1
|
Smeijer JD, Kohan DE, Dhaun N, Noronha IL, Liew A, Heerspink HJL. Endothelin receptor antagonists in chronic kidney disease. Nat Rev Nephrol 2025; 21:175-188. [PMID: 39643698 DOI: 10.1038/s41581-024-00908-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 12/09/2024]
Abstract
Endothelin-1 is a potent vasoconstrictor that has diverse physiological functions in the kidney, including in the regulation of blood flow and glomerular filtration, electrolyte homeostasis and endothelial function. Overexpression of endothelin-1 contributes to the pathophysiology of both diabetic and non-diabetic chronic kidney disease (CKD). Selective endothelin receptor antagonists (ERAs) that target the endothelin A (ETA) receptor have demonstrated benefits in animal models of kidney disease and in clinical trials. In patients with type 2 diabetes and CKD, the selective ETA ERA, atrasentan, reduced albuminuria and kidney function decline. Concerns about the increased risks of fluid retention and heart failure with ERA use have led to the design of further trials to optimize dosing and patient selection. More recent studies have shown that the dual ETA receptor and angiotensin receptor blocker, sparsentan, preserved kidney function with minimal fluid retention in patients with IgA nephropathy. Moreover, combined administration of a low dose of the ETA-selective ERA, zibotentan, with the sodium-glucose cotransporter 2 (SGLT2) inhibitor, dapagliflozin, enhanced albuminuria reduction and mitigated fluid retention in patients with CKD. Notably, sparsentan and aprocitentan have received FDA approval for the treatment of IgA nephropathy and treatment-resistant hypertension, respectively. This Review describes our current understanding of the use of ERAs in patients with CKD to guide their optimal safe and effective use in clinical practice.
Collapse
Affiliation(s)
- J David Smeijer
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Donald E Kohan
- Division of Nephrology, University of Utah Health, Salt Lake City, UT, USA
| | - Neeraj Dhaun
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Irene L Noronha
- Division of Nephrology, University of Sao Paulo Medical School, Sao Paulo, Brazil
- George Institute for Global Health, Sydney, New South Wales, Australia
| | - Adrian Liew
- George Institute for Global Health, Sydney, New South Wales, Australia
- Mount Elizabeth Novena Hospital, Singapore, Singapore
| | - Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
- George Institute for Global Health, Sydney, New South Wales, Australia.
| |
Collapse
|
2
|
Moedt E, Wasehuus VS, Heerspink HJL. Selective endothelin A receptor antagonism in chronic kidney disease: improving clinical application. Nephrol Dial Transplant 2025; 40:i37-i46. [PMID: 39907539 PMCID: PMC11795649 DOI: 10.1093/ndt/gfae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Indexed: 02/06/2025] Open
Abstract
Endothelin-1 (ET-1) is a peptide that is involved in various chronic diseases including cardiovascular and kidney disease. ET-1 can bind to two receptors, endothelin A (ETA) and endothelin B (ETB), which are found in different organs and tissues. When ET-1 binds to the ETA receptor, it causes blood vessels to narrow, while binding of ET-1 to the ETB receptor causes blood vessels to widen. These receptors help regulate fluid and electrolyte balance in the kidneys, as well as the kidney's ability to filter various substances out of the body. Overactivation of ET-1 can occur in people with diabetes or obesity, which can damage the structure and function of the kidney.Studies in mice and humans with kidney disease have shown that blocking the ETA receptor improves kidney health. As a result, medicines that specifically block the ETA receptor, known as endothelin receptor antagonists (ERAs), are a promising option for treating these kidney diseases. The first ERA (sparsentan) is now available for use in patients with immunoglobulin A (IgA) nephropathy, a specific type of kidney disease. It should be noted that ERAs can cause side effects. Fluid retention, which can increase the risk of heart failure, is a side effect that is particularly observed in patients with type 2 diabetes and severe kidney disease. This side effect is less often observed in patients with IgA nephropathy or patients without diabetes.Treatment strategies to optimize safe and effective use of ETA blockers are being developed. Overall, these insights offer hope for better care of patients with kidney disease. ABSTRACT Endothelin-1 (ET-1) is a 21-amino acid peptide involved in numerous cardiovascular and renal processes. ET-1 can bind to endothelin receptor A (ETA) and endothelin receptor B (ETB), which are found in various organs and tissues. In general, binding of ET-1 to the ETA receptor causes vasoconstriction, whereas activation of the ETB receptor leads to vasodilation. In the kidney, endothelin receptors regulate fluid and electrolyte balance, regional blood flow and glomerular filtration rate. In pathological conditions, ET-1 promotes kidney injury through adverse effects on the endothelial glycocalyx, podocytes and mesangial cells, and stimulating inflammation and fibrosis in the tubules. In experimental and clinical studies, inhibition of the ETA receptor has been shown beneficial in a variety of kidney diseases. These include diabetic kidney disease, immunoglobulin A nephropathy, focal segmental glomerulosclerosis and Alport syndrome. Accordingly, selective ETA endothelin receptor antagonists (ERA) may prove a viable therapeutic option in these diseases. However, clinical application is challenged by the occurrence of fluid retention which can lead to heart failure, in particular in patients with severe CKD. Concomitant use of sodium-glucose cotransporter 2 inhibitors (SGLT2i) may mitigate these adverse effects through their diuretic actions. The development of highly selective ETA antagonists, such as atrasentan and zibotentan, and the opportunities of combining these with SGLT2i, holds promise to optimize efficacy and safety of ERAs in clinical practice.
Collapse
Affiliation(s)
- Erik Moedt
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- The George Institute for Global Health, Sydney, Australia
| |
Collapse
|
3
|
Damianaki A, Hendriks‐Balk M, Brito W, Polychronopoulou E, Theiler K, Pruijm M, Wuerzner G. In Patients With Hypertension, the Cortical Perfusion Index Measured by Contrast Enhanced Ultrasound Reveals a Sexual Dimorphism. J Am Heart Assoc 2025; 14:e039306. [PMID: 39895553 PMCID: PMC12074722 DOI: 10.1161/jaha.124.039306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/06/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Arterial hypertension is characterized by microvasculature changes and reduced tissue perfusion. It is unknown whether a sexual dimorphism of renal microcirculation is present in patients with arterial hypertension. We aimed to compare the cortical microcirculation in women and men with hypertension and to evaluate their response to sympathetic stimulation with a cold pressor test (CPT). METHODS The cortical perfusion index (PI) measured by contrast-enhanced ultrasonography was used as a proxy of renal microcirculation. We measured the PI at rest and during a 2-minute CPT in patients with arterial hypertension. We used a linear mixed-model analysis to study the effect of sex, the CPT, and their interaction on the PI. RESULTS Thirty-two participants were included (34% women). Age and body mass index were similar in both groups. Median PI was higher in women (2344 [interquartile range, 1553-2685 arbitrary units]) than men (1285 [interquartile range, 591-1741 arbitrary units], P=0.009). The CPT increased the PI in both groups; however, the magnitude of the response to CPT was similar in both sexes. CONCLUSIONS Women with arterial hypertension have a higher cortical microperfusion than men, while their microvascular reactivity to a CPT appears to be similar. This sexual dimorphism may have an impact on renal function decline, which needs further investigation.
Collapse
Affiliation(s)
- Aikaterini Damianaki
- Service of Nephrology and HypertensionLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Mariëlle Hendriks‐Balk
- Service of Nephrology and HypertensionLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Wendy Brito
- Service of Nephrology and HypertensionLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Erietta Polychronopoulou
- Service of Nephrology and HypertensionLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Kenji Theiler
- Service of Nephrology and HypertensionLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Menno Pruijm
- Service of Nephrology and HypertensionLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Grégoire Wuerzner
- Service of Nephrology and HypertensionLausanne University Hospital and University of LausanneLausanneSwitzerland
| |
Collapse
|
4
|
Zhang Y, Arzaghi H, Ma Z, Roye Y, Musah S. Epigenetics of Hypertensive Nephropathy. Biomedicines 2024; 12:2622. [PMID: 39595187 PMCID: PMC11591919 DOI: 10.3390/biomedicines12112622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Hypertensive nephropathy (HN) is a leading cause of chronic kidney disease (CKD) and end-stage renal disease (ESRD), contributing to significant morbidity, mortality, and rising healthcare costs. In this review article, we explore the role of epigenetic mechanisms in HN progression and their potential therapeutic implications. We begin by examining key epigenetic modifications-DNA methylation, histone modifications, and non-coding RNAs-observed in kidney disease. Next, we discuss the underlying pathophysiology of HN and highlight current in vitro and in vivo models used to study the condition. Finally, we compare various types of HN-induced renal injury and their associated epigenetic mechanisms with those observed in other kidney injury models, drawing inferences on potential epigenetic therapies for HN. The information gathered in this work indicate that epigenetic mechanisms can drive the progression of HN by regulating key molecular signaling pathways involved in renal damage and fibrosis. The limitations of Renin-Angiotensin-Aldosterone System (RAAS) inhibitors underscore the need for alternative treatments targeting epigenetic pathways. This review emphasizes the importance of further research into the epigenetic regulation of HN to develop more effective therapies and preventive strategies. Identifying novel epigenetic markers could provide new therapeutic opportunities for managing CKD and reducing the burden of ESRD.
Collapse
Affiliation(s)
- Yize Zhang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Hamidreza Arzaghi
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Zhehan Ma
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Yasmin Roye
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Samira Musah
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC 27708, USA
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
- Affiliate Faculty of the Developmental and Stem Cell Biology Program, Duke Regeneration Center, and Duke MEDx Initiative, Duke University, Durham, NC 27710, USA
| |
Collapse
|
5
|
Saleh MA, Shaaban AA, Talaat IM, Elmougy A, Adra SF, Ahmad F, Qaisar R, Elmoselhi AB, Abu-Gharbieh E, El-Huneidi W, Eladl MA, Shehatou G, Kafl HE. RhoA/ROCK inhibition attenuates endothelin-1-induced glomerulopathy in the rats. Life Sci 2023; 323:121687. [PMID: 37030613 DOI: 10.1016/j.lfs.2023.121687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/25/2023] [Accepted: 04/05/2023] [Indexed: 04/10/2023]
Abstract
Endothelin-1 (ET-1) contributes to the development of kidney diseases. However, the underlying molecular mechanism is largely undefined. Here we sought to investigate the potential role of ET-1 receptors, ETA and ETB in the regulation of increased glomerular permeability and underlying signaling pathways post-ET-1 infusion. Male Sprague-Dawley rats were infused with ET-1 (2 pmol/kg per minute, i.v.) for four weeks, and the effect on glomerular permeability to albumin (Palb) and albuminuria was measured. The selective ROCK-1/2 inhibitor, Y-27632, was administered to a separate group of rats to determine its effect on ET-1-induced Palb and albuminuria. The role of ETA and ETB receptors in regulating RhoA/ROCK activity was determined by incubating isolated glomeruli from normal rats with ET-1 and with selective ETA and ETB receptor antagonists. ET-1 infusion for four weeks significantly elevated Palb and albuminuria. Y-27632 significantly reduced the elevation of Palb and albuminuria. The activities of both RhoA and ROCK-1/2 were increased by ET-1 infusion. Selective ETB receptor antagonism had no effect on the elevated activity of both RhoA and ROCK-1/2 enzymes. Selective ETA receptor and combined ETA/ETB receptors blockade restored the activity of RhoA and ROCK-1/2 to normal levels. In addition, chronic ET-1 infusion increased the levels of glomerular inflammatory and fibrotic markers. These effects were all attenuated in rats following ROCK-1/2 inhibition. These observations suggest that ET-1 contributes to increased albuminuria, inflammation, and fibrosis by modulating the activity of the ETA-RhoA/ROCK-1/2 pathway. Selective ETA receptor blockade may represent a potential therapeutic strategy to limit glomerular injury and albuminuria in kidney disease.
Collapse
Affiliation(s)
- Mohamed A Saleh
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Ahmed A Shaaban
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City 35712, Egypt
| | - Iman M Talaat
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Pathology Department, Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
| | - Atef Elmougy
- Pediatric Nephrology Unit, Mansoura University Children's Hospital, Mansoura University, Mansoura 35516, Egypt
| | - Saryia F Adra
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Firdos Ahmad
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates
| | - Rizwan Qaisar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Adel B Elmoselhi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Eman Abu-Gharbieh
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Waseem El-Huneidi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohamed A Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - George Shehatou
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City 35712, Egypt
| | - Hoda E Kafl
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
6
|
Nyvad J, Lerman A, Lerman LO. With a Little Help From My Friends: the Role of the Renal Collateral Circulation in Atherosclerotic Renovascular Disease. Hypertension 2022; 79:717-725. [PMID: 35135307 PMCID: PMC8917080 DOI: 10.1161/hypertensionaha.121.17960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The collateral circulation can adapt to bypass major arteries with limited flow and serves a crucial protective role in coronary, cerebral, and peripheral arterial disease. Emerging evidence indicates that the renal collateral circulation can similarly adapt and thereby limit kidney ischemia in atherosclerotic renovascular disease. These adaptations predominantly include recruitment of preexisting microvessels for arteriogenesis, with de novo vessel formation playing a limited role. Yet, adaptations of the renal collateral circulation in renovascular disease are often insufficient to fully compensate for the limited flow within an obstructed renal artery and may be hampered by the severity of obstruction or patient comorbidities. Experimental strategies have attempted to circumvent limitations of collateral formation and improve the prognosis of patients with various ischemic vascular territories. These have included pharmacological approaches such as endothelial growth factors, renin-angiotensin-aldosterone system blockade, and If-channel-blockers, as well as interventions like preconditioning, exercise, enhanced external counter-pulsation, and low-energy shock-wave therapy. However, few of these strategies have been implemented in atherosclerotic renovascular disease. This review summarizes current understanding regarding the development of renal collateral circulation in atherosclerotic renovascular disease. Studies are needed to apply lessons learned in other vascular beds in the setting of atherosclerotic renovascular disease to develop new treatment regimens for this patient group.
Collapse
Affiliation(s)
- Jakob Nyvad
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN. (J.N., L.O.L.).,Department of Nephrology and Hypertension, Aarhus University Hospital, Aarhus, Denmark (J.N.)
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN. (A.L.)
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN. (J.N., L.O.L.)
| |
Collapse
|
7
|
Krishnan S, Suarez-Martinez AD, Bagher P, Gonzalez A, Liu R, Murfee WL, Mohandas R. Microvascular dysfunction and kidney disease: Challenges and opportunities? Microcirculation 2021; 28:e12661. [PMID: 33025626 PMCID: PMC9990864 DOI: 10.1111/micc.12661] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/18/2020] [Accepted: 09/29/2020] [Indexed: 12/29/2022]
Abstract
Kidneys are highly vascular organs that despite their relatively small size receive 20% of the cardiac output. The highly intricate, delicately organized structure of renal microcirculation is essential to enable renal function and glomerular filtration rate through the local modulation of renal blood flow and intraglomerular pressure. Not surprisingly, the dysregulation of blood flow within the microvessels (abnormal vasoreactivity), fibrosis driven by disordered vascular-renal cross talk, or the loss of renal microvasculature (rarefaction) is associated with kidney disease. In addition, kidney disease can cause microcirculatory dysfunction in distant organs such as the heart and brain, mediated by mechanisms that remain to be elucidated. The objective of this review is to highlight the role of renal microvasculature in kidney disease. The overview will outline the impetus to study renal microvasculature, the bidirectional relationship between kidney disease and microvascular dysfunction, the key pathways driving microvascular diseases such as vasoreactivity, the cell dynamics coordinating fibrosis, and vessel rarefaction. Finally, we will also briefly highlight new therapies targeting the renal microvasculature to improve renal function.
Collapse
Affiliation(s)
- Suraj Krishnan
- Division of Nephrology, Hypertension & Transplantation, University of Florida College of Medicine, Gainesville, FL, USA
| | - Ariana D Suarez-Martinez
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Pooneh Bagher
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Anjelica Gonzalez
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, FL, USA
| | - Walter L Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Rajesh Mohandas
- Division of Nephrology, Hypertension & Transplantation, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
8
|
Zhou Y, Chi J, Huang Y, Dong B, Lv W, Wang YG. Efficacy and safety of endothelin receptor antagonists in type 2 diabetic kidney disease: A systematic review and meta-analysis of randomized controlled trials. Diabet Med 2021; 38:e14411. [PMID: 33000477 DOI: 10.1111/dme.14411] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/10/2020] [Accepted: 09/22/2020] [Indexed: 01/01/2023]
Abstract
AIM To analyse the efficacy and safety of endothelin receptor antagonists for people with diabetic kidney disease. METHODS Randomized controlled trials comparing endothelin receptor antagonists with placebo in people with diabetic kidney disease were identified through PubMed, Embase and the Cochrane Library. We used a random-effect model to calculate the mean difference or risk ratio with the 95% CI. RESULTS Seven studies with a total of 4730 participants were included. Overall, endothelin receptor antagonists significantly reduced albuminuria compared with placebo (standardized mean difference -0.48, 95% CI -0.64 to -0.33). Atrasentan, in particular, effectively reduced albuminuria (standardized mean difference -0.58, 95% CI -1.00 to -0.17) and the risk of composite renal endpoints (risk ratio 0.65; 95% CI 0.49 to 0.88), with insignificant change in the rate of congestive heart failure (risk ratio 1.40, 95% CI 0.76 to 2.56) and mortality (risk ratio 1.11, 95% CI 0.77 to 1.61). In contrast, although avosentan reduced albuminuria (standardized mean difference -0.47, 95% CI -0.57 to -0.36) and the risk of composite renal endpoints (risk ratio 0.63, 95% CI 0.42 to 0.94), it was associated with a significant increase in congestive heart failure risk (risk ratio 2.61, 95% CI 1.36 to 5.00) and an insignificant increase in mortality risk (risk ratio 1.50, 95% CI 0.81, 2.78). No significant change in efficacy or safety outcomes with bosentan was detected. Dose-response analysis indicated that 0.75 mg/day atrasentan is expected to be optimal for renoprotection, with maximal albuminuria reduction and minimal fluid retention events. CONCLUSIONS Among the endothelin receptor antagonists, atrasentan and avosentan, but not bosentan, are effective for renoprotection in people with diabetic kidney disease. Compared with other types and doses, atrasentan 0.75 mg/day is the most promising, with maximal albuminuria reduction and minimal fluid retention. Vigilant monitoring of congestive heart failure risk is needed in future clinical practice. (PROSPERO registration no. CRD42020169840).
Collapse
Affiliation(s)
- Y Zhou
- Department of Endocrinology, Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - J Chi
- Department of Endocrinology, Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Y Huang
- Department of Endocrinology, Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - B Dong
- Department of Endocrinology, Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - W Lv
- Department of Endocrinology, Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Y G Wang
- Department of Endocrinology, Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Peritubular Capillary Rarefaction: An Underappreciated Regulator of CKD Progression. Int J Mol Sci 2020; 21:ijms21218255. [PMID: 33158122 PMCID: PMC7662781 DOI: 10.3390/ijms21218255] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022] Open
Abstract
Peritubular capillary (PTC) rarefaction is commonly detected in chronic kidney disease (CKD) such as hypertensive nephrosclerosis and diabetic nephropathy. Moreover, PTC rarefaction prominently correlates with impaired kidney function and predicts the future development of end-stage renal disease in patients with CKD. However, it is still underappreciated that PTC rarefaction is a pivotal regulator of CKD progression, primarily because the molecular mechanisms of PTC rarefaction have not been well-elucidated. In addition to the established mechanisms (reduced proangiogenic factors and increased anti-angiogenic factors), recent studies discovered significant contribution of the following elements to PTC loss: (1) prompt susceptibility of PTC to injury, (2) impaired proliferation of PTC, (3) apoptosis/senescence of PTC, and (4) pericyte detachment from PTC. Mainly based on the recent and novel findings in basic research and clinical study, this review describes the roles of the above-mentioned elements in PTC loss and focuses on the major factors regulating PTC angiogenesis, the assessment of PTC rarefaction and its surrogate markers, and an overview of the possible therapeutic agents to mitigate PTC rarefaction during CKD progression. PTC rarefaction is not only a prominent histological characteristic of CKD but also a central driving force of CKD progression.
Collapse
|
10
|
Engel JE, Williams ML, Williams E, Azar C, Taylor EB, Bidwell GL, Chade AR. Recovery of Renal Function following Kidney-Specific VEGF Therapy in Experimental Renovascular Disease. Am J Nephrol 2020; 51:891-902. [PMID: 33130676 DOI: 10.1159/000511260] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/31/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Chronic renovascular disease (RVD) can lead to a progressive loss of renal function, and current treatments are inefficient. We designed a fusion of vascular endothelial growth factor (VEGF) conjugated to an elastin-like polypeptide (ELP) carrier protein with an N-terminal kidney-targeting peptide (KTP). We tested the hypothesis that KTP-ELP-VEGF therapy will effectively recover renal function with an improved targeting profile. Further, we aimed to elucidate potential mechanisms driving renal recovery. METHODS Unilateral RVD was induced in 14 pigs. Six weeks later, renal blood flow (RBF) and glomerular filtration rate (GFR) were quantified by multidetector CT imaging. Pigs then received a single intrarenal injection of KTP-ELP-VEGF or vehicle. CT quantification of renal hemodynamics was repeated 4 weeks later, and then pigs were euthanized. Ex vivo renal microvascular (MV) density and media-to-lumen ratio, macrophage infiltration, and fibrosis were quantified. In parallel, THP-1 human monocytes were differentiated into naïve macrophages (M0) or inflammatory macrophages (M1) and incubated with VEGF, KTP-ELP, KTP-ELP-VEGF, or control media. The mRNA expression of macrophage polarization and angiogenic markers was quantified (qPCR). RESULTS Intrarenal KTP-ELP-VEGF improved RBF, GFR, and MV density and attenuated MV media-to-lumen ratio and renal fibrosis compared to placebo, accompanied by augmented renal M2 macrophages. In vitro, exposure to VEGF/KTP-ELP-VEGF shifted M0 macrophages to a proangiogenic M2 phenotype while M1s were nonresponsive to VEGF treatment. CONCLUSIONS Our results support the efficacy of a new renal-specific biologic construct in recovering renal function and suggest that VEGF may directly influence macrophage phenotype as a possible mechanism to improve MV integrity and function in the stenotic kidney.
Collapse
Affiliation(s)
- Jason E Engel
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Maxx L Williams
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Erika Williams
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Camille Azar
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Erin B Taylor
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Gene L Bidwell
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Alejandro R Chade
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA,
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA,
- Department of Radiology, University of Mississippi Medical Center, Jackson, Mississippi, USA,
| |
Collapse
|
11
|
A Boolean Model of Microvascular Rarefaction to Predict Treatment Outcomes in Renal Disease. Sci Rep 2020; 10:440. [PMID: 31949240 PMCID: PMC6965143 DOI: 10.1038/s41598-019-57386-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/17/2019] [Indexed: 12/19/2022] Open
Abstract
Despite advances in renovascular disease (RVD) research, gaps remain between experimental and clinical outcomes, translation of results, and the understanding of pathophysiological mechanisms. A predictive tool to indicate support (or lack of) for biological findings may aid clinical translation of therapies. We created a Boolean model of RVD and hypothesized that it would predict outcomes observed in our previous studies using a translational swine model of RVD. Our studies have focused on developing treatments to halt renal microvascular (MV) rarefaction in RVD, a major feature of renal injury. A network topology of 20 factors involved in renal MV rarefaction that allowed simulation of 5 previously tested treatments was created. Each factor was assigned a function based upon its interactions with other variables and assumed to be “on” or “off”. Simulations of interventions were performed until outcomes reached a steady state and analyzed to determine pathological processes that were activated, inactivated, or unchanged vs. RVD with no intervention. Boolean simulations mimicked the results of our previous studies, confirming the importance of MV integrity on treatment outcomes in RVD. Furthermore, our study supports the potential application of a mathematical tool to predict therapeutic feasibility, which may guide the design of future studies for RVD.
Collapse
|
12
|
Abstract
Discovered in 1987 as a potent endothelial cell-derived vasoconstrictor peptide, endothelin-1 (ET-1), the predominant member of the endothelin peptide family, is now recognized as a multifunctional peptide with cytokine-like activity contributing to almost all aspects of physiology and cell function. More than 30 000 scientific articles on endothelin were published over the past 3 decades, leading to the development and subsequent regulatory approval of a new class of therapeutics-the endothelin receptor antagonists (ERAs). This article reviews the history of the discovery of endothelin and its role in genetics, physiology, and disease. Here, we summarize the main clinical trials using ERAs and discuss the role of endothelin in cardiovascular diseases such as arterial hypertension, preecclampsia, coronary atherosclerosis, myocardial infarction in the absence of obstructive coronary artery disease (MINOCA) caused by spontaneous coronary artery dissection (SCAD), Takotsubo syndrome, and heart failure. We also discuss how endothelins contributes to diabetic kidney disease and focal segmental glomerulosclerosis, pulmonary arterial hypertension, as well as cancer, immune disorders, and allograft rejection (which all involve ETA autoantibodies), and neurological diseases. The application of ERAs, dual endothelin receptor/angiotensin receptor antagonists (DARAs), selective ETB agonists, novel biologics such as receptor-targeting antibodies, or immunization against ETA receptors holds the potential to slow the progression or even reverse chronic noncommunicable diseases. Future clinical studies will show whether targeting endothelin receptors can prevent or reduce disability from disease and improve clinical outcome, quality of life, and survival in patients.
Collapse
Affiliation(s)
- Matthias Barton
- From Molecular Internal Medicine, University of Zürich, Switzerland (M.B.)
- Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS) and Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Japan (M.Y.)
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX (M.Y.)
| |
Collapse
|
13
|
Guise E, Engel JE, Williams ML, Mahdi F, Bidwell GL, Chade AR. Biopolymer-delivered vascular endothelial growth factor improves renal outcomes following revascularization. Am J Physiol Renal Physiol 2019; 316:F1016-F1025. [PMID: 30892933 DOI: 10.1152/ajprenal.00607.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Renal angioplasty and stenting (PTRAs) resolves renal artery stenosis, but inconsistently improves renal function, possibly due to persistent parenchymal damage. We developed a bioengineered fusion of a drug delivery vector (elastin-like polypeptide, ELP) with vascular endothelial growth factor (VEGF), and showed its therapeutic efficacy. We tested the hypothesis that combined ELP-VEGF therapy with PTRAs improves renal recovery more efficiently than PTRAs alone, by protecting the stenotic renal parenchyma. Unilateral renovascular disease (RVD) was induced by renal artery stenosis in 14 pigs. Six weeks later, stenotic kidney blood flow (RBF) and glomerular filtration rate (GFR) were quantified in vivo using multidetector CT. Blood and urine were collected during in vivo studies. All pigs underwent PTRAs and then were randomized into single intrarenal ELP-VEGF administration or placebo (n = 7 each) groups. Pigs were observed for four additional weeks, in vivo CT studies were repeated, and then pigs were euthanized for ex vivo studies to quantify renal microvascular (MV) density, angiogenic factor expression, and morphometric analysis. Renal hemodynamics were similarly blunted in all RVD pigs. PTRAs resolved stenosis but modestly improved RBF and GFR. However, combined PTRAs+ ELP-VEGF improved RBF, GFR, regional perfusion, plasma creatinine, asymmetric dimethlyarginine (ADMA), and albuminuria compared with PTRAs alone, accompanied by improved angiogenic signaling, MV density, and renal fibrosis. Greater improvement of renal function via coadjuvant ELP-VEGF therapy may be driven by enhanced MV proliferation and repair, which ameliorates MV rarefaction and fibrogenic activity that PTRAs alone cannot offset. Thus, our study supports a novel strategy to boost renal recovery in RVD after PTRAs.
Collapse
Affiliation(s)
- Erika Guise
- Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi
| | - Jason E Engel
- Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi
| | - Maxx L Williams
- Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi
| | - Fakhri Mahdi
- Department of Neurology, University of Mississippi Medical Center , Jackson, Mississippi.,Department of Cell and Molecular Biology, University of Mississippi Medical Center , Jackson, Mississippi
| | - Gene L Bidwell
- Department of Neurology, University of Mississippi Medical Center , Jackson, Mississippi.,Department of Cell and Molecular Biology, University of Mississippi Medical Center , Jackson, Mississippi.,Department of Pharmacology and Toxicology, University of Mississippi Medical Center , Jackson, Mississippi
| | - Alejandro R Chade
- Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi.,Department of Medicine, University of Mississippi Medical Center , Jackson, Mississippi.,Department of Radiology, University of Mississippi Medical Center , Jackson, Mississippi
| |
Collapse
|
14
|
Morales-Loredo H, Jones D, Barrera A, Mendiola PJ, Garcia J, Pace C, Murphy M, Kanagy NL, Gonzalez Bosc LV. A dual blocker of endothelin A/B receptors mitigates hypertension but not renal dysfunction in a rat model of chronic kidney disease and sleep apnea. Am J Physiol Renal Physiol 2019; 316:F1041-F1052. [PMID: 30810064 DOI: 10.1152/ajprenal.00018.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Obstructive sleep apnea is characterized by recurrent episodes of pharyngeal collapse during sleep, resulting in intermittent hypoxia (IH), and is associated with a high incidence of hypertension and accelerated renal failure. In rodents, endothelin (ET)-1 contributes to IH-induced hypertension, and ET-1 levels inversely correlate with glomerular filtration rate in patients with end-stage chronic kidney disease (CKD). Therefore, we hypothesized that a dual ET receptor antagonist, macitentan (Actelion Pharmaceuticals), will attenuate and reverse hypertension and renal dysfunction in a rat model of combined IH and CKD. Male Sprague-Dawley rats received one of three diets (control, 0.2% adenine, and 0.2% adenine + 30 mg·kg-1·day-1 macitentan) for 2 wk followed by 2 wk of recovery diet. Rats were then exposed for 4 wk to air or IH (20 short exposures/h to 5% O2-5% CO2 7 h/day during sleep). Macitentan prevented the increases in mean arterial blood pressure caused by CKD, IH, and the combination of CKD + IH. However, macitentan did not improve kidney function, fibrosis, and inflammation. After CKD was established, rats were exposed to air or IH for 2 wk, and macitentan feeding continued for 2 more wk. Macitentan reversed the hypertension in IH, CKD, and CKD + IH groups without improving renal function. Our data suggest that macitentan could be an effective antihypertensive in patients with CKD and irreversible kidney damage as a way to protect the heart, brain, and eyes from elevated arterial pressure, but it does not reverse toxin-induced tubule atrophy.
Collapse
Affiliation(s)
- Humberto Morales-Loredo
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - David Jones
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Adelaeda Barrera
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Perenkita J Mendiola
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Joshua Garcia
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Carolyn Pace
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Minerva Murphy
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Nancy L Kanagy
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Laura V Gonzalez Bosc
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| |
Collapse
|
15
|
Vaněčková I, Hojná S, Kadlecová M, Vernerová Z, Kopkan L, Červenka L, Zicha J. Renoprotective effects of ET(A) receptor antagonists therapy in experimental non-diabetic chronic kidney disease: Is there still hope for the future? Physiol Res 2018; 67:S55-S67. [PMID: 29947528 DOI: 10.33549/physiolres.933898] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chronic kidney disease (CKD) is a life-threatening disease arising as a frequent complication of diabetes, obesity and hypertension. Since it is typically undetected for long periods, it often progresses to end-stage renal disease. CKD is characterized by the development of progressive glomerulosclerosis, interstitial fibrosis and tubular atrophy along with a decreased glomerular filtration rate. This is associated with podocyte injury and a progressive rise in proteinuria. As endothelin-1 (ET-1) through the activation of endothelin receptor type A (ET(A)) promotes renal cell injury, inflammation, and fibrosis which finally lead to proteinuria, it is not surprising that ET(A) receptors antagonists have been proven to have beneficial renoprotective effects in both experimental and clinical studies in diabetic and non-diabetic CKD. Unfortunately, fluid retention encountered in large clinical trials in diabetic CKD led to the termination of these studies. Therefore, several advances, including the synthesis of new antagonists with enhanced pharmacological activity, the use of lower doses of ET antagonists, the addition of diuretics, plus simply searching for distinct pathological states to be treated, are promising targets for future experimental studies. In support of these approaches, our group demonstrated in adult subtotally nephrectomized Ren-2 transgenic rats that the addition of a diuretic on top of renin-angiotensin and ET(A) blockade led to a further decrease of proteinuria. This effect was independent of blood pressure which was normalized in all treated groups. Recent data in non-diabetic CKD, therefore, indicate a new potential for ET(A) antagonists, at least under certain pathological conditions.
Collapse
Affiliation(s)
- I Vaněčková
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
16
|
Genetic determinants of essential hypertension in the population of Tatars from Russia. J Hypertens 2017; 35 Suppl 1:S16-S23. [PMID: 28350619 DOI: 10.1097/hjh.0000000000001332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Systemic inflammation and impaired function of endothelium play an important role in the development of hypertension. Our study aimed to analyze an association between essential hypertension and polymorphic markers in candidate genes in the group of 530 Tatars from the Republic of Bashkortostan, Russia. METHODS The study group consisted of 216 male patients with essential hypertension (mean age 48.92 ± 8.8 years) and 314 healthy individuals of corresponding sex and age without history of cardiovascular disease. Association between studied polymorphisms and essential hypertension was analyzed using PLINK. RESULTS We detected an association between EDNRB rs5351, VEGFA -2549(18)I/D, and ADRB2 rs1042713 polymorphisms and essential hypertension in men of Tatar ethnic origin. EDNRB, VEGFA, and VCAM1 single-nucleotide polymorphisms were associated with SBP and DBP. However, only EDNRB rs5351 remained associated with hypertension after Bonferroni correction for multiple testing. A Markov chain Monte Carlo-based approach implemented in the APSampler program was used to analyze association of genotype and/or allele combinations with disease. The most influential in conferring risk of hypertension was EDNRBG/G+ADRB2A+VCAM1A combination (odds ratio = 4.15, PBonf = 5.43 × 10). CONCLUSION Our results suggest that rs5351 single-nucleotide polymorphism is a strong independent predictor of essential hypertension in men of Tatar ethnic origin.
Collapse
|
17
|
Affiliation(s)
- Alejandro R Chade
- From the Department of Physiology and Biophysics, Center for Excellence in Cardiovascular-Renal Research, Department of Medicine, and Department of Radiology, University of Mississippi Medical Center, Jackson.
| |
Collapse
|
18
|
Harvey TW, Engel JE, Chade AR. Vascular Endothelial Growth Factor and Podocyte Protection in Chronic Hypoxia: Effects of Endothelin-A Receptor Antagonism. Am J Nephrol 2016; 43:74-84. [PMID: 26930122 DOI: 10.1159/000444719] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/12/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Podocytes are major components of the filtration barrier and a renal source of vascular endothelial growth factor (VEGF). Chronic renovascular disease (RVD) progressively degrades the renal function, accompanied by podocyte damage and a progressive reduction in VEGF. We showed that the endothelin (ET) pathway contributes to this pathological process and ET-A (but not ET-B) receptor antagonism protects the kidney in RVD. We hypothesize that ET-A-induced renoprotection is largely driven by the protection of podocyte integrity and function. METHODS To mimic the renal environment of chronic RVD, human podocytes were incubated under chronic hypoxia for 96 h and divided in untreated or treated with an ET-A or ET-B receptor antagonist. Cells were quantified after 96 h. Cell homogenates and media were obtained after 1, 24 and 96 h to quantify production of VEGF, anti-VEGF soluble receptor s-Flt1, and the expression of apoptotic mediators. A separate set of similar experiments was performed after addition of a VEGF-neutralizing antibody (VEGF-NA). RESULTS Hypoxia decreased podocyte number, which was exacerbated by ET-B but improved after ET-A antagonism. Production of VEGF was preserved by ET-A antagonism, whereas s-Flt1 increased in hypoxic cells after ET-B antagonism only, accompanied by a greater expression of pro-apoptotic mediators. On the other hand, treatment with VEGF-NA diminished ET-A-induced protection of podocytes. CONCLUSION ET-A antagonism preserves podocyte viability and integrity under chronic hypoxia, whereas ET-B antagonism exacerbates podocyte dysfunction and death. Enhanced bioavailability of VEGF after ET-A antagonism could be a pivotal mechanism of podocyte protection that significantly contributes to ET-A receptor blockade-induced renal recovery in chronic RVD.
Collapse
Affiliation(s)
- Taylor W Harvey
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Miss., USA
| | | | | |
Collapse
|
19
|
Czopek A, Moorhouse R, Webb DJ, Dhaun N. Therapeutic potential of endothelin receptor antagonism in kidney disease. Am J Physiol Regul Integr Comp Physiol 2016; 310:R388-97. [DOI: 10.1152/ajpregu.00478.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/20/2015] [Indexed: 11/22/2022]
Abstract
Our growing understanding of the role of the endothelin (ET) system in renal physiology and pathophysiology is from emerging studies of renal disease in animal models and humans. ET receptor antagonists reduce blood pressure and proteinuria in chronic kidney disease and cause regression of renal injury in animals. However, the therapeutic potential of ET receptor antagonism has not been fully explored and clinical studies have been largely limited to patients with diabetic nephropathy. There remains a need for more work in nondiabetic chronic kidney disease, end-stage renal disease (patients requiring maintenance dialysis and those with a functioning kidney transplant), ischemia reperfusion injury, and sickle cell disease. The current review summarizes the most recent advances in both preclinical and clinical studies of ET receptor antagonists in the field of kidney disease.
Collapse
Affiliation(s)
- Alicja Czopek
- University/British Heart Foundation Centre of Research Excellence, University of Edinburgh; and The Queen's Medical Research Institute, Edinburgh; and
| | - Rebecca Moorhouse
- University/British Heart Foundation Centre of Research Excellence, University of Edinburgh; and The Queen's Medical Research Institute, Edinburgh; and
| | - David J. Webb
- University/British Heart Foundation Centre of Research Excellence, University of Edinburgh; and The Queen's Medical Research Institute, Edinburgh; and
| | - Neeraj Dhaun
- University/British Heart Foundation Centre of Research Excellence, University of Edinburgh; and The Queen's Medical Research Institute, Edinburgh; and
- Department of Renal Medicine, Royal Infirmary of Edinburgh, United Kingdom
| |
Collapse
|
20
|
Abstract
Endothelin-1 (ET-1) is a 21-amino acid peptide with mitogenic and powerful vasoconstricting properties. Under healthy conditions, ET-1 is expressed constitutively in all cells of the glomerulus and participates in homeostasis of glomerular structure and filtration function. Under disease conditions, increases in ET-1 are critically involved in initiating and maintaining glomerular inflammation, glomerular basement membrane hypertrophy, and injury of podocytes (visceral epithelial cells), thereby promoting proteinuria and glomerulosclerosis. Here, we review the role of ET-1 in the function of glomerular endothelial cells, visceral (podocytes) and parietal epithelial cells, mesangial cells, the glomerular basement membrane, stromal cells, inflammatory cells, and mesenchymal stem cells. We also discuss molecular mechanisms by which ET-1, predominantly through activation of the ETA receptor, contributes to injury to glomerular cells, and review preclinical and clinical evidence supporting its pathogenic role in glomerular injury in chronic renal disease. Finally, the therapeutic rationale for endothelin antagonists as a new class of antiproteinuric drugs is discussed.
Collapse
Affiliation(s)
- Matthias Barton
- Molecular Internal Medicine, University of Zurich, Zurich, Switzerland.
| | - Andrey Sorokin
- Department of Medicine, Kidney Disease Center, Division of Nephrology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
21
|
De Miguel C, Speed JS, Kasztan M, Gohar EY, Pollock DM. Endothelin-1 and the kidney: new perspectives and recent findings. Curr Opin Nephrol Hypertens 2016; 25:35-41. [PMID: 26625864 PMCID: PMC4698004 DOI: 10.1097/mnh.0000000000000185] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW The role of endothelin-1 (ET-1) in the kidney has been under study for many years; however, the complex mechanisms by which endothelin controls the physiology/pathophysiology of this organ are not fully resolved. This review aims to summarize recent findings in the field, especially regarding glomerular and tubular damage, Na/water homeostasis and sex differences in ET-1 function. RECENT FINDINGS Podocytes have been recently identified as a target of ET-1 in the glomerular filtration barrier via ETA receptor activation. Activation of the ETA receptor by ET-1 leads to renal tubular damage by promoting endoplasmic reticulum stress and apoptosis in these cells. In addition, high flow rates in the nephron in response to high salt intake induce ET-1 production by the collecting ducts and promote nitric oxide-dependent natriuresis through epithelial sodium channel inhibition. Recent evidence also indicates that sex hormones regulate the renal ET-1 system differently in men and women, with estrogen suppressing renal ET-1 production and testosterone upregulating that production. SUMMARY Based on the reports reviewed in here, targeting of the renal endothelin system is a possible therapeutic approach against the development of glomerular injury. More animal and clinical studies are needed to better understand the dimorphic control of this system by sex hormones.
Collapse
Affiliation(s)
- Carmen De Miguel
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Joshua S. Speed
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Malgorzata Kasztan
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Eman Y. Gohar
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - David M. Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
22
|
Chade AR, Tullos NA, Harvey TW, Mahdi F, Bidwell GL. Renal Therapeutic Angiogenesis Using a Bioengineered Polymer-Stabilized Vascular Endothelial Growth Factor Construct. J Am Soc Nephrol 2015; 27:1741-52. [PMID: 26541349 DOI: 10.1681/asn.2015040346] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/23/2015] [Indexed: 01/17/2023] Open
Abstract
Renovascular disease (RVD) induces renal microvascular (MV) rarefaction that drives progressive kidney injury. In previous studies, we showed that renal vascular endothelial growth factor (VEGF) therapy attenuated MV damage, but did not resolve renal injury at practical clinical doses. To increase the bioavailability of VEGF, we developed a biopolymer-stabilized elastin-like polypeptide (ELP)-VEGF fusion protein and determined its in vivo potential for therapeutic renal angiogenesis in RVD using an established swine model of chronic RVD. We measured single-kidney blood flow (RBF) and GFR and established the degree of renal damage after 6 weeks of RVD. Pigs then received a single stenotic kidney infusion of ELP-VEGF (100 μg/kg), a matching concentration of unconjugated VEGF (18.65 μg/kg), ELP alone (100 μg/kg), or placebo. Analysis of organ distribution showed high renal binding of ELP-VEGF 4 hours after stenotic kidney infusion. Therapeutic efficacy was determined 4 weeks after infusion. ELP-VEGF therapy improved renal protein expression attenuated in RVD, restoring expression levels of VEGF, VEGF receptor Flk-1, and downstream angiogenic mediators, including phosphorylated Akt and angiopoietin-1 and -2. This effect was accompanied by restored MV density, attenuated fibrogenic activity, and improvements in RBF and GFR greater than those observed with placebo, ELP alone, or unconjugated VEGF. In summary, we demonstrated the feasibility of a novel therapy to curtail renal injury. Recovery of the stenotic kidney in RVD after ELP-VEGF therapy may be driven by restoration of renal angiogenic signaling and attenuated fibrogenic activity, which ameliorates MV rarefaction and improves renal function.
Collapse
Affiliation(s)
- Alejandro R Chade
- Department of Physiology and Biophysics, Department of Medicine, Department of Radiology,
| | | | | | | | - Gene L Bidwell
- Department of Neurology, and Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
23
|
Chade AR. Vascular Endothelial Growth Factor Therapy for the Kidney: Are We There Yet? J Am Soc Nephrol 2015; 27:1-3. [PMID: 26038531 DOI: 10.1681/asn.2015050491] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Alejandro R Chade
- Departments of Physiology and Biophysics, Medicine, and Radiology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
24
|
Endothelin receptors, renal effects and blood pressure. Curr Opin Pharmacol 2015; 21:25-34. [DOI: 10.1016/j.coph.2014.12.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 11/23/2022]
|
25
|
Samad MA, Kim UK, Kang JJ, Ke Q, Kang PM. Endothelin A receptor antagonist, atrasentan, attenuates renal and cardiac dysfunction in Dahl salt-hypertensive rats in a blood pressure independent manner. PLoS One 2015; 10:e0121664. [PMID: 25775254 PMCID: PMC4361570 DOI: 10.1371/journal.pone.0121664] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/02/2015] [Indexed: 02/02/2023] Open
Abstract
Proteinuria is a hallmark of chronic kidney disease (CKD) and cardiovascular disease (CVD), and a good predictor of clinical outcome. Selective endothelin A (ETA) receptor antagonist used with renin-angiotensin system (RAS) inhibitors prevents development of proteinuria in CKD. However, whether the improvement in proteinuria would have beneficial effects on CVD, independent of RAS inhibition, is not well understood. In this study, we investigated whether atrasentan, an ETA receptor antagonist, has renal and cardiovascular effects independent of RAS inhibition. Male Dahl salt sensitive (DSS) rats, at six weeks of age, received water with or without different doses of atrasentan and/or enalapril under high salt (HS) diet or normal diet (ND) for 6 weeks. At the end of 12th week, atrasentan at a moderate dose significantly attenuated proteinuria and serum creatinine without reducing mean arterial pressure (MAP), thereby preventing cardiac hypertrophy and improving cardiac function. ACE inhibitor enalapril at a dose that did not significantly lowered BP, attenuated cardiac hypertrophy while moderately improving cardiac function without reducing proteinuria and serum creatinine level. Nonetheless, combined therapy of atrasentan and enalapril that does not altering BP exerted additional cardioprotective effect. Based on these findings, we conclude that BP independent monotherapy of ETA receptor antagonist attenuates the progression of CKD and significantly mitigates CVD independent of RAS inhibition.
Collapse
Affiliation(s)
- Mohammed A. Samad
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of BIN Fusion Technology, Chonbuk National University, Jeonju, South Korea
| | - Ui Kyoung Kim
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joshua J. Kang
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Qingen Ke
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peter M. Kang
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of BIN Fusion Technology, Chonbuk National University, Jeonju, South Korea
- * E-mail:
| |
Collapse
|
26
|
Lerman LO, Textor SC. Gained in translation: protective paradigms for the poststenotic kidney. Hypertension 2015; 65:976-82. [PMID: 25712725 DOI: 10.1161/hypertensionaha.114.04364] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/26/2015] [Indexed: 11/16/2022]
Affiliation(s)
- Lilach O Lerman
- From the Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN.
| | - Stephen C Textor
- From the Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| |
Collapse
|
27
|
Tullos NA, Stewart NJ, Davidovich R, Chade AR. Chronic blockade of endothelin A and B receptors using macitentan in experimental renovascular disease. Nephrol Dial Transplant 2014; 30:584-93. [PMID: 25438341 DOI: 10.1093/ndt/gfu361] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Emerging research has identified the endothelin (ET)-1 pathway as a potential target for novel renoprotective therapies. We recently showed that selective ET-A receptor antagonism in chronic renovascular disease (RVD) improves renal function and reduces renal injury. Although ET-A and -B have opposing roles, in some clinical situations they may induce similar effects. Thus, we hypothesized that simultaneous blockade of the ET-A and -B receptors would protect the kidney during RVD. METHODS Unilateral RVD was induced in pigs. After 6 weeks, single-kidney function was quantified in vivo using multi-detector computer tomography. Pigs were subsequently divided into untreated (RVD, n = 7) or daily-treated with the dual ET-A/B receptor antagonist macitentan (RVD + macitentan, n = 6) for 4 weeks. At 10 weeks, in vivo studies were repeated, then pigs were euthanized and ex vivo studies performed in the stenotic kidney to quantify inflammation, fibrosis, microvascular density and remodeling. RESULTS Four weeks of macitentan therapy modestly improved renal blood flow (29%, P = 0.06 versus pre-treatment) and showed protective effects on the renal parenchyma by attenuating inflammation and glomerulosclerosis, reducing apoptosis and tubular casts and improving albuminuria and cortical microvessel density. No overt adverse effects were observed. CONCLUSION Possibly by inducing a pro-survival renal microenvironment, macitentan increased renal microvascular density, promoted cell survival and decreased injury, which in turn improved stenotic kidney hemodynamics in our model. Our results further support the safety of using macitentan in patients with concomitant chronic renal disease and supported the feasibility of a new strategy that may preserve the stenotic kidney in RVD.
Collapse
Affiliation(s)
- Nathan A Tullos
- The Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Nicholas J Stewart
- The Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Ryan Davidovich
- The Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Alejandro R Chade
- The Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA The Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA The Department of Radiology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
28
|
Chade AR, Tullos N, Stewart NJ, Surles B. Endothelin-a receptor antagonism after renal angioplasty enhances renal recovery in renovascular disease. J Am Soc Nephrol 2014; 26:1071-80. [PMID: 25377076 DOI: 10.1681/asn.2014040323] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/09/2014] [Indexed: 12/16/2022] Open
Abstract
Percutaneous transluminal renal angioplasty/stenting (PTRAS) is frequently used to treat renal artery stenosis and renovascular disease (RVD); however, renal function is restored in less than one half of the cases. This study was designed to test a novel intervention that could refine PTRAS and enhance renal recovery in RVD. Renal function was quantified in pigs after 6 weeks of chronic RVD (induced by unilateral renal artery stenosis), established renal damage, and hypertension. Pigs with RVD then underwent PTRAS and were randomized into three groups: placebo (RVD+PTRAS), chronic endothelin-A receptor (ET-A) blockade (RVD+PTRAS+ET-A), and chronic dual ET-A/B blockade (RVD+PTRAS+ET-A/B) for 4 weeks. Renal function was again evaluated after treatments, and then, ex vivo studies were performed on the stented kidney. PTRAS resolved renal stenosis, attenuated hypertension, and improved renal function but did not resolve renal microvascular rarefaction, remodeling, or renal fibrosis. ET-A blocker therapy after PTRAS significantly improved hypertension, microvascular rarefaction, and renal injury and led to greater recovery of renal function. Conversely, combined ET-A/B blockade therapy blunted the therapeutic effects of PTRAS alone or PTRAS followed by ET-A blockade. These data suggest that ET-A receptor blockade therapy could serve as a coadjuvant intervention to enhance the outcomes of PTRAS in RVD. These results also suggest that ET-B receptors are important for renal function in RVD and may contribute to recovery after PTRAS. Using clinically available compounds and techniques, our results could contribute to both refinement and design of new therapeutic strategies in chronic RVD.
Collapse
Affiliation(s)
- Alejandro R Chade
- Department of Physiology and Biophysics, Center for Excellence in Cardiovascular-Renal Research, Department of Medicine, and Department of Radiology, University of Mississippi Medical Center, Jackson, Mississippi
| | | | | | | |
Collapse
|
29
|
Kohan DE, Barton M. Endothelin and endothelin antagonists in chronic kidney disease. Kidney Int 2014; 86:896-904. [PMID: 24805108 PMCID: PMC4216619 DOI: 10.1038/ki.2014.143] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 01/31/2014] [Accepted: 02/06/2014] [Indexed: 01/10/2023]
Abstract
The incidence and prevalence of chronic kidney disease (CKD), with diabetes and hypertension accounting for the majority of cases, is on the rise, with up to 160 million individuals worldwide predicted to be affected by 2020. Given that current treatment options, primarily targeted at the renin-angiotensin system, only modestly slow down progression to end-stage renal disease, the urgent need for additional effective therapeutics is evident. Endothelin-1 (ET-1), largely through activation of endothelin A receptors, has been strongly implicated in renal cell injury, proteinuria, inflammation, and fibrosis leading to CKD. Endothelin receptor antagonists (ERAs) have been demonstrated to ameliorate or even reverse renal injury and/or fibrosis in experimental models of CKD, whereas clinical trials indicate a substantial antiproteinuric effect of ERAs in diabetic and nondiabetic CKD patients even on top of maximal renin-angiotensin system blockade. This review summarizes the role of ET in CKD pathogenesis and discusses the potential therapeutic benefit of targeting the ET system in CKD, with attention to the risks and benefits of such an approach.
Collapse
Affiliation(s)
- Donald E. Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, UT
| | - Matthias Barton
- Molecular Internal Medicine, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
30
|
Where now in the management of renal artery stenosis? Implications of the ASTRAL and CORAL trials. Curr Opin Nephrol Hypertens 2014; 23:525-32. [DOI: 10.1097/mnh.0000000000000059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
31
|
Nasser SA, El-Mas MM. Endothelin ETA receptor antagonism in cardiovascular disease. Eur J Pharmacol 2014; 737:210-3. [PMID: 24952955 DOI: 10.1016/j.ejphar.2014.05.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 12/27/2022]
Abstract
Since the discovery of the endothelin system in 1988, it has been implicated in numerous physiological and pathological phenomena. In the cardiovascular system, endothelin-1 (ET-1) acts through intracellular pathways of two endothelin receptors (ETA and ETB) located mainly on smooth muscle and endothelial cells to regulate vascular tone and provoke mitogenic and proinflammatory reactions. The endothelin ETA receptor is believed to play a pivotal role in the pathogenesis of several cardiovascular disease including systemic hypertension, pulmonary arterial hypertension (PAH), dilated cardiomyopathy, and diabetic microvascular dysfunction. Growing evidence from recent experimental and clinical studies indicates that the blockade of endothelin receptors, particularly the ETA subtype, grasps promise in the treatment of major cardiovascular pathologies. The simultaneous blockade of endothelin ETB receptors might not be advantageous, leading possibly to vasoconstriction and salt and water retentions. This review summarizes the role of ET-1 in cardiovascular modulation and the therapeutic potential of endothelin receptor antagonism.
Collapse
Affiliation(s)
- Suzanne A Nasser
- Department of Pharmacology, Faculty of Pharmacy, Beirut Arab University, Lebanon
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Egypt.
| |
Collapse
|