-339. [PMID: 31733829 PMCID: PMC6983334 DOI: 10.1016/j.kint.2019.08.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 07/25/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022]
Abstract
Regardless of the etiology, acute kidney injury involves aspects of mitochondrial dysfunction and ATP depletion. Fatty acid oxidation is the preferred energy source of the kidney and is inhibited during acute kidney injury. A pivotal role for the mitochondrial matrix protein, cyclophilin D in regulating overall cell metabolism is being unraveled. We hypothesize that mitochondrial interaction of proximal tubule cyclophilin D and the transcription factor PPARα modulate fatty acid beta-oxidation in cisplatin-induced acute kidney injury. Cisplatin injury resulted in histological and functional damage in the kidney with downregulation of fatty acid oxidation genes and increase of intrarenal lipid accumulation. However, proximal tubule-specific deletion of cyclophilin D protected the kidneys from the aforementioned effects. Mitochondrial translocation of PPARα, its binding to cyclophilin D, and sequestration led to inhibition of its nuclear translocation and transcription of PPARα-regulated fatty acid oxidation genes during cisplatin-induced acute kidney injury. Genetic or pharmacological inhibition of cyclophilin D preserved nuclear expression and transcriptional activity of PPARα and prevented the impairment of fatty acid oxidation and intracellular lipid accumulation. Docking analysis identified potential binding sites between PPARα and cyclophilin D. Thus, our results indicate that proximal tubule cyclophilin D elicits impaired mitochondrial fatty acid oxidation via mitochondrial interaction between cyclophilin D and PPARα. Hence, targeting their interaction may be a potential therapeutic strategy to prevent energy depletion, lipotoxicity and cell death in cisplatin-induced acute kidney injury.
Collapse
Affiliation(s)
- Hee-Seong Jang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| | - Mi Ra Noh
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Eui-Man Jung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Siddesh Southekal
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Kirk W Foster
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - David Oupicky
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Fernando A Ferrer
- Department of Surgery, Children's Hospital and Medical Center, Omaha, Nebraska, USA; Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Babu J Padanilam
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA; Department of Internal Medicine, Section of Nephrology, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| |
Collapse
|
16
|
Kaushal GP, Chandrashekar K, Juncos LA, Shah SV. Autophagy Function and Regulation in Kidney Disease. Biomolecules 2020; 10:E100. [PMID: 31936109 PMCID: PMC7022273 DOI: 10.3390/biom10010100] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a dynamic process by which intracellular damaged macromolecules and organelles are degraded and recycled for the synthesis of new cellular components. Basal autophagy in the kidney acts as a quality control system and is vital for cellular metabolic and organelle homeostasis. Under pathological conditions, autophagy facilitates cellular adaptation; however, activation of autophagy in response to renal injury may be insufficient to provide protection, especially under dysregulated conditions. Kidney-specific deletion of Atg genes in mice has consistently demonstrated worsened acute kidney injury (AKI) outcomes supporting the notion of a pro-survival role of autophagy. Recent studies have also begun to unfold the role of autophagy in progressive renal disease and subsequent fibrosis. Autophagy also influences tubular cell death in renal injury. In this review, we reported the current understanding of autophagy regulation and its role in the pathogenesis of renal injury. In particular, the classic mammalian target of rapamycin (mTOR)-dependent signaling pathway and other mTOR-independent alternative signaling pathways of autophagy regulation were described. Finally, we summarized the impact of autophagy activation on different forms of cell death, including apoptosis and regulated necrosis, associated with the pathophysiology of renal injury. Understanding the regulatory mechanisms of autophagy would identify important targets for therapeutic approaches.
Collapse
Affiliation(s)
- Gur P. Kaushal
- Renal Section, Central Arkansas Veterans Healthcare System Little Rock, Arkansas and Division of Nephrology, 4300 W 7th St, Little Rock, AR 72205, USA; (L.A.J.); (S.V.S.)
- Department of Internal Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205, USA;
| | - Kiran Chandrashekar
- Department of Internal Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205, USA;
| | - Luis A. Juncos
- Renal Section, Central Arkansas Veterans Healthcare System Little Rock, Arkansas and Division of Nephrology, 4300 W 7th St, Little Rock, AR 72205, USA; (L.A.J.); (S.V.S.)
- Department of Internal Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205, USA;
| | - Sudhir V. Shah
- Renal Section, Central Arkansas Veterans Healthcare System Little Rock, Arkansas and Division of Nephrology, 4300 W 7th St, Little Rock, AR 72205, USA; (L.A.J.); (S.V.S.)
- Department of Internal Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205, USA;
| |
Collapse
|
17
|
Zakaria MM, El-Tantawy FMM, Khater SM, Derbala SA, Farag VMEM, Abdel-Aziz AAF. Protective and curative role of Spirulina platensis extracts on cisplatin induce acute kidney injury in rats. ACTA ACUST UNITED AC 2019. [DOI: 10.1080/2314808x.2019.1653570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | | | | | - Safaa A. Derbala
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | | | | |
Collapse
|
18
|
Moon D, Kim J. Cyclosporin A aggravates hydrogen peroxide-induced cell death in kidney proximal tubule epithelial cells. Anat Cell Biol 2019; 52:312-323. [PMID: 31598361 PMCID: PMC6773893 DOI: 10.5115/acb.18.192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 12/22/2022] Open
Abstract
Cyclosporin A (CsA) does not only exert a toxic effect on kidney parenchymal cells, but also protects them against necrotic cell death by inhibiting opening of mitochondrial permeability transition pore. However, whether CsA plays a role in hydrogen peroxide-induced kidney proximal tubular cell death is currently unclear. In the present study, treatment with CsA further increased apoptosis and necrosis in HK-2 human kidney proximal tubule epithelial cells during exposure to hydrogen peroxide. In addition, hydrogen peroxide-induced p53 activation and BH3 interacting-domain death agonist (BID) expression were higher in CsA-treated cells than those in non-treated cells, whereas hydrogen peroxide-induced activation of mitogen-activated protein kinases including p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase and activation of protein kinase B were not significantly altered by treatment with CsA. In oxidant-antioxidant system, reactive oxygen species (ROS) production induced by hydrogen peroxide was further enhanced by treatment with CsA. However, expression levels of antioxidant enzymes including manganese superoxide dismutase, copper/zinc superoxide dismutase, and catalase were not altered by treatment with hydrogen peroxide or CsA. Treatment with CsA further enhanced mitochondrial membrane potential induced by exposure to hydrogen peroxide, although it did not alter endoplasmic reticulum stress based on expression of glucose-regulated protein 78 and 94. Taken together, these data suggest that CsA can aggravate hydrogen peroxide-induced cell death through p53 activation, BID expression, and ROS production.
Collapse
Affiliation(s)
- Daeun Moon
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, Korea
| | - Jinu Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, Korea.,Department of Anatomy, Jeju National University School of Medicine, Jeju, Korea
| |
Collapse
|
19
|
Volarevic V, Djokovic B, Jankovic MG, Harrell CR, Fellabaum C, Djonov V, Arsenijevic N. Molecular mechanisms of cisplatin-induced nephrotoxicity: a balance on the knife edge between renoprotection and tumor toxicity. J Biomed Sci 2019; 26:25. [PMID: 30866950 PMCID: PMC6417243 DOI: 10.1186/s12929-019-0518-9] [Citation(s) in RCA: 307] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/07/2019] [Indexed: 12/15/2022] Open
Abstract
Background Cisplatin (cis-diamminedichloroplatinum II, CDDP) is one of the most effective chemotherapeutic agents. However, its clinical use is limited due to the severe side effects, including nephrotoxicity and acute kidney injury (AKI) which develop due to renal accumulation and biotransformation of CDDP. The alleviation or prevention of CDDP-caused nephrotoxicity is currently accomplished by hydration, magnesium supplementation or mannitol-induced forced diuresis which is considered for high-dose CDDP-treated patients. However, mannitol treatment causes over-diuresis and consequent dehydration in CDDP-treated patients, indicating an urgent need for the clinical use of safe and efficacious renoprotective drug as an additive therapy for high dose CDDP-treated patients. Main body In this review article we describe in detail signaling pathways involved in CDDP-induced apoptosis of renal tubular cells, oxidative stress and inflammatory response in injured kidneys in order to pave the way for the design of new therapeutic approaches that can minimize CDDP-induced nephrotoxicity. Most of these molecular pathways are, at the same time, crucially involved in cytotoxic activity of CDDP against tumor cells and potential alterations in their function might mitigate CDDP-induced anti-tumor effects. Conclusion Despite the fact that many molecules were designated as potential therapeutic targets for renoprotection against CDDP, modulation of CDDP-induced nephrotoxicity still represents a balance on the knife edge between renoprotection and tumor toxicity.
Collapse
Affiliation(s)
- Vladislav Volarevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, Kragujevac, 34000, Serbia.
| | - Bojana Djokovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, Kragujevac, 34000, Serbia
| | - Marina Gazdic Jankovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - C Randall Harrell
- Regenerative Processing Plant, LLC, US Highway 19 N Palm Harbor, Palm Harbor, Florida, 34176, USA
| | - Crissy Fellabaum
- Regenerative Processing Plant, LLC, US Highway 19 N Palm Harbor, Palm Harbor, Florida, 34176, USA
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, 2 Baltzerstrasse, Bern, Switzerland
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, Kragujevac, 34000, Serbia
| |
Collapse
|
20
|
Yoon SP, Kim J. Exogenous spermidine ameliorates tubular necrosis during cisplatin nephrotoxicity. Anat Cell Biol 2018; 51:189-199. [PMID: 30310711 PMCID: PMC6172597 DOI: 10.5115/acb.2018.51.3.189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/08/2018] [Accepted: 06/18/2018] [Indexed: 11/27/2022] Open
Abstract
The hallmark of cisplatin-induced acute kidney injury is the necrotic cell death in the kidney proximal tubules. However, an effective approach to limit cisplatin nephrotoxicity remains unknown. Spermidine is a polyamine that protects against oxidative stress and necrosis in aged yeasts, and the present study found that exogenous spermidine markedly attenuated tubular necrosis and kidney dysfunction, but not apoptosis, during cisplatin nephrotoxicity. In addition, exogenous spermidine potently inhibited oxidative/nitrative DNA damage, poly(ADP-ribose) polymerase 1 (PARP1) activation and ATP depletion after cisplatin injection. Conversely, inhibition of ornithine decarboxylase (ODC) via siRNA transfection in vivo significantly increased DNA damage, PARP1 activation and ATP depletion, resulting in acceleration of tubular necrosis and kidney dysfunction. Finally, exogenous spermidine removed severe cisplatin injury induced by ODC inhibition. In conclusion, these data suggest that spermidine protects kidneys against cisplatin injury through DNA damage and tubular necrosis, and this finding provides a novel target to prevent acute kidney injury including nephrotoxicity.
Collapse
Affiliation(s)
- Sang Pil Yoon
- Department of Anatomy, Jeju National University School of Medicine, Jeju, Korea
| | - Jinu Kim
- Department of Anatomy, Jeju National University School of Medicine, Jeju, Korea
| |
Collapse
|
21
|
Soni H, Kaminski D, Gangaraju R, Adebiyi A. Cisplatin-induced oxidative stress stimulates renal Fas ligand shedding. Ren Fail 2018; 40:314-322. [PMID: 29619879 PMCID: PMC6014303 DOI: 10.1080/0886022x.2018.1456938] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acute kidney injury (AKI), a significant complication of cisplatin chemotherapy is associated with reactive oxygen species (ROS)-dependent renal cell death, but the cellular targets of ROS in cisplatin nephrotoxicity are not fully resolved. Here, we investigated cisplatin-induced oxidative renal damage and tested the hypothesis that ROS-dependent shedding of death activator Fas ligand (FasL) occurs in cisplatin nephropathy. We show that intraperitoneal injection of sulfobutyl ether-β-cyclodextrin (Captisol™)-solubilized cisplatin elevated the level of lipid peroxidation product malondialdehyde in mouse kidneys and urinary concentration of oxidative DNA damage biomarker 8-hydroxy-2'-deoxyguanosine. Cisplatin increased mouse kidney-to-body weight ratio and the plasma or urinary levels of predictive biomarkers of AKI, including creatinine, blood urea nitrogen, microalbumin, neutrophil gelatinase-associated lipocalin, and cystatin C. Histological analysis and dUTP nick end labeling of kidney sections indicated tubular injury and renal apoptosis, respectively in cisplatin-treated mice. Whereas the plasma concentration of soluble FasL (sFasL) was unaltered, urinary sFasL was increased ∼4-fold in cisplatin-treated mice. Real-time quantitative live-cell imaging and lactate dehydrogenase assay showed that cisplatin stimulated caspase 3/7 activation and cytotoxicity in a human proximal tubule epithelial cell line which were attenuated by inhibitors of the FasL/Fas system and poly [ADP-ribose] polymerase-1. Moreover, TEMPOL, an intracellular free radical scavenger mitigated cisplatin-induced renal oxidative stress and injury, AKI biomarker and urinary sFasL elevation, and proximal tubule cell death. Our findings indicate that cisplatin-induced oxidative stress triggers the shedding of membrane-bound FasL to sFasL in the kidney. We demonstrate that cisplatin elicits nephrotoxicity by promoting FasL/Fas-dependent oxidative renal tubular cell death.
Collapse
Affiliation(s)
- Hitesh Soni
- a Department of Physiology , University of Tennessee Health Science Center , Memphis , TN , USA
| | - Damian Kaminski
- b Department of Ophthalmology , University of Tennessee Health Science Center , Memphis , TN , USA
| | - Rajashekhar Gangaraju
- b Department of Ophthalmology , University of Tennessee Health Science Center , Memphis , TN , USA.,c Department of Anatomy and Neurobiology , University of Tennessee Health Science Center , Memphis , TN , USA
| | - Adebowale Adebiyi
- a Department of Physiology , University of Tennessee Health Science Center , Memphis , TN , USA
| |
Collapse
|
22
|
Effect of canagliflozin, a sodium glucose co-transporter 2 inhibitor, on cisplatin-induced nephrotoxicity in mice. Naunyn Schmiedebergs Arch Pharmacol 2018; 392:45-53. [PMID: 30206656 DOI: 10.1007/s00210-018-1564-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/03/2018] [Indexed: 01/18/2023]
Abstract
Canagliflozin is a sodium glucose co-transporter 2 (SGLT2) inhibitor that is currently available for the management of type 2 diabetes mellitus. The present study investigated the effect of canagliflozin on cisplatin (CP)-induced nephrotoxicity in mice. The animals were divided into four groups (n = 6). The first and second groups received normal saline (control) and intraperitoneal (i.p.) cisplatin (20 mg/kg) on day 7, respectively. The third and fourth groups were given a single intraperitoneal (i.p.) injection of CP (20 mg/kg) on day 7 and canagliflozin (10 mg/kg/day) and (30 mg/kg/day), for 10 days, respectively. At day 11, animals were anesthetized and blood collected and kidneys were removed. CP significantly increased the plasma urea, creatinine, cystatin C, and clusterin concentrations and neutrophil gelatinase-associated lipocalin (NGAL) activity. In addition, CP increased urinary albumin/creatinine ratio, N-acetyl-β-D-glucosaminidase (NAG) activity, and liver-type fatty acid-binding protein (L-FABP) concentrations and reduced creatinine clearance. CP also significantly increased the plasma concentration of inflammatory cytokines [plasma tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1beta (IL-1β)] and significantly reduced antioxidant indices [catalase, glutathione reductase (GR), and superoxide dismutase (SOD)]. Histopathologically, CP caused a remarkable renal damage compared with control. Canagliflozin significantly ameliorated CP-induced biochemical and histopathological changes. The protective effect of canagliflozin is most likely due to anti-inflammatory and antioxidant effects. Our results show that administration of canagliflozin reversed the biochemical and histopathological indices of CP-induced nephrotoxicity in mice.
Collapse
|
23
|
5-aminoisoquinoline improves renal function and fibrosis during recovery phase of cisplatin-induced acute kidney injury in rats. Biosci Rep 2018; 38:BSR20171313. [PMID: 29599129 PMCID: PMC5920139 DOI: 10.1042/bsr20171313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/22/2018] [Accepted: 03/29/2018] [Indexed: 01/23/2023] Open
Abstract
The aim of the present study is to analyze the effects of 5-aminoisoquinoline (5-AIQ), a poly(ADP-ribose) polymerase-1 (PARP1) inhibitor, over renal dysfunction and fibrosis during recovery phase of cisplatin (CisPt)-induced acute kidney injury (AKI) in rats. Male Wistar rats were distributed in three groups (n=8 each group): control, CisPt, and CisPt + 5-AIQ. Control and CisPt groups received a subcutaneous injection of either saline or 7 mg/kg CisPt, respectively. CisPt + 5-AIQ group received two intraperitoneal injections of 10 mg/kg 5-AIQ 2 h before and 24 h after CisPt treatment. Thirteen days after the treatment, rats were housed in metabolic cages and 24-h urine collection was made. At day 14, CisPt-treated rats showed increased diuresis, N-acetyl-β-d-glucosaminidase (NAG) excretion, glucosuria and sodium fractional excretion (NaFE), and decreased creatinine clearance (CrCl). 5-AIQ significantly increased CrCl and decreased NAG excretion, glucosuria, and NaFE. In plasma, CisPt increased sodium, urea, and creatinine concentrations, while 5-AIQ treatment decreased these variables to the levels of control group. 5-AIQ completely prevented the body weight loss evoked by CisPt treatment. CisPt also induced an increased renal expression of PAR polymer, α-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1), and collagen-IV. These variables were decreased in CisPt + 5-AIQ group. Tubular lesions and renal fibrosis were also decreased by 5-AIQ treatment. We conclude that inhibition of PARP1 with 5-AIQ can attenuate long-term nephrotoxic effects associated with the CisPt treatment, preventing renal dysfunction and body weight decrease and ameliorating tubular lesions and collagen deposition.
Collapse
|
24
|
Singh MP, Chauhan AK, Kang SC. Morin hydrate ameliorates cisplatin-induced ER stress, inflammation and autophagy in HEK-293 cells and mice kidney via PARP-1 regulation. Int Immunopharmacol 2018; 56:156-167. [PMID: 29414646 DOI: 10.1016/j.intimp.2018.01.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/31/2022]
Abstract
The present study assessed the possible therapeutic potential of a natural flavonoid morin hydrate (MH), against cisplatin (CP) induced toxicity in HEK-293 cells and mice kidney. Herein, we observed that exposure of HEK-293 cells to CP (20 μM, 24 h) reduced the cell viability, and increased the intracellular ROS generation, nuclear DNA damage, Ca++ release, and accumulation of acidic vacuoles. Concomitantly, acute exposure of CP (30 mg/kg, 72 h) to male ICR mice induced histopathological changes in kidney tissue, and alterations in serum creatinine and blood urea nitrogen (BUN) levels. Oxidative stress mediated ER-stress was evidenced by the reduced expression of antioxidant enzymes such as SOD-1, SOD-2, GR, and Trx, and increased expression levels of CytP450, IRE1-α, PERK, and CHOP. The expression levels of major inflammatory response markers such as NF-κB, TNF-α, IL-1β, COX-2 and iNOS were significantly increased in the HEK-293 cells and mice kidney. Temporal up-regulation of p-AMPK and LC3I/II, and down regulation of mTOR was also noticed after CP treatment. CP-induced DNA damage led to activation of PARP-1, which plays a crucial role in inflammation, apoptosis and autophagy activation. Concurrently, co-treatment of CP-MH and CP-ANI (PARP-1 inhibitor) significantly attenuated the expression level of PARP-1, reduced cellular death, alleviated inflammatory responses, and inhibited autophagy stimulation in HEK-293 cells and mice kidney. On the basis of above findings, we suggest MH as a potential therapeutic agent against CP-induced nephrotoxicity.
Collapse
Affiliation(s)
- Mahendra Pal Singh
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Anil Kumar Chauhan
- Daegu Cancer Center, Research and Development Unit, Dong Sung Bio-Pharmaceutical Co. Ltd., Dong-gu, Daegu, Republic of Korea
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
25
|
Calvo JA, Allocca M, Fake KR, Muthupalani S, Corrigan JJ, Bronson RT, Samson LD. Parp1 protects against Aag-dependent alkylation-induced nephrotoxicity in a sex-dependent manner. Oncotarget 2018; 7:44950-44965. [PMID: 27391435 PMCID: PMC5216697 DOI: 10.18632/oncotarget.10440] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 06/06/2016] [Indexed: 11/25/2022] Open
Abstract
Nephrotoxicity is a common toxic side-effect of chemotherapeutic alkylating agents. Although the base excision repair (BER) pathway is essential in repairing DNA alkylation damage, under certain conditions the initiation of BER produces toxic repair intermediates that damage healthy tissues. We have shown that the alkyladenine DNA glycosylase, Aag (a.k.a. Mpg), an enzyme that initiates BER, mediates alkylation-induced whole-animal lethality and cytotoxicity in the pancreas, spleen, retina, and cerebellum, but not in the kidney. Cytotoxicity in both wild-type and Aag-transgenic mice (AagTg) was abrogated in the absence of Poly(ADP-ribose) polymerase-1 (Parp1). Here we report that Parp1-deficient mice expressing increased Aag (AagTg/Parp1−/−) develop sex-dependent kidney failure upon exposure to the alkylating agent, methyl methanesulfonate (MMS), and suffer increased whole-animal lethality compared to AagTg and wild-type mice. Macroscopic, histological, electron microscopic and immunohistochemical analyses revealed morphological kidney damage including dilated tubules, proteinaceous casts, vacuolation, collapse of the glomerular tuft, and deterioration of podocyte structure. Moreover, mice exhibited clinical signs of kidney disease indicating functional damage, including elevated blood nitrogen urea and creatinine, hypoproteinemia and proteinuria. Pharmacological Parp inhibition in AagTg mice also resulted in sensitivity to MMS-induced nephrotoxicity. These findings provide in vivo evidence that Parp1 modulates Aag-dependent MMS-induced nephrotoxicity in a sex-dependent manner and highlight the critical roles that Aag-initiated BER and Parp1 may play in determining the side-effects of chemotherapeutic alkylating agents.
Collapse
Affiliation(s)
- Jennifer A Calvo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mariacarmela Allocca
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kimberly R Fake
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Joshua J Corrigan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Leona D Samson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.,The David H. Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
26
|
Abstract
Cell death and inflammation in the proximal tubules are the hallmarks of acute kidney injury (AKI), but the underlying mechanism has not been fully elucidated. Recent evidence has shown that necroptosis, a type of programmed necrosis, plays an important role in AKI. The necrosis-inducing signaling complex is called the necrosome, which contains receptor-interacting protein 1, receptor-interacting protein 3, and mixed lineage kinase domain-like protein. Studies have found that inhibition of the core components of the necroptotic pathway by gene knockout, RNA interference, or a chemical inhibitor diminished proximal tubule damage, showing that necroptosis is a major contributor to AKI. This review focuses on the functional roles of the necrosome in regulating renal tubular cell necroptosis, and the physiological and pathologic roles of necrosome in AKI.
Collapse
Affiliation(s)
- Yanfang Xu
- Department of Nephrology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
27
|
Abstract
Precise regulation of cell death and survival is essential for proper maintenance of organismal homeostasis, development, and the immune system. Deregulated cell death can lead to developmental defects, neuropathies, infections, and cancer. Kidney diseases, especially acute pathologies linked to ischemia-reperfusion injury, are among illnesses that profoundly are affected by improper regulation or execution of cell death pathways. Attempts to develop medicines for kidney diseases have been impacted by the complexity of these pathologies given the heterogeneous patient population and diverse etiologies. By analyzing cell death pathways activated in kidney diseases, we attempt to differentiate their importance for these pathologies with a goal of identifying those that have more profound impact and the best therapeutic potential. Although classic apoptosis still might be important, regulated necrosis pathways including necroptosis, ferroptosis, parthanatos, and mitochondrial permeability transition-associated cell death play a significantly role in kidney diseases, especially in acute kidney pathologies. Although targeting receptor-interacting protein 1 kinase appears to be the best therapeutic strategy, combination with inhibitors of other cell death pathways is likely to bring superior benefit and possible cure to patients suffering from kidney diseases.
Collapse
Affiliation(s)
- Jay P Garg
- Product Development, Departments of Immunology, Infectious Diseases, and Ophthalmology, Genentech, South San Francisco, CA
| | - Domagoj Vucic
- Early Discovery Biochemistry, Genentech, South San Francisco, CA.
| |
Collapse
|
28
|
Kers J, Leemans JC, Linkermann A. An Overview of Pathways of Regulated Necrosis in Acute Kidney Injury. Semin Nephrol 2018; 36:139-52. [PMID: 27339380 DOI: 10.1016/j.semnephrol.2016.03.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Necrosis is the predominant form of regulated cell death in acute kidney injury (AKI) and represents results in the formation of casts that appear in the urine sedimentation, referred to as muddy brown casts, which are part of the diagnosis of AKI. Pathologists referred to this typical feature as acute tubular necrosis. We are only beginning to understand the dynamics and the molecular pathways that underlie such typical necrotic morphology. In this review, we provide an overview of candidate pathways and summarize the emerging evidence for the relative contribution of these pathways of regulated necrosis, such as necroptosis, ferroptosis, mitochondrial permeability transition-mediated regulated necrosis, parthanatos, and pyroptosis. Inhibitors of each of these pathways are available, and clinical trials may be started after the detection of the most promising drug targets, which will be discussed here. With the global burden of AKI in mind, inhibitiors of regulated necrosis represent promising means to prevent this disease.
Collapse
Affiliation(s)
- Jesper Kers
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Jaklien C Leemans
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Andreas Linkermann
- Clinic for Nephrology and Hypertension, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
29
|
Kim IH, Kwon MJ, Jung JH, Nam TJ. Protein extracted from Porphyra yezoensis prevents cisplatin-induced nephrotoxicity by downregulating the MAPK and NF-κB pathways. Int J Mol Med 2017; 41:511-520. [PMID: 29115386 DOI: 10.3892/ijmm.2017.3214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/20/2017] [Indexed: 11/05/2022] Open
Abstract
Acute renal failure is a serious complication of treatment with the anticancer drug cisplatin. Cisplatin exerts a cytotoxic effect on renal cells by inducing apoptosis through activating the tumor suppressor p53, nuclear factor‑κB (NF‑κB) and mitogen‑activated protein kinase (MAPK)/p38 pathways. Effects of protein extracts of the brown seaweed Porphyra yezoensis (P. yezoensis) on cytotoxicity, inflammation and cell proliferation have been reported; however, the effects of P. yezoensis protein (PYP) extract on cisplatin‑induced renal injury have remained elusive. The present study investigated the effects of PYP on cisplatin‑induced nephrotoxicity in the HK2 human proximal tubular epithelial cell line. PYP treatment reduced cisplatin‑induced apoptosis and death of HK2 cells by restoring the B‑cell lymphoma‑2 (Bcl‑2)‑associated X protein (Bax)/Bcl‑2 imbalance, cytochrome c release and caspase‑3 activation. In addition, PYP activated the redox‑sensitive transcription factor NF‑κB via stimulating the nuclear translocation of p65 in HK2 cells. PYP also restored renal antioxidant levels and increased the total and nuclear accumulation of NF erythroid 2‑related factor 2 in HK2 cells. PYP markedly attenuated cisplatin‑induced p38, MAPK and c‑Jun N‑terminal kinase phosphorylation. Furthermore, treatment with PYP ameliorated cisplatin‑induced renal cell damage by upregulating antioxidant defense mechanisms and downregulating the MAPK and NF‑κB signaling pathways. In addition, mice were divided into three treatment groups (control, cisplatin and PYP + cisplatin) and the effects of PYP were evaluated in a mouse model of cisplatin‑induced acute kidney injury. The concentrations of blood urea nitrogen and serum creatinine in the PYP + cisplatin group were lower than those in the cisplatin group. The mRNA expression levels of inflammatory factors interleukin‑6 (IL‑6), IL‑1β, tumor necrosis factor‑α and monocyte chemoattractant protein‑1 in the kidney tissues of the PYP + cisplatin group were also lower than those in the cisplatin group. These results suggest that PYP treatment had a preventive effect on nephrotoxicity, specifically by downregulating the MAPK and NF‑κB signaling pathways and the mRNA levels of inflammatory genes.
Collapse
Affiliation(s)
- In-Hye Kim
- Cell Biology Laboratory, Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea
| | - Mi-Jin Kwon
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Jae-Hun Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Taek-Jeong Nam
- Cell Biology Laboratory, Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea
| |
Collapse
|
30
|
Korkmaz-Icöz S, Szczesny B, Marcatti M, Li S, Ruppert M, Lasitschka F, Loganathan S, Szabó C, Szabó G. Olaparib protects cardiomyocytes against oxidative stress and improves graft contractility during the early phase after heart transplantation in rats. Br J Pharmacol 2017; 175:246-261. [PMID: 28806493 DOI: 10.1111/bph.13983] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/27/2017] [Accepted: 08/03/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Olaparib, rucaparib and niraparib, potent inhibitors of poly(ADP-ribose) polymerase (PARP) are approved as anti-cancer drugs in humans. Considering the previously demonstrated role of PARP in various forms of acute and chronic myocardial injury, we tested the effects of olaparib in in-vitro models of oxidative stress in cardiomyocytes, and in an in vivo model of cardiac transplantation. EXPERIMENTAL APPROACH H9c2-embryonic rat heart-derived myoblasts pretreated with vehicle or olaparib (10μM) were challenged with either hydrogen peroxide (H2 O2 ) or with glucose oxidase (GOx, which generates H2 O2 in the tissue culture medium). Cell viability assays (MTT, lactate dehydrogenase) and Western blotting for PARP and its product, PAR was performed. Heterotopic heart transplantation was performed in Lewis rats; recipients were treated either with vehicle or olaparib (10 mg kg-1 ). Left ventricular function of transplanted hearts was monitored via a Millar catheter. Multiple gene expression in the graft was measured by qPCR. KEY RESULTS Olaparib blocked autoPARylation of PARP1 and attenuated the rapid onset of death in H9c2 cells, induced by H2 O2 , but did not affect cell death following chronic, prolonged oxidative stress induced by GOx. In rats, after transplantation, left ventricular systolic and diastolic function were improved by olaparib. In the transplanted hearts, olaparib also reduced gene expression for c-jun, caspase-12, catalase, and NADPH oxidase-2. CONCLUSIONS AND IMPLICATIONS Olaparib protected cardiomyocytes against oxidative stress and improved graft contractility in a rat model of heart transplantation. These findings raise the possibility of repurposing this clinically approved oncology drug, to be used in heart transplantation. LINKED ARTICLES This article is part of a themed section on Inventing New Therapies Without Reinventing the Wheel: The Power of Drug Repurposing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.2/issuetoc.
Collapse
Affiliation(s)
- Sevil Korkmaz-Icöz
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Bartosz Szczesny
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Michela Marcatti
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Shiliang Li
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Mihály Ruppert
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Lasitschka
- Institute of Pathology, University Heidelberg, Heidelberg, Germany
| | | | - Csaba Szabó
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Gábor Szabó
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
31
|
Ateyya H, Hassan ZA, El-Sherbeeny NA. The selective tyrosine kinase-inhibitor nilotinib alleviates experimentally induced cisplatin nephrotoxicity and heptotoxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 55:60-67. [PMID: 28826126 DOI: 10.1016/j.etap.2017.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 08/05/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
This work tested the action of nilotinib, selective inhibitor of tyrosine kinase on cisplatin (CP)-induced damage of kidney and liver in rats. Rats were assigned to 4 groups, control, nilotinib, CP, and CP plus nilotinib. Assessment of kidney and liver function, lipid peroxidation and antioxidant markers, anti-apoptotic protein Bcl2, nuclear factor- kappa B (NF-κB) immunoreactivity, and caspase 3 activity were done. CP-induced damage evidenced by histopathological changes, deterioration of renal and liver function, imbalance in oxidants/antioxidants markers, decreased Bcl2, increased caspase 3 activity, and NF-κB nuclear expression in both organs. Nilotinib treatment with CP restored kidney and liver oxidants/antioxidant levels also increased Bcl2 and decreased NF-κB immunoreactivity were evident with nilotinib treatment. In conclusions these results demonstrated a protective effect of nilotinib in experimentally induced CP kidney and liver damage that could be mediated through combating oxidative stress, reducing inflammation and anti-apoptosis in the two organs.
Collapse
Affiliation(s)
- Hayam Ateyya
- Pharmacology and Toxicology, College of Pharmacy, Taibah University, El-Madinah El-Munawarah, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Cairo University, Egypt.
| | - Zeinab A Hassan
- Faculty of Medicine, Taibah University, Saudi Arabia; Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Egypt.
| | - Nagla A El-Sherbeeny
- Pharmacology and Toxicology, College of Pharmacy, Taibah University, El-Madinah El-Munawarah, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Egypt.
| |
Collapse
|
32
|
Kim J. Spermidine is protective against kidney ischemia and reperfusion injury through inhibiting DNA nitration and PARP1 activation. Anat Cell Biol 2017; 50:200-206. [PMID: 29043098 PMCID: PMC5639174 DOI: 10.5115/acb.2017.50.3.200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/10/2017] [Accepted: 08/13/2017] [Indexed: 12/15/2022] Open
Abstract
Kidney ischemia and reperfusion injury (IRI) is associated with a high mortality rate, which is attributed to tubular oxidative and nitrative stresses; however, an effective approach to limit IRI remains elusive. Spermidine, a naturally occurring polyamine, protects yeast cells against aging through the inhibition of oxidative stress and necrosis. In the present study, spermidine supplementation markedly attenuated histological damage and kidney dysfunction during IRI. In addition, exogenous spermidine potently inhibited poly(ADP-ribose) polymerase 1 (PARP1) activation and DNA nitrative/oxidative stress following IRI. Conversely, inhibition of ornithine decarboxylase (ODC) via siRNA transfection in vivo significantly enhanced DNA nitration, PARP1 activation, and functional damage during IRI. Finally, in ODC knockdown kidneys, PARP1 inhibition attenuated histological and functional damage induced by IRI, but not DNA nitrative stress. In conclusion, these data suggest that spermidine protects kidneys against IRI through blocking DNA nitration and PARP1 activation and this finding provides a novel target for prevention of acute kidney injury including IRI.
Collapse
Affiliation(s)
- Jinu Kim
- Department of Anatomy, Jeju National University School of Medicine, Jeju, Korea.,Department of Biomedicine and Drug Development, Jeju National University, Jeju, Korea
| |
Collapse
|
33
|
Kim J. Spermidine rescues proximal tubular cells from oxidative stress and necrosis after ischemic acute kidney injury. Arch Pharm Res 2017; 40:1197-1208. [DOI: 10.1007/s12272-017-0957-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/10/2017] [Indexed: 12/19/2022]
|
34
|
Liang X, Yang Y, Huang Z, Zhou J, Li Y, Zhong X. Panax notoginseng saponins mitigate cisplatin induced nephrotoxicity by inducing mitophagy via HIF-1α. Oncotarget 2017; 8:102989-103003. [PMID: 29262539 PMCID: PMC5732705 DOI: 10.18632/oncotarget.19900] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 07/12/2017] [Indexed: 12/13/2022] Open
Abstract
We investigated the role of HIF-1α in the mitigation of cisplatin-induced nephrotoxicity by Panax notoginseng saponins (PNS) in a rat model. Serum creatinine (Scr), blood urea nitrogen (BUN) and urinary N-acetyl-β-D-glucosaminidase (NAG) levels were all elevated in cisplatin treated rats. PNS reduced Scr, BUN and NAG levels in the presence or absence of the HIF-1α inhibitor 2-methoxyestradiol (2ME2). PNS also reduced the high tubular injury scores, which corresponded to renal tubular damage in cisplatin-treated rats and which were exacerbated by 2ME2. Renal tissues from PNS-treated rats showed increased HIF-1α mRNA and nuclear localized HIF-1α protein. Moreover, PNS treatment increased BNIP3 mRNA as well as LC3-II, BNIP3 and Beclin-1 proteins and the LC3-II/LC3-I ratio in rat renal tissues. This suggested that PNS treatment enhanced HIF-1α, which in turn increased autophagy. This was confirmed in transmission electron micrographs of renal tissues that showed autophagosomes in PNS-treated renal tissues. These findings demonstrate that PNS mitigates cisplatin-induced nephrotoxicity by enhancing mitophagy via a HIF-1α/BNIP3/Beclin-1 signaling pathway.
Collapse
Affiliation(s)
- Xueyan Liang
- Postgraduate, Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yufang Yang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhenguang Huang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinling Zhou
- Postgraduate, Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yue'e Li
- Postgraduate, Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaobin Zhong
- Regenerative Medicine Research Center of Guangxi Medical University, Nanning, China
| |
Collapse
|
35
|
Adedoyin O, Boddu R, Traylor A, Lever JM, Bolisetty S, George JF, Agarwal A. Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells. Am J Physiol Renal Physiol 2017; 314:F702-F714. [PMID: 28515173 DOI: 10.1152/ajprenal.00044.2017] [Citation(s) in RCA: 291] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ferroptosis is an iron-dependent form of regulated nonapoptotic cell death, which contributes to damage in models of acute kidney injury (AKI). Heme oxygenase-1 (HO-1) is a cytoprotective enzyme induced in response to cellular stress, and is protective against AKI because of its antiapoptotic and anti-inflammatory properties. However, the role of HO-1 in regulating ferroptosis is unclear. The purpose of this study was to elucidate the role of HO-1 in regulating ferroptotic cell death in renal proximal tubule cells (PTCs). Immortalized PTCs obtained from HO-1+/+ and HO-1-/- mice were treated with erastin or RSL3, ferroptosis inducers, in the presence or absence of antioxidants, an iron source, or an iron chelator. Cells were assessed for changes in morphology and metabolic activity as an indicator of cell viability. Treatment of HO-1+/+ PTCs with erastin resulted in a time- and dose-dependent increase in HO-1 gene expression and protein levels compared with vehicle-treated controls. HO-1-/- cells showed increased dose-dependent erastin- or RSL3-induced cell death in comparison to HO-1+/+ PTCs. Iron supplementation with ferric ammonium citrate in erastin-treated cells decreased cell viability further in HO-1-/- PTCs compared with HO-1+/+ cells. Cotreatment with ferrostatin-1 (ferroptosis inhibitor), deferoxamine (iron chelator), or N-acetyl-l-cysteine (glutathione replenisher) significantly increased cell viability and attenuated erastin-induced ferroptosis in both HO-1+/+ and HO-1-/- PTCs. These results demonstrate an important antiferroptotic role of HO-1 in renal epithelial cells.
Collapse
Affiliation(s)
- Oreoluwa Adedoyin
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Ravindra Boddu
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Amie Traylor
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Jeremie M Lever
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Subhashini Bolisetty
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - James F George
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama.,Department of Surgery, University of Alabama at Birmingham , Birmingham, Alabama
| | - Anupam Agarwal
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama.,Birmingham VA Medical Center , Birmingham, Alabama
| |
Collapse
|
36
|
Linkermann A. Nonapoptotic cell death in acute kidney injury and transplantation. Kidney Int 2017; 89:46-57. [PMID: 26759047 DOI: 10.1016/j.kint.2015.10.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/21/2015] [Accepted: 07/28/2015] [Indexed: 12/31/2022]
Abstract
Acute tubular necrosis causes a loss of renal function, which clinically presents as acute kidney failure (AKI). The biochemical signaling pathways that trigger necrosis have been investigated in detail over the past 5 years. It is now clear that necrosis (regulated necrosis, RN) represents a genetically driven process that contributes to the pathophysiology of AKI. RN pathways such as necroptosis, ferroptosis, parthanatos, and mitochondrial permeability transition-induced regulated necrosis (MPT-RN) may be mechanistically distinct, and the relative contributions to overall organ damage during AKI in living organisms largely remain elusive. In a synchronized manner, some necrotic programs induce the breakdown of tubular segments and multicellular functional units, whereas others are limited to killing single cells in the tubular compartment. Importantly, the means by which a renal cell dies may have implications for the subsequent inflammatory response. In this review, the recent advances in the field of renal cell death in AKI and key enzymes that might serve as novel therapeutic targets will be discussed. As a consequence of the interference with RN, the immunogenicity of dying cells in AKI in renal transplants will be diminished, rendering inhibitors of RN indirect immunosuppressive agents.
Collapse
Affiliation(s)
- Andreas Linkermann
- Clinic for Nephrology and Hypertension and Georges-Köhler-Haus for Biomedical Research and Transplantation, Christian-Albrechts-University, Kiel, Germany.
| |
Collapse
|
37
|
Yoon SP, Kim J. Poly(ADP-ribose) polymerase 1 contributes to oxidative stress through downregulation of sirtuin 3 during cisplatin nephrotoxicity. Anat Cell Biol 2016; 49:165-176. [PMID: 27722009 PMCID: PMC5052225 DOI: 10.5115/acb.2016.49.3.165] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 12/21/2022] Open
Abstract
Enhanced oxidative stress is a hallmark of cisplatin nephrotoxicity, and inhibition of poly(ADP-ribose) polymerase 1 (PARP1) attenuates oxidative stress during cisplatin nephrotoxicity; however, the precise mechanisms behind its action remain elusive. Here, using an in vitro model of cisplatin-induced injury to human kidney proximal tubular cells, we demonstrated that the protective effect of PARP1 inhibition on oxidative stress is associated with sirtuin 3 (SIRT3) activation. Exposure to 400 µM cisplatin for 8 hours in cells decreased activity and expression of manganese superoxide dismutase (MnSOD), catalase, glutathione peroxidase (GPX), and SIRT3, while it increased their lysine acetylation. However, treatment with 1 µM PJ34 hydrochloride, a potent PARP1 inhibitor, restored activity and/or expression in those antioxidant enzymes, decreased lysine acetylation of those enzymes, and improved SIRT3 expression and activity in the cisplatin-injured cells. Using transfection with SIRT3 double nickase plasmids, SIRT3-deficient cells given cisplatin did not show the ameliorable effect of PARP1 inhibition on lysine acetylation and activity of antioxidant enzymes, including MnSOD, catalase and GPX. Furthermore, SIRT3 deficiency in cisplatin-injured cells prevented PARP1 inhibition-induced increase in forkhead box O3a transcriptional activity, and upregulation of MnSOD and catalase. Finally, loss of SIRT3 in cisplatin-exposed cells removed the protective effect of PARP1 inhibition against oxidative stress, represented by the concentration of lipid hydroperoxide and 8-hydroxy-2'-deoxyguanosine; and necrotic cell death represented by a percentage of propidium iodide–positively stained cells. Taken together, these results indicate that PARP1 inhibition protects kidney proximal tubular cells against oxidative stress through SIRT3 activation during cisplatin nephrotoxicity.
Collapse
Affiliation(s)
- Sang Pil Yoon
- Department of Anatomy, Jeju National University School of Medicine, Jeju, Korea
| | - Jinu Kim
- Department of Anatomy, Jeju National University School of Medicine, Jeju, Korea.; Department of Biomedicine and Drug Development, Jeju National University, Jeju, Korea
| |
Collapse
|
38
|
Rani N, Bharti S, Tomar A, Dinda AK, Arya DS, Bhatia J. Inhibition of PARP activation by enalapril is crucial for its renoprotective effect in cisplatin-induced nephrotoxicity in rats. Free Radic Res 2016; 50:1226-1236. [PMID: 27571604 DOI: 10.1080/10715762.2016.1228923] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Oxidative stress-induced PARP activation has been recognized to be a main factor in the pathogenesis of cisplatin-induced nephrotoxicity. Accumulating literature has revealed that ACE inhibitors may exert beneficial effect in several disease models via preventing PARP activation. Based on this hypothesis, we have evaluated the renoprotective effect of enalapril, an ACE inhibitor, and its underlying mechanism(s) in cisplatin-induced renal injury in rats. Male Albino Wistar rats were orally administered normal saline or enalapril (10, 20 and 40 mg/kg) for 10 days. Nephrotoxicity was induced by a single dose of cisplatin (8 mg/kg; i.p.) on the 7th day. The animals were thereafter sacrificed on the 11th day and both the kidneys were excised and processed for biochemical, histopathological, molecular, and immunohistochemical studies. Enalapril (40 mg/kg) significantly prevented cisplatin-induced renal dysfunction. In comparison to cisplatin-treated group, the elevation of BUN and creatinine levels was significantly less in this group. This improvement in kidney injury markers was well substantiated with reduced PARP expression along with phosphorylation of MAPKs including JNK/ERK/p38. Enalapril, in a dose-dependent fashion, attenuated cisplatin-induced oxidative stress as evidenced by augmented GSH, SOD and catalase activities, reduced TBARS and oxidative DNA damage (8-OHDG), and Nox-4 protein expression. Moreover, enalapril dose dependently inhibited cisplatin-induced inflammation (NF-κB/IKK-β/IL-6/Cox-2/TNF-α expressions), apoptosis (increased Bcl-2 and reduced p53, cytochrome c, Bax and caspase-3 expressions, and TUNEL/DAPI positivity) and preserved the structural integrity of the kidney. Thus, enalapril attenuated cisplatin-induced renal injury via inhibiting PARP activation and subsequent MAPKs/TNF-α/NF-κB mediated inflammatory and apoptotic response.
Collapse
Affiliation(s)
- Neha Rani
- a Department of Pharmacology , All India Institute of Medical Sciences , New Delhi , India
| | - Saurabh Bharti
- a Department of Pharmacology , All India Institute of Medical Sciences , New Delhi , India
| | - Ameesha Tomar
- a Department of Pharmacology , All India Institute of Medical Sciences , New Delhi , India
| | - Amit Kumar Dinda
- b Department of Pathology , All India Institute of Medical Sciences , New Delhi , India
| | - D S Arya
- a Department of Pharmacology , All India Institute of Medical Sciences , New Delhi , India
| | - Jagriti Bhatia
- a Department of Pharmacology , All India Institute of Medical Sciences , New Delhi , India
| |
Collapse
|
39
|
El-Sherbeeny NA, Attia GM. The protective effect of trimetazidine against cisplatin-induced nephrotoxicity in rats. Can J Physiol Pharmacol 2016; 94:745-51. [DOI: 10.1139/cjpp-2015-0472] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nephrotoxicity is a dose-limiting side effect of cisplatin (CSP). The study investigated the possible protective role of trimetazidine (TMZ) against CSP-induced nephrotoxicity in rats. Rats were divided into four groups; control, TMZ, CSP, and CSP + TMZ. The CSP group showed significant deterioration in kidney function with structural changes in the form of interstitial hemorrhage, glomeruli shrinkage and peritublar capillary congestion, tubular cells vacuolation, pyknosis, shedding and necrosis, and inflammatory cell infiltrates, all indicating renal damage. CSP also caused a significant increase in the lipid peroxidation marker malondialdehyde (MDA) levels, renal nuclear factor kappa B (NF-κB) DNA-binding activity and protein expression, and tumor necrosis factor alpha (TNF-α) and IL-6 levels. Treatment with TMZ before and after CSP injection produced significant improvement of kidney function and histopathology. TMZ treatment also significantly attenuated CSP-induced oxidative stress and suppressed elevated levels of TNF-α and IL-6 and NF-κB expression and its DNA-binding activity caused by CSP administration. TMZ has a protective effect against CSP-induced nephrotoxicity mediated by reduction of oxidative stress and attenuation of CSP-induced inflammation.
Collapse
Affiliation(s)
- Nagla A. El-Sherbeeny
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ghalia M. Attia
- Department of Anatomy, Faculty of Medicine, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
- Department of Histology & Cell Biology, Faculty of Medicine, Mansoura University, Al Mansoura, Egypt
| |
Collapse
|
40
|
Song H, Yoon SP, Kim J. Poly(ADP-ribose) polymerase regulates glycolytic activity in kidney proximal tubule epithelial cells. Anat Cell Biol 2016; 49:79-87. [PMID: 27382509 PMCID: PMC4927434 DOI: 10.5115/acb.2016.49.2.79] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/02/2016] [Accepted: 04/25/2016] [Indexed: 12/28/2022] Open
Abstract
After renal injury, selective damage occurs in the proximal tubules as a result of inhibition of glycolysis. The molecular mechanism of damage is not known. Poly(ADP-ribose) polymerase (PARP) activation plays a critical role of proximal tubular cell death in several renal disorders. Here, we studied the role of PARP on glycolytic flux in pig kidney proximal tubule epithelial LLC-PK1 cells using XFp extracellular flux analysis. Poly(ADP-ribosyl)ation by PARP activation was increased approximately 2-fold by incubation of the cells in 10 mM glucose for 30 minutes, but treatment with the PARP inhibitor 3-aminobenzamide (3-AB) does-dependently prevented the glucose-induced PARP activation (approximately 14.4% decrease in 0.1 mM 3-AB–treated group and 36.7% decrease in 1 mM 3-AB–treated group). Treatment with 1 mM 3-AB significantly enhanced the glucose-mediated increase in the extracellular acidification rate (61.1±4.3 mpH/min vs. 126.8±6.2 mpH/min or approximately 2-fold) compared with treatment with vehicle, indicating that PARP inhibition increases only glycolytic activity during glycolytic flux including basal glycolysis, glycolytic activity, and glycolytic capacity in kidney proximal tubule epithelial cells. Glucose increased the activities of glycolytic enzymes including hexokinase, phosphoglucose isomerase, phosphofructokinase-1, glyceraldehyde-3-phosphate dehydrogenase, enolase, and pyruvate kinase in LLC-PK1 cells. Furthermore, PARP inhibition selectively augmented the activities of hexokinase (approximately 1.4-fold over vehicle group), phosphofructokinase-1 (approximately 1.6-fold over vehicle group), and glyceraldehyde-3-phosphate dehydrogenase (approximately 2.2-fold over vehicle group). In conclusion, these data suggest that PARP activation may regulate glycolytic activity via poly(ADP-ribosyl)ation of hexokinase, phosphofructokinase-1, and glyceraldehyde-3-phosphate dehydrogenase in kidney proximal tubule epithelial cells.
Collapse
Affiliation(s)
- Hana Song
- Department of Biomedicine and Drug Development, Jeju National University, Jeju, Korea
| | - Sang Pil Yoon
- Department of Anatomy, Jeju National University School of Medicine, Jeju, Korea
| | - Jinu Kim
- Department of Biomedicine and Drug Development, Jeju National University, Jeju, Korea.; Department of Anatomy, Jeju National University School of Medicine, Jeju, Korea
| |
Collapse
|
41
|
Ying Y, Padanilam BJ. Regulation of necrotic cell death: p53, PARP1 and cyclophilin D-overlapping pathways of regulated necrosis? Cell Mol Life Sci 2016; 73:2309-24. [PMID: 27048819 PMCID: PMC5490387 DOI: 10.1007/s00018-016-2202-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 12/15/2022]
Abstract
In contrast to apoptosis and autophagy, necrotic cell death was considered to be a random, passive cell death without definable mediators. However, this dogma has been challenged by recent developments suggesting that necrotic cell death can also be a regulated process. Regulated necrosis includes multiple cell death modalities such as necroptosis, parthanatos, ferroptosis, pyroptosis, and mitochondrial permeability transition pore (MPTP)-mediated necrosis. Several distinctive executive molecules, particularly residing on the mitochondrial inner and outer membrane, amalgamating to form the MPTP have been defined. The c-subunit of the F1F0ATP synthase on the inner membrane and Bax/Bak on the outer membrane are considered to be the long sought components that form the MPTP. Opening of the MPTP results in loss of mitochondrial inner membrane potential, disruption of ATP production, increased ROS production, organelle swelling, mitochondrial dysfunction and consequent necrosis. Cyclophilin D, along with adenine nucleotide translocator and the phosphate carrier are considered to be important regulators involved in the opening of MPTP. Increased production of ROS can further trigger other necrotic pathways mediated through molecules such as PARP1, leading to irreversible cell damage. This review examines the roles of PARP1 and cyclophilin D in necrotic cell death. The hierarchical role of p53 in regulation and integration of key components of signaling pathway to elicit MPTP-mediated necrosis and ferroptosis is explored. In the context of recent insights, the indistinct role of necroptosis signaling in tubular necrosis after ischemic kidney injury is scrutinized. We conclude by discussing the participation of p53, PARP1 and cyclophilin D and their overlapping pathways to elicit MPTP-mediated necrosis and ferroptosis in acute kidney injury.
Collapse
Affiliation(s)
- Yuan Ying
- Department of Cellular and Integrative Physiology, 985850 University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Babu J Padanilam
- Department of Cellular and Integrative Physiology, 985850 University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA.
- Department of Internal Medicine, Division of Nephrology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
42
|
KIM J. Poly(ADP-Ribose) Polymerase Activation Induces High Mobility Group Box 1 Release From Proximal Tubular Cells During Cisplatin Nephrotoxicity. Physiol Res 2016; 65:333-40. [DOI: 10.33549/physiolres.932948] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cisplatin is one of the most potent chemotherapy drugs against cancer, but its major side effect such as nephrotoxicity limits its use. Inhibition of poly(ADP-ribose) polymerase (PARP) protects against various renal diseases via gene transactivation and/or ADP-ribosylation. However, the role of PARP in necrotic cell death during cisplatin nephrotoxicity remains an open question. Here we demonstrated that pharmacological inhibition of PARP by postconditioning dose-dependently prevented tubular injury and renal dysfunction following cisplatin administration in mice. PARP inhibition by postconditioning also attenuated ATP depletion during cisplatin nephrotoxicity. Systemic release of high mobility group box 1 (HMGB1) protein in plasma induced by cisplatin administration was significantly diminished by PARP inhibition by postconditioning. In in vitro kidney proximal tubular cell lines, PARP inhibition by postconditioning also diminished HMGB1 release from cells. These data demonstrate that cisplatin-induced PARP1 activation contributes to HMGB1 release from kidney proximal tubular cells, resulting in the promotion of inflammation during cisplatin nephrotoxicity.
Collapse
Affiliation(s)
- J. KIM
- Department of Anatomy, Jeju National University School of Medicine, Jeju, Republic of Korea
| |
Collapse
|
43
|
Apoptosis inhibitor of macrophage protein enhances intraluminal debris clearance and ameliorates acute kidney injury in mice. Nat Med 2016; 22:183-93. [PMID: 26726878 DOI: 10.1038/nm.4012] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 11/17/2015] [Indexed: 12/13/2022]
Abstract
Acute kidney injury (AKI) is associated with prolonged hospitalization and high mortality, and it predisposes individuals to chronic kidney disease. To date, no effective AKI treatments have been established. Here we show that the apoptosis inhibitor of macrophage (AIM) protein on intraluminal debris interacts with kidney injury molecule (KIM)-1 and promotes recovery from AKI. During AKI, the concentration of AIM increases in the urine, and AIM accumulates on necrotic cell debris within the kidney proximal tubules. The AIM present in this cellular debris binds to KIM-1, which is expressed on injured tubular epithelial cells, and enhances the phagocytic removal of the debris by the epithelial cells, thus contributing to kidney tissue repair. When subjected to ischemia-reperfusion (IR)-induced AKI, AIM-deficient mice exhibited abrogated debris clearance and persistent renal inflammation, resulting in higher mortality than wild-type (WT) mice due to progressive renal dysfunction. Treatment of mice with IR-induced AKI using recombinant AIM resulted in the removal of the debris, thereby ameliorating renal pathology. We observed this effect in both AIM-deficient and WT mice, but not in KIM-1-deficient mice. Our findings provide a basis for the development of potentially novel therapies for AKI.
Collapse
|
44
|
Abstract
The bidirectional causality between kidney injury and inflammation remains an area of unexpected discoveries. The last decade unraveled the molecular mechanisms of sterile inflammation, which established danger signaling via pattern recognition receptors as a new concept of kidney injury-related inflammation. In contrast, renal cell necrosis remained considered a passive process executed either by the complement-related membrane attack complex, exotoxins, or cytotoxic T cells. Accumulating data now suggest that renal cell necrosis is a genetically determined and regulated process involving specific outside-in signaling pathways. These findings support a unifying theory in which kidney injury and inflammation are reciprocally enhanced in an autoamplification loop, referred to here as necroinflammation. This integrated concept is of potential clinical importance because it offers numerous innovative molecular targets for limiting kidney injury by blocking cell death, inflammation, or both. Here, the contribution of necroinflammation to AKI is discussed in thrombotic microangiopathies, necrotizing and crescentic GN, acute tubular necrosis, and infective pyelonephritis or sepsis. Potential new avenues are further discussed for abrogating necroinflammation-related kidney injury, and questions and strategies are listed for further exploration in this evolving field.
Collapse
Affiliation(s)
- Shrikant R Mulay
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany; and
| | - Andreas Linkermann
- Clinic for Nephrology and Hypertension, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Hans-Joachim Anders
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany; and
| |
Collapse
|
45
|
Ozkok A, Ravichandran K, Wang Q, Ljubanovic D, Edelstein CL. NF-κB transcriptional inhibition ameliorates cisplatin-induced acute kidney injury (AKI). Toxicol Lett 2016; 240:105-13. [DOI: 10.1016/j.toxlet.2015.10.028] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/29/2015] [Accepted: 10/22/2015] [Indexed: 12/21/2022]
|
46
|
Park S, Yoon SP, Kim J. Cisplatin induces primary necrosis through poly(ADP-ribose) polymerase 1 activation in kidney proximal tubular cells. Anat Cell Biol 2015; 48:66-74. [PMID: 25806124 PMCID: PMC4371183 DOI: 10.5115/acb.2015.48.1.66] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/23/2014] [Accepted: 01/30/2015] [Indexed: 11/30/2022] Open
Abstract
Treatment with cisplatin for cancer therapy has a major side effect such as nephrotoxicity; however, the role of poly (ADP-ribose) polymerase 1 (PARP1) in necrosis in response to cisplatin nephrotoxicity remains to be defined. Here we report that cisplatin induces primary necrosis through PARP1 activation in kidney proximal tubular cells derived from human, pig and mouse. Treatment with high dose of cisplatin for 4 and 8 hours induced primary necrosis, as represented by the percentage of propidium iodide-positive cells and lactate dehydrogenase release. The primary necrosis was correlated with PARP1 activation during cisplatin injury. Treatment with PJ34, a potent PARP1 inhibitor, at 2 hours after injury attenuated primary necrosis after 8 hours of cisplatin injury as well as PARP1 activation. PARP1 inhibition also reduced the release of lactate dehydrogenase and high mobility group box protein 1 from kidney proximal tubular cells at 8 hours after cisplatin injury. Oxidative stress was increased by treatment with cisplatin for 8 hours as shown by 8-hydroxy-2'-deoxyguanosine and lipid hydroperoxide assays, but PARP1 inhibition at 2 hours after injury reduced the oxidative damage. These data demonstrate that cisplatin-induced PARP1 activation contributes to primary necrosis through oxidative stress in kidney proximal tubular cells, resulting in the induction of cisplatin nephrotoxicity and inflammation.
Collapse
Affiliation(s)
- Seulgee Park
- Medical Course, Jeju National University School of Medicine, Jeju, Korea
| | - Sang Pil Yoon
- Department of Anatomy, Jeju National University School of Medicine, Jeju, Korea
| | - Jinu Kim
- Department of Anatomy, Jeju National University School of Medicine, Jeju, Korea. ; Department of Biomedicine and Drug Development, Jeju National University, Jeju, Korea
| |
Collapse
|
47
|
Xu Y, Ma H, Shao J, Wu J, Zhou L, Zhang Z, Wang Y, Huang Z, Ren J, Liu S, Chen X, Han J. A Role for Tubular Necroptosis in Cisplatin-Induced AKI. J Am Soc Nephrol 2015; 26:2647-58. [PMID: 25788533 DOI: 10.1681/asn.2014080741] [Citation(s) in RCA: 288] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 12/14/2014] [Indexed: 02/05/2023] Open
Abstract
Cell death and inflammation in the proximal tubules are the hallmarks of cisplatin-induced AKI, but the mechanisms underlying these effects have not been fully elucidated. Here, we investigated whether necroptosis, a type of programmed necrosis, has a role in cisplatin-induced AKI. We found that inhibition of any of the core components of the necroptotic pathway-receptor-interacting protein 1 (RIP1), RIP3, or mixed lineage kinase domain-like protein (MLKL)-by gene knockout or a chemical inhibitor diminished cisplatin-induced proximal tubule damage in mice. Similar results were obtained in cultured proximal tubular cells. Furthermore, necroptosis of cultured cells could be induced by cisplatin or by a combination of cytokines (TNF-α, TNF-related weak inducer of apoptosis, and IFN-γ) that were upregulated in proximal tubules of cisplatin-treated mice. However, cisplatin induced an increase in RIP1 and RIP3 expression in cultured tubular cells in the absence of cytokine release. Correspondingly, overexpression of RIP1 or RIP3 enhanced cisplatin-induced necroptosis in vitro. Notably, inflammatory cytokine upregulation in cisplatin-treated mice was partially diminished in RIP3- or MLKL-deficient mice, suggesting a positive feedback loop involving these genes and inflammatory cytokines that promotes necroptosis progression. Thus, our data demonstrate that necroptosis is a major mechanism of proximal tubular cell death in cisplatin-induced nephrotoxic AKI.
Collapse
Affiliation(s)
- Yanfang Xu
- Department of Nephrology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China; Department of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Huabin Ma
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jing Shao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jianfeng Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Linying Zhou
- Department of Pathology, Fujian Medical University, Fuzhou, China; and
| | - Zhirong Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yuze Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhe Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Junming Ren
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Suhuan Liu
- Department of Internal Medicine, First Affiliated Hospital, Xiamen University, Xiamen, China
| | - Xiangmei Chen
- Department of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China;
| |
Collapse
|
48
|
Yoon SP, Kim J. Poly(ADP-ribose) polymerase 1 activation links ischemic acute kidney injury to interstitial fibrosis. J Physiol Sci 2015; 65:105-11. [PMID: 25388944 PMCID: PMC10717313 DOI: 10.1007/s12576-014-0346-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/20/2014] [Indexed: 02/06/2023]
Abstract
Inactivation of poly(ADP-ribose) polymerase 1 (PARP1) has been found to be protective in several disease models; however, the role of PARP1 in acute kidney injury-induced interstitial fibrosis has not been studied. Herein, we tested whether PARP1 inactivation by treatment with PJ34 (a PARP1 inactivator; 10 mg/kg body weight/day, intraperitoneal implantation of a miniosmotic pump at 2 days after the onset) contributed to the decrease in interstitial fibrosis induced by ischemia-reperfusion injury (IRI) in mouse kidneys. IRI increased PARP1 activation represented by poly(ADP-ribose) expression from 4 to 16 days postinjury, whereas treatment with PJ34 at 2 days after the onset efficaciously abolished the increase in PARP1 activation at 4, 8 and 16 days after IRI. Pharmacological inactivation of PARP1 significantly reduced interstitial fibrosis as represented by the collagen deposition and transforming growth factor-β1 level at 8 and 16 days after IRI. Consistent with collagen deposition, myofibroblast activation represented by α-smooth muscle actin expression was also reduced by PARP1 inactivation at 8 and 16 days after IRI. Furthermore, IRI enhanced macrophage influx, but PARP1 inactivaton remarkably reduced macrophage influx for 4 through 16 days after the injury. Among the chemoattractants for monocytes/macrophages and neutrophils, monocyte chemotactic protein-1 (MCP-1) production in IRI kidneys was significantly reduced by PARP1 inactivation from 4 to 16 days postinjury. These data demonstrate that PARP1 activation contributes to IRI-induced MCP-1 production and in turn to macrophage influx, resulting in the promotion of interstitial fibrosis.
Collapse
Affiliation(s)
- Sang Pil Yoon
- Department of Anatomy, Jeju National University School of Medicine, Jeju, 690-756 Republic of Korea
| | - Jinu Kim
- Department of Anatomy, Jeju National University School of Medicine, Jeju, 690-756 Republic of Korea
- Department of Biomedicine and Drug Development, Jeju National University, Jeju, 690-756 Republic of Korea
| |
Collapse
|
49
|
β-Lapachone ameliorates murine cisplatin nephrotoxicity: NAD⁺, NQO1, and SIRT1 at the crossroads of metabolism, injury, and inflammation. Kidney Int 2014; 85:496-8. [PMID: 24583980 PMCID: PMC3942788 DOI: 10.1038/ki.2013.419] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The clinical utility of cisplatin is limited by nephrotoxicity. So et al report that β-lapachone prevents this nephrotoxicity but not cisplatin’s cytotoxicity for cancers. In addition to its potential clinical importance, the beneficial effect of β-lapachone on cisplatin AKI may illustrate fundamental processes that ordinarily link alterations in nutrient availability and intracellular ROS on the one hand, with inflammation and cell death on the other hand.
Collapse
|
50
|
Kim J, Devalaraja-Narashimha K, Padanilam BJ. TIGAR regulates glycolysis in ischemic kidney proximal tubules. Am J Physiol Renal Physiol 2014; 308:F298-308. [PMID: 25503731 DOI: 10.1152/ajprenal.00459.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Tp53-induced glycolysis and apoptosis regulator (TIGAR) activation blocks glycolytic ATP synthesis by inhibiting phosphofructokinase-1 activity. Our data indicate that TIGAR is selectively induced and activated in renal outermedullary proximal straight tubules (PSTs) after ischemia-reperfusion injury in a p53-dependent manner. Under severe ischemic conditions, TIGAR expression persisted through 48 h postinjury and induced loss of renal function and histological damage. Furthermore, TIGAR upregulation inhibited phosphofructokinase-1 activity, glucose 6-phosphate dehydrogenase (G6PD) activity, and induced ATP depletion, oxidative stress, autophagy, and apoptosis. Small interfering RNA-mediated TIGAR inhibition prevented the aforementioned malevolent effects and protected the kidneys from functional and histological damage. After mild ischemia, but not severe ischemia, G6PD activity and NADPH levels were restored, suggesting that TIGAR activation may redirect the glycolytic pathway into gluconeogenesis or the pentose phosphate pathway to produce NADPH. The increased level of NADPH maintained the level of GSH to scavenge ROS, resulting in a lower sensitivity of PST cells to injury. Under severe ischemia, G6PD activity and NADPH levels were reduced during reperfusion; however, blockade of TIGAR enhanced their levels and reduced oxidative stress and apoptosis. Collectively, these results demonstrate that inhibition of TIGAR may protect PST cells from energy depletion and apoptotic cell death in the setting of severe ischemia-reperfusion injury. However, under low ischemic burden, TIGAR activation induces the pentose phosphate pathway and autophagy as a protective mechanism.
Collapse
Affiliation(s)
- Jinu Kim
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; Department of Anatomy, Jeju National University School of Medicine, Jeju, Republic of Korea; Department of Biomedicine and Drug Development, Jeju National University, Jeju, Republic of Korea; and
| | | | - Babu J Padanilam
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; Section of Nephrology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|