1
|
Tsai J, Kim L, Jones I, Culbert S, Ozyurekoglu T. Do allografts present a risk to burn patients? Allografts and HLA-sensitization. Burns 2025; 51:107424. [PMID: 40121705 DOI: 10.1016/j.burns.2025.107424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/20/2024] [Accepted: 02/09/2025] [Indexed: 03/25/2025]
Abstract
OBJECTIVE This meta-analysis aimed to quantify sensitization rates following allograft usage and determine whether allografts have an increased risk of long-term sensitization compared to alternative therapies in burn patients. METHODS Systematic review, meta-analysis and meta-regression of post-operative sensitization in burn patients were performed following Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidance (Prospero registration: CRD42024497137). Database searches were conducted on MEDLINE, Embase, CENTRAL using ProQuest Dialog. We included all studies reporting post-operative sensitization in burn patients that were not case series or singular case reports. Meta-analysis was used to compare the risk of sensitization for allograft versus alternative therapies. RESULTS Six studies (Allograft Patients: 71; Non-Allograft Patients: 95) were included (n = 166). Overall, 73 % (CI: 39 %-92 %) of burn patients were sensitized following allograft. Patients receiving allograft were at a significantly increased risk of sensitization (OR 13.14 [95 % CI: 1.32-131.00]). However, on sub-group analysis, when directly comparing patients who received allograft and transfusion versus those who received transfusion alone, there was not a significantly increased risk of sensitization (OR 7.68 [95 % CI:.61-95.86]). CONCLUSION Allograft is associated with a significantly increased risk of sensitization in burn patients. However, it is not clear whether burn patients already receiving transfusion will have an increased risk of sensitization from adding allograft. Further studies are required to demonstrate the multifactorial causes of sensitization within the burned population to explain the significance of the contribution from allograft and/or transfusion reported within the literature. Clinicians must carefully weigh the immediate benefits of allografts against the potential long-term challenges of sensitization, especially where alternative wound therapies are possible.
Collapse
Affiliation(s)
- Joshua Tsai
- School of Medicine, Imperial College London, United Kingdom.
| | - Luka Kim
- School of Medicine, Imperial College London, United Kingdom.
| | - Isabel Jones
- Chelsea and Westminster Hospital NHS Foundation Trust, United Kingdom.
| | - Samuel Culbert
- School of Medicine, Imperial College London, United Kingdom.
| | | |
Collapse
|
2
|
He A, Yang Y, Kotsch K, Sattler A. Impact of Organ Donor Pretreatment With Anti-Thymocyte Globulin in a Murine Model of Allogenic Kidney Transplantation. Transpl Int 2025; 37:13997. [PMID: 39839912 PMCID: PMC11745874 DOI: 10.3389/ti.2024.13997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025]
Abstract
Kidney transplantation is the treatment of choice for end-stage organ failure. To improve transplantation outcomes, particularly of "marginal" organs from extended criteria donors (ECD), attempts have been made to therapeutically modulate donor or graft pre-transplantation. Anti-thymocyte globulin (ATG) has a history as lymphocyte-depleting, immunosuppressive drug for treating rejection episodes post transplantation. In this study, however, we aimed to comprehensively analyze the effects of ATG donor pre-conditioning in a mouse model of kidney transplantation. ATG pre-treatment of potential donors led to a broad depletion of T- and NK cells in peripheral blood, non-lymphoid (including kidney) and lymphoid organs within 48 h, whereas myeloid cells were spared. ATG was also effectively depleting renal innate lymphoid type 1 and 2 cells. Importantly, transplantation of kidneys from ATG pre-treated donors into fully mismatched recipients showed only mild effects on leukocyte re-composition post transplantation. In line with this, serum creatinine and urea levels were similar in animals receiving kidneys from ATG treated donors or controls, demonstrating that donor treatment had no effect on allograft function in the early post-transplantation phase. In summary, our findings are suggestive of a more cell-type-specific depletion strategy in concert with an experimental model better reflecting aspects of clinical transplantation.
Collapse
Affiliation(s)
- An He
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for General and Visceral Surgery, Berlin, Germany
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yiren Yang
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for General and Visceral Surgery, Berlin, Germany
| | - Katja Kotsch
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for General and Visceral Surgery, Berlin, Germany
| | - Arne Sattler
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for General and Visceral Surgery, Berlin, Germany
| |
Collapse
|
3
|
Tajima T, Hata K, Kusakabe J, Miyauchi H, Badshah JS, Kageyama S, Zhao X, Kim SK, Tsuruyama T, Kirchner VA, Watanabe T, Uemoto S, Hatano E. Anti-complement 5 antibody ameliorates antibody-mediated rejection after liver transplantation in rats. Front Immunol 2023; 14:1186653. [PMID: 37398677 PMCID: PMC10313232 DOI: 10.3389/fimmu.2023.1186653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/18/2023] [Indexed: 07/04/2023] Open
Abstract
Antibody-mediated rejection (AMR) remains a refractory rejection after donor-specific antibody (DSA)-positive or blood-type incompatible liver transplantation (LT), even in the era of pre-transplant rituximab desensitization. This is due to the lack of not only effective post-transplant treatments but also robust animal models to develop/validate new interventions. Orthotopic LT from male Dark Agouti (DA) to male Lewis (LEW) rats was used to develop a rat LT-AMR model. LEW were pre-sensitized by a preceding skin transplantation from DA 4-6 weeks before LT (Group-PS), while sham procedure was performed in non-sensitized controls (Group-NS). Tacrolimus was daily administered until post-transplant day (PTD)-7 or sacrifice to suppress cellular rejections. Using this model, we validated the efficacy of anti-C5 antibody (Anti-C5) for LT-AMR. Group-PS+Anti-C5 received Anti-C5 intravenously on PTD-0 and -3. Group-PS showed increased anti-donor (DA) antibody-titers (P <0.001) and more C4d deposition in transplanted livers than in Group-NS (P <0.001). Alanine aminotransferase (ALT), alkaline phosphatase (ALP), total bile acid (TBA), and total bilirubin (T-Bil) were all significantly higher in Group-PS than in Group-NS (all P <0.01). Thrombocytopenia (P <0.01), coagulopathies (PT-INR, P =0.04), and histopathological deterioration (C4d+h-score, P <0.001) were also confirmed in Group-PS. Anti-C5 administration significantly lowered anti-DA IgG (P <0.05), resulting in decreased ALP, TBA, and T-Bil on PTD-7 than in Group-PS (all P <0.01). Histopathological improvement was also confirmed on PTD-1, -3, and -7 (all P <0.001). Of the 9,543 genes analyzed by RNA sequencing, 575 genes were upregulated in LT-AMR (Group-PS vs. Group-NS). Of these, 6 were directly associated with the complement cascades. In particular, Ptx3, Tfpi2, and C1qtnf6 were specific to the classical pathway. Volcano plot analysis identified 22 genes that were downregulated by Anti-C5 treatment (Group-PS+Anti-C5 vs. Group-PS). Of these, Anti-C5 significantly down-regulated Nfkb2, Ripk2, Birc3, and Map3k1, the key genes that were amplified in LT-AMR. Notably, just two doses of Anti-C5 only on PTD-0 and -3 significantly improved biliary injury and liver fibrosis up to PTD-100, leading to better long-term animal survival (P =0.02). We newly developed a rat model of LT-AMR that meets all the Banff diagnostic criteria and demonstrated the efficacy of Anti-C5 antibody for LT-AMR.
Collapse
Affiliation(s)
- Tetsuya Tajima
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichiro Hata
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jiro Kusakabe
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hidetaka Miyauchi
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Joshua Sam Badshah
- Department of Surgery , Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA, United States
| | - Shoichi Kageyama
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Xiangdong Zhao
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sung-Kwon Kim
- Alexion Pharmaceuticals Inc., New Haven, CT, United States
| | - Tatsuaki Tsuruyama
- Department of Drug Discovery Medicine, Pathology Division, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Varvara A. Kirchner
- Department of Surgery , Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA, United States
| | - Takeshi Watanabe
- Division of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shinji Uemoto
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Shiga University of Medical Science, Otsu, Japan
| | - Etsuro Hatano
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Novel Complement C5 Small-interfering RNA Lipid Nanoparticle Prolongs Graft Survival in a Hypersensitized Rat Kidney Transplant Model. Transplantation 2022; 106:2338-2347. [PMID: 35749284 DOI: 10.1097/tp.0000000000004207] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Prophylaxis of antibody-mediated rejection (AMR) caused by donor-specific antibodies remains challenging. Given the critical roles of complement activity in antibody-mediated graft injury, we developed a lipid nanoparticle (LNP) formulation of small-interfering RNA against complement C5 (C5 siRNA-LNP) and investigated whether C5 siRNA-LNP could downregulate the complement activity and act as an effective treatment for AMR. METHODS Lewis recipient rats were sensitized by skin grafting from Brown Norway donor rats. Kidney transplantation was performed at 4 wk post-skin grafting.C5 siRNA- or control siRNA-LNP was administered intravenously, and the weekly injections were continued until the study's conclusion. Cyclosporin (CsA) and/or deoxyspergualin (DSG) were used as adjunctive immunosuppressants. Complement activity was evaluated using hemolysis assays. The deposition of C5b9 in the grafts was evaluated using immunohistochemical analysis on day 7 posttransplantation. RESULTS C5 siRNA-LNP completely suppressed C5 expression and complement activity (hemolytic activity ≤ 20%) 7 d postadministration. C5 siRNA-LNP in combination with CsA and DSG (median survival time: 56.0 d) prolonged graft survival compared with control siRNA-LNP in combination with CsA and DSG (median survival time: 21.0 d; P = 0.0012; log-rank test). Immunohistochemical analysis of the grafts revealed that downregulation of C5 expression was associated with a reduction in C5b9-positive area ( P = 0.0141, Steel-Dwass test). CONCLUSIONS C5 siRNA-LNP combined with immunosuppressants CsA and DSG downregulated C5 activity and significantly prolonged graft survival compared with control siRNA-LNP with CsA and DSG. Downregulation of C5 expression using C5 siRNA-LNP may be an effective therapeutic approach for AMR.
Collapse
|
5
|
Antibodies against complement component C5 prevent antibody-mediated rejection after lung transplantation in murine orthotopic models with skin-graft-induced pre-sensitization. Gan To Kagaku Ryoho 2022; 70:1032-1041. [PMID: 35767165 DOI: 10.1007/s11748-022-01844-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/04/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Antibody-mediated rejection (AMR) could induce acute or chronic graft failure during organ transplantation. Several reports have shown that anti-C5 antibodies are effective against AMR after kidney transplantation. However, few reports have assessed the efficacy of anti-C5 antibodies against AMR after lung transplantation. Therefore, this study aimed to evaluate the efficacy of this novel therapy against AMR after lung transplantation. METHODS BALB/c and C57BL/6 mice were used as donors and recipients. One group was pre-sensitized (PS) by skin transplantation 14 days before lung transplantation. The other group was non-sensitized (NS). Orthotopic left-lung transplantation was performed in both groups. Animals were killed at 2 or 7 days after lung transplantation and evaluated for histopathology, C4d immunostaining, and serum donor-specific antibodies (DSAs) (n = 5 per group). Isograft (IS) models with C57BL/6 mice were used as controls. To evaluate the efficacy of C5 inhibition, other animals, which received similar treatments to those in the PS group, were treated with anti-C5 antibodies, cyclosporine/methylprednisolone, anti-C5 antibodies/cyclosporine/methylprednisolone, or isotype-matched irrelevant control monoclonal antibodies (n = 5 per group). RESULTS Two days after lung transplantation, the NS group exhibited mild, localized graft-rejection features (rejection score: 0.45 ± 0.08, p = 0.107). The PS group exhibited AMR features with a significantly higher rejection score (2.29 ± 0.42, p = 0.001), C4d vascular-endothelium deposition, and substantial presence of serum DSA. On day 7 after lung transplantation, both groups showed extensive graft alveolar wall destruction, and high acute-rejection scores. Mice receiving anti-C5 antibodies or anti-C5/antibodies/cyclosporine/methylprednisolone demonstrated significantly lower acute-rejection scores (0.63 ± 0.23, p = 0.002; 0.59 ± 0.22, p = 0.001, respectively) than those receiving isotype control antibodies. CONCLUSIONS Murine orthotopic allograft lung transplant models met the clinical diagnosis and pathogenesis classification criteria of AMR. In these models, anti-C5 antibodies suppressed AMR. Therefore, anti-C5 therapy may be effective against AMR after lung transplantation.
Collapse
|
6
|
Steines L, Poth H, Schuster A, Amann K, Banas B, Bergler T. Disruption of Tfh:B Cell Interactions Prevents Antibody-Mediated Rejection in a Kidney Transplant Model in Rats: Impact of Calcineurin Inhibitor Dose. Front Immunol 2021; 12:657894. [PMID: 34135891 PMCID: PMC8201497 DOI: 10.3389/fimmu.2021.657894] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/23/2021] [Indexed: 12/16/2022] Open
Abstract
We aimed to investigate the mechanisms of humoral immune activation in ABMR using a MHC-mismatched rat kidney transplant model. We applied low dose cyclosporine A (loCNI) to allow donor-specific antibody (DSA) formation and rejection and high dose cyclosporine A (hiCNI) for non-rejection. DSA and leukocyte subsets were measured by flow cytometry. Germinal centers (GC), T follicular helper cells (Tfh), plasma cells and interleukin-21 (IL-21) expression were analyzed by immunofluorescence microscopy. Expression of important costimulatory molecules and cytokines was measured by qRT-PCR. Allograft rejection was evaluated by a nephropathologist. We found that DSA formation correlated with GC frequency and expansion, and that GC size was linked to the number of activated Tfh. In hiCNI, GC and activated Tfh were virtually absent, resulting in fewer plasma cells and no DSA or ABMR. Expression of B cell activating T cell cytokine IL-21 was substantially inhibited in hiCNI, but not in loCNI. In addition, hiCNI showed lower expression of ICOS ligand and IL-6, which stimulate Tfh differentiation and maintenance. Overall, Tfh:B cell crosstalk was controlled only by hiCNI treatment, preventing the development of DSA and ABMR. Additional strategies targeting Tfh:B cell interactions are needed for preventing alloantibody formation and ABMR.
Collapse
Affiliation(s)
- Louisa Steines
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Helen Poth
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Antonia Schuster
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Kerstin Amann
- Department of Nephropathology, University Hospital Erlangen, Erlangen, Germany
| | - Bernhard Banas
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Tobias Bergler
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
7
|
Sorohan BM, Ismail G, Leca N, Tacu D, Obrișcă B, Constantinescu I, Baston C, Sinescu I. Angiotensin II type 1 receptor antibodies in kidney transplantation: An evidence-based comprehensive review. Transplant Rev (Orlando) 2020; 34:100573. [DOI: 10.1016/j.trre.2020.100573] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022]
|
8
|
Yamanaka K, Imamura R, Nakazawa S, Kato T, Kakuta Y, Abe T, Okumi M, Nonomura N. Therapeutic Effects and Functional Mechanism of Intravenous Immunoglobulin in Preclinical Rat Renal Transplant Model of Antibody-Mediated Rejection. Transplant Proc 2020; 52:1901-1905. [DOI: 10.1016/j.transproceed.2020.01.137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 01/22/2020] [Indexed: 11/26/2022]
|
9
|
Carroll RP, Deayton S, Emery T, Munasinghe W, Tsiopelas E, Fleet A, Lake M, Humphreys I, Jalalonmuhali M, Coates P. Proactive treatment of angiotensin receptor antibodies in kidney transplantation with plasma exchange and/or candesartan is safe and associated with excellent graft survival at 4 years: A single centre Australian experience. Hum Immunol 2019; 80:573-578. [DOI: 10.1016/j.humimm.2019.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/28/2019] [Accepted: 04/08/2019] [Indexed: 02/05/2023]
|
10
|
Liao T, Zhang Y, Ren J, Zheng H, Zhang H, Li X, Liu X, Yin T, Sun Q. Noninvasive quantification of intrarenal allograft C4d deposition with targeted ultrasound imaging. Am J Transplant 2019; 19:259-268. [PMID: 30171802 DOI: 10.1111/ajt.15105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/08/2018] [Accepted: 08/27/2018] [Indexed: 01/25/2023]
Abstract
Antibody-mediated rejection (AMR) has emerged as a major cause of renal allograft dysfunction. C4d, a specific marker for AMR diagnosis, was strongly recommended for routine surveillance; however, currently, C4d detection is dependent upon tissue biopsy, which is invasive and provides only local semi-quantitative data. Targeted ultrasound imaging has been used extensively for noninvasive and real-time molecular detection with advantages of high specificity and sensitivity. In this study, we designed C4d-targeted microbubbles (MBC4d ) using a streptavidin-biotin conjugated method and detected C4d deposition in vivo in a rat model of AMR by enhanced ultrasound imaging. This noninvasive procedure allowed successful acquisition of the first qualitative image of C4d deposition in a wide renal allograft section, which reflected real-time C4d distribution in grafts. Moreover, we introduced normal intensity difference for quantitative analysis, which exhibited a nearly linear correlation with the grade of C4d deposition according to pathologic analysis. In addition, this approach showed no influence on survival rates and pathologic features in the microbubble injection groups, thereby demonstrating its safety. These findings demonstrated a simple, noninvasive, quantitative, and safe evaluation method for C4d, with the utility of this approach potentially preventing patients from having to undergo an invasive biopsy.
Collapse
Affiliation(s)
- Tao Liao
- Organ Transplantation Research Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yannan Zhang
- Organ Transplantation Research Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jie Ren
- Department of Medical Ultrasound, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haofeng Zheng
- Organ Transplantation Research Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongjun Zhang
- Department of Medical Ultrasound, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiujie Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaonan Liu
- Organ Transplantation Research Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tinghui Yin
- Department of Medical Ultrasound, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiquan Sun
- Organ Transplantation Research Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Liao T, Liu X, Ren J, Zhang H, Zheng H, Li X, Zhang Y, Han F, Yin T, Sun Q. Noninvasive and quantitative measurement of C4d deposition for the diagnosis of antibody-mediated cardiac allograft rejection. EBioMedicine 2018; 37:236-245. [PMID: 30385231 PMCID: PMC6286270 DOI: 10.1016/j.ebiom.2018.10.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/15/2018] [Accepted: 10/24/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND C4d is a specific biomarker for the diagnosis of antibody-mediated rejection (AMR) after cardiac transplantation. Although strongly recommended, routine C4d surveillance is hindered by the invasive nature of endomyocardial biopsy. Targeted ultrasound (US) has high sensitivity, and C4d is abundantly expressed within the graft of patients experiencing AMR, which makes it possible to visualize C4d deposition in vivo using targeted US. METHODS We designed a serial dilution of C4d-targeted microbubbles (MBC4d) using a streptavidin-biotin conjugation system. A rat model of AMR with C4d deposition was established by pre-sensitization with skin transplantation before cardiac transplantation. MBC4d were injected into recipients and then qualitatively and quantitatively analyzed using the destruction-replenishment method with a clinical US imaging system and analyzed by software. FINDINGS We successfully obtained qualitative images of C4d deposition in a wide cardiac allograft section, which, for the first time, reflected real-time C4d distribution. Moreover, normal intensity difference was used for quantitative analysis and exhibited an almost nearly linear correlation with the grade of C4d deposition according to the pathologic evidence. In addition, MBC4d injection did not affect the survival and aggravate injury, which demonstrates its safety. INTERPRETATION This study demonstrates a noninvasive, quantitative and safe evaluation method for C4d. As contrast-enhanced US has been widely used in clinical settings, this technology is expected to be applied quickly to clinical practice. FUND: National Natural Science Foundation of China and Guangdong Province, Leading Scientific Talents of Guangdong special support program, the Science and Technology Project of Guangdong Province and Guangzhou City.
Collapse
Affiliation(s)
- Tao Liao
- Organ Transplantation Research Institute of Sun Yat-sen University, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaonan Liu
- Organ Transplantation Research Institute of Sun Yat-sen University, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jie Ren
- Department of Medical Ultrasound, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongjun Zhang
- Department of Medical Ultrasound, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haofeng Zheng
- Organ Transplantation Research Institute of Sun Yat-sen University, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiujie Li
- Department of Obstetrics and Gynecology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yannan Zhang
- Organ Transplantation Research Institute of Sun Yat-sen University, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fei Han
- Organ Transplantation Research Institute of Sun Yat-sen University, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tinghui Yin
- Department of Medical Ultrasound, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiquan Sun
- Organ Transplantation Research Institute of Sun Yat-sen University, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
12
|
Zhao D, Liao T, Li S, Zhang Y, Zheng H, Zhou J, Han F, Dong Y, Sun Q. Mouse Model Established by Early Renal Transplantation After Skin Allograft Sensitization Mimics Clinical Antibody-Mediated Rejection. Front Immunol 2018; 9:1356. [PMID: 30022978 PMCID: PMC6039569 DOI: 10.3389/fimmu.2018.01356] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/31/2018] [Indexed: 01/03/2023] Open
Abstract
Antibody-mediated rejection (AMR) is the main barrier to renal graft survival, and mouse renal AMR models are important to study this process. Current mouse models are established by priming the recipient to donor skin for over 7 days before kidney transplantation. The robustness of AMR in these cases is too strong to mimic clinical AMR and it is unclear why altering the priming times ranging from 7 to 91 days fails to reduce the AMR potency in these models. In the present study, we found that the donor-recipient combination and skin graft size were determinants of donor-specific antibody (DSA) development patterns after skin transplantation. DSA-IgG was sustained for over 100 days after skin challenge, accounting for an identical AMR robustness upon different skin priming times over 7 days. However, decreasing the skin priming time within 7 days attenuated the robustness of subsequent renal allograft AMR in C3H to Balb/c mice. Four-day skin priming guaranteed that recipients develop acute renal AMR mixed with a high ratio of graft-infiltrating macrophages, renal grafts survived for a mean of 6.4 ± 2.1 days, characterized by typical AMR histological changes, such as glomerulitis, peritubular capillary (PTC) dilation, and capillaritis, deposition of IgG and C3d in PTCs, but less prevalence of microthrombus, whereas the cellular rejection histological change of tubulitis was absent to mild. With this scheme, we also found that the renal AMR model can be developed using common mouse strains such as C57BL/6 and Balb/c, with mean prolonged renal graft survival times of 14.4 ± 5.0 days. Finally, we proved that donor-matched skin challenge after kidney transplantation did not strongly affect DSA development and kidney graft outcome. These findings may facilitate an understanding and establishment of mouse renal allograft AMR models and promote AMR-associated studies.
Collapse
Affiliation(s)
- Daqiang Zhao
- Division of Kidney Transplantation, Department of Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tao Liao
- Division of Kidney Transplantation, Department of Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Siwen Li
- Division of Kidney Transplantation, Department of Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yannan Zhang
- Division of Kidney Transplantation, Department of Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haofeng Zheng
- Division of Kidney Transplantation, Department of Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jing Zhou
- Department of Pathology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fei Han
- Division of Kidney Transplantation, Department of Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu Dong
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiquan Sun
- Division of Kidney Transplantation, Department of Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Liao T, Xue Y, Zhao D, Li S, Liu M, Chen J, Brand DD, Zheng H, Zhang Y, Zheng SG, Sun Q. In Vivo Attenuation of Antibody-Mediated Acute Renal Allograft Rejection by Ex Vivo TGF-β-Induced CD4 +Foxp3 + Regulatory T Cells. Front Immunol 2017; 8:1334. [PMID: 29085374 PMCID: PMC5650643 DOI: 10.3389/fimmu.2017.01334] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/02/2017] [Indexed: 11/28/2022] Open
Abstract
Antibody-mediated rejection (AMR) has emerged as the major cause of renal allograft dysfunction, and more effective strategies need to be explored for improving transplant outcomes. Regulatory T cells (Tregs), consisting of at least natural and induced Treg subsets, suppress effector responses at multiple levels and play a key role in transplantation tolerance. In this study, we investigated the effect of induced Tregs (iTregs) on preventing antibody-mediated renal injury and rejection in a mouse model. We observed that infusion of iTregs markedly attenuated histological graft injury and rejection and significantly improved renal allograft survival. iTregs exhibited a comprehensive ability to regulate immunological disorders in AMR. First, iTreg treatment decreased the levels of circulating antidonor antibody and the antibody deposition within allografts. Second, iTregs significantly reduced cell infiltration including CD4+ T cells (including Th1, Th17, and Tfh), CD8+IFN-γ+ cells, natural killer cells, B cells, and plasma cells, which are involved in the process of AMR. Our results also highlight a predominance of M1 macrophage infiltration in grafts with acute AMR, and M1 macrophage could be reduced by iTreg treatment. Collectively, our data demonstrate, for the first time, that TGF-β-induced Tregs can attenuate antibody-mediated acute renal allograft injury through targeting multiple effectors. Thus, use of iTregs in prevention of AMR in clinical practice could be expected.
Collapse
Affiliation(s)
- Tao Liao
- Division of Kidney Transplantation, Department of Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Youqiu Xue
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Division of Rheumatology, Milton S. Hershey Medical Center at Penn State University, Hershey, PA, United States
| | - Daqiang Zhao
- Division of Kidney Transplantation, Department of Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Siwen Li
- Division of Kidney Transplantation, Department of Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mingyu Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Science of Sun Yat-sen University, Guangzhou, China
| | - Jingrong Chen
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | - Haofeng Zheng
- Division of Kidney Transplantation, Department of Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yannan Zhang
- Division of Kidney Transplantation, Department of Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Song Guo Zheng
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Division of Rheumatology, Milton S. Hershey Medical Center at Penn State University, Hershey, PA, United States
| | - Qiquan Sun
- Division of Kidney Transplantation, Department of Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Huang G, Wilson NA, Reese SR, Jacobson LM, Zhong W, Djamali A. Characterization of transfusion-elicited acute antibody-mediated rejection in a rat model of kidney transplantation. Am J Transplant 2014; 14:1061-72. [PMID: 24708533 PMCID: PMC4289595 DOI: 10.1111/ajt.12674] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 01/25/2023]
Abstract
Animal models of antibody-mediated rejection (ABMR) may provide important evidence supporting proof of concept. We elicited donor-specific antibodies (DSA) by transfusion of donor blood (Brown Norway RT1(n) ) into a complete mismatch recipient (Lewis RT1(l) ) 3 weeks prior to kidney transplantation. Sensitized recipients had increased anti-donor splenocyte IgG1, IgG2b and IgG2c DSA 1 week after transplantation. Histopathology was consistent with ABMR characterized by diffuse peritubular capillary C4d and moderate microvascular inflammation with peritubular capillaritis + glomerulitis > 2. Immunofluorescence studies of kidney allograft tissue demonstrated a greater CD68/CD3 ratio in sensitized animals, primarily of the M1 (pro-inflammatory) phenotype, consistent with cytokine gene analyses that demonstrated a predominant T helper (TH )1 (interferon-γ, IL-2) profile. Immunoblot analyses confirmed the activation of the M1 macrophage phenotype as interferon regulatory factor 5, inducible nitric oxide synthase and phagocytic NADPH oxidase 2 were significantly up-regulated. Clinical biopsy samples in sensitized patients with acute ABMR confirmed the dominance of M1 macrophage phenotype in humans. Despite the absence of tubulitis, we were unable to exclude the effects of T cell-mediated rejection. These studies suggest that M1 macrophages and TH 1 cytokines play an important role in the pathogenesis of acute mixed rejection in sensitized allograft recipients.
Collapse
Affiliation(s)
- G. Huang
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - N. A. Wilson
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - S. R. Reese
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - L. M. Jacobson
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - W. Zhong
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - A. Djamali
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
,Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
,Corresponding author: Arjang Djamali,
| |
Collapse
|
15
|
Kidney international web focus on transplantation. Kidney Int 2014; 85:227-9. [PMID: 24487359 DOI: 10.1038/ki.2013.550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
MHC universal cells survive in an allogeneic environment after incompatible transplantation. BIOMED RESEARCH INTERNATIONAL 2013; 2013:796046. [PMID: 24350288 PMCID: PMC3856147 DOI: 10.1155/2013/796046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/29/2013] [Accepted: 08/29/2013] [Indexed: 11/18/2022]
Abstract
Cell, tissue, and organ transplants are commonly performed for the treatment of different diseases. However, major histocompatibility complex (MHC) diversity often prevents complete donor-recipient matching, resulting in graft rejection. This study evaluates in a preclinical model the capacity of MHC class I-silenced cells to engraft and grow upon allogeneic transplantation. Short hairpin RNA targeting β2-microglobulin (RN_shβ2m) was delivered into fibroblasts derived from LEW/Ztm (RT1l) (RT1-Al) rats using a lentiviral-based vector. MHC class I (RT1-A-) expressing and -silenced cells were injected subcutaneously in LEW rats (RT1l) and MHC-congenic LEW.1W rats (RT1u), respectively. Cell engraftment and the status of the immune response were monitored for eight weeks after transplantation. In contrast to RT1-A-expressing cells, RT1-A-silenced fibroblasts became engrafted and were still detectable eight weeks after allogeneic transplantation. Plasma levels of proinflammatory cytokines IL-1α, IL-1β, IL-6, TNF-α, and IFN-γ were significantly higher in animals transplanted with RT1-A-expressing cells than in those receiving RT1-A-silenced cells. Furthermore, alloantigen-specific T-cell proliferation rates derived from rats receiving RT1-A-expressing cells were higher than those in rats transplanted with RT1-A-silenced cells. These data suggest that silencing MHC class I expression might overcome the histocompatibility barrier, potentially opening up new avenues in the field of cell transplantation and regenerative medicine.
Collapse
|