1
|
Zhu Y, Xu G. Advances in Focal Segmental Glomerulosclerosis Treatment From the Perspective of the Newest Mechanisms of Podocyte Injury. Drug Des Devel Ther 2025; 19:857-875. [PMID: 39935575 PMCID: PMC11812565 DOI: 10.2147/dddt.s498457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/19/2024] [Indexed: 02/13/2025] Open
Abstract
Podocyte injury was widely recognized as a fundamental mechanism driving the progression of focal segmental glomerulosclerosis (FSGS). Recent research has therefore focused on the development of targeted therapies aimed at disrupting specific pathogenic signaling cascades within podocytes, resulting in noteworthy advancements. The role of mechanisms such as alterations in the actin cytoskeleton, oxidative stress, mitochondrial dysfunction, and inadequate autophagy within the microenvironment of podocyte injury have garnered increasing attention. Corresponding targeted medications such as Abatacept, chemokine receptor (CCR) inhibitors, CDDO-Im (2-Cyano-3,12-dioxooleana-1,9-dien-28-imidazolide), adenosine monophosphate-activated protein kinase (AMPK) activators, and Adalimumab are currently under investigation. Notably, some medications such as Rituximab and Sparsentan, may simultaneously target multiple downstream mechanisms, Furthermore, exploring molecular strategies for established medications and developing novel treatments guided by biomarkers such as Anti-CD40 antibody, blood microRNA, urinary microRNA, and tumor necrosis factor-alpha (TNF-α) may provide additional therapeutic avenues for patients with FSGS.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, People’s Republic of China
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People’s Republic of China
| | - Gaosi Xu
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, People’s Republic of China
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People’s Republic of China
| |
Collapse
|
2
|
Cao B, Lu H, Liu P, Zhang Y, Wang C. Serum metabolomics signature of maternally inherited diabetes and deafness by gas chromatography-time of flight mass spectrometry. J Diabetes Investig 2025; 16:146-153. [PMID: 39480690 DOI: 10.1111/jdi.14334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
AIMS/INTRODUCTION The aim of this study was to identify a metabolic signature of MIDD as compared to healthy controls and other types of diabetes. METHODS We performed a comprehensive serum metabolomic analysis using gas chromatography-time of flight mass spectrometry (GC-TOFMS) in participants diagnosed with MIDD (n = 14), latent autoimmune diabetes in adults (LADA) (n = 14), type 2 diabetes mellitus (n = 14), and healthy controls (n = 14). Each group was matched for gender and age. RESULTS There were significant metabolic differences among MIDD and other diabetic and control groups. Compared with control, MIDD patients had high levels of carbohydrates (glucose, galactose, mannose, sorbose, and maltose), fatty acids (2-Hydroxybutyric acid, eicosapentaenoic acid, and octadecanoic acid), and other metabolites (alanine, threonic acid, cholesterol, lactic acid, and gluconic acid), but low level of threonine. Compared with LADA, MIDD patients had high levels of threonic acid and some amino acids (alanine, tryptophan, histidine, proline, glutamine, and creatine) but low levels of serine. Compared with type 2 diabetes mellitus, MIDD patients had high levels of citrulline, creatine, 3-Amino-2-piperidone, but low levels of ornithine, fatty acids (arachidonic acid and octadecanoic acid), and intermediates of the tricarboxylic acid cycle (malic acid and succinic acid). CONCLUSIONS Our study identified a specific metabolic profile related to glycolysis and the tricarboxylic acid cycle in MIDD that differs from healthy controls and other types of diabetes. This unique metabolic signature provides new perspectives for understanding the pathophysiology and underlying mechanisms of MIDD.
Collapse
Affiliation(s)
- Baige Cao
- Department of Endocrinology & Metabolism, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huijuan Lu
- Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Liu
- Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinan Zhang
- The Metabolic Disease Biobank, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Congrong Wang
- Department of Endocrinology & Metabolism, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Imasawa T, Murayama K, Hirano D, Nozu K. Comprehensive review of mitochondrial nephropathy-a renal phenotype in mitochondrial disease: causative genes, clinical and pathological features, diagnosis, prognosis, and treatment. Clin Exp Nephrol 2025; 29:39-56. [PMID: 39625678 PMCID: PMC11928409 DOI: 10.1007/s10157-024-02554-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 08/19/2024] [Indexed: 02/09/2025]
Abstract
Mitochondrial nephropathy is a genetic renal disease characterized by oxidative phosphorylation abnormalities in the mitochondrial respiratory chain in kidney cells, caused by pathogenic gene variants located on mitochondrial or nuclear DNA. Recent advancements in genetic diagnostic techniques and their widespread adoption have led to the identification of various genes associated with mitochondrial nephropathy. This review investigates the causative genes and clinicopathological features of mitochondrial nephropathy, including the various phenotypes and associated complications, and suggests potential pathogenic mechanisms. Furthermore, the diagnostic methods of the disease are explained with particular emphasis on characteristic pathological findings and genetic analysis. We also analyze the available long-term observational prognostic data. Although there is currently no evidence-based treatment for mitochondrial nephropathy, an overview of the existing treatment options is discussed, including future expectations. The choice of renal replacement therapy in cases with progression to end-stage renal disease has also been discussed. Overall, this review highlights the importance of raising awareness about mitochondrial nephropathy and establishing appropriate diagnostic systems to facilitate rapid and effective treatment.
Collapse
Affiliation(s)
- Toshiyuki Imasawa
- Department of Nephrology, National Hospital Organization Chibahigashi National Hospital, 673 Nitona-cho, Chuoh-ku, Chiba, 206-8712, Japan.
| | - Kei Murayama
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Daishi Hirano
- Department of Pediatrics, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-0003, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
4
|
Dhawan S, Musa AH, Mantripragada K. Novel Mitochondrial Cytopathy Causing Mitochondrial Encephalomyopathy With Lactic Acidosis and Stroke-Like Episodes Syndrome and Tubulointerstitial Nephropathy. Cureus 2024; 16:e66722. [PMID: 39262552 PMCID: PMC11390156 DOI: 10.7759/cureus.66722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/13/2024] Open
Abstract
Mitochondrial cytopathies, predominantly MT-TL1 mutations and, to a lesser extent, MT-ND5, have been associated with mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS), manifesting as multi-organ dysfunction. This is just the second instance of MELAS secondary to the pathogenic novel m.13091T>C variant of MT-ND5. Moreover, nephropathy associated with MT-ND5 mutation has only been reported in nine cases so far. A middle-aged man presented in a state of acute confusion with speech difficulty with both receptive and expressive aphasia. He had a background of refractory seizures, chronic atypical migraine, childhood-onset optic neuropathy, and end-stage renal disease requiring renal transplant. During admission, he had episodes of aggression and paranoid beliefs. Magnetic resonance (MR) imaging of the head showed multiple areas of cortical abnormality, unusual for age, including a large frontal infarct crossing arterial boundaries. Cerebrospinal fluid (CSF) protein and lactate were high, whereas, the electroencephalography (EEG) result was normal. Muscle biopsy mitochondrial DNA gene sequencing derived novel MT-ND5 gene variant m.13091T>C p.(Met252Thr). Kidney biopsy previously had shown interstitial fibrosis and tubular atrophy. He was managed as acute ischaemic stroke along with a combination of clobazam, levetiracetam, and eslicarbazepine for seizures. MELAS typically presents with seizures, stroke-like episodes, cortical visual loss, and recurrent migraine headaches. The previous reported case of m.13091T>C mutation followed a similar progression, however, there was no associated nephropathy and normal visual acuity. Kidney transplants in affected patients of MELAS have been associated with a high survival rate. MT-ND5 mutation-associated nephropathy has shown a variable manifestation, either as focal segmental glomerular sclerosis (FSGS) or tubulo-interstitial disease.
Collapse
Affiliation(s)
- Saurav Dhawan
- Internal Medicine, Manchester University National Health Service (NHS) Foundation Trust, Manchester, GBR
| | - Abdel H Musa
- Internal Medicine, Manchester University National Health Service (NHS) Foundation Trust, Manchester, GBR
| | | |
Collapse
|
5
|
Gervasoni J, Primiano A, Cicchinelli M, Santucci L, Servidei S, Urbani A, Primiano G, Iavarone F. Mitochondrial Biomarkers in the Omics Era: A Clinical-Pathophysiological Perspective. Int J Mol Sci 2024; 25:4855. [PMID: 38732076 PMCID: PMC11084339 DOI: 10.3390/ijms25094855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Mitochondrial diseases (MDs) affect 4300 individuals, with different ages of presentation and manifestation in any organ. How defects in mitochondria can cause such a diverse range of human diseases remains poorly understood. In recent years, several published research articles regarding the metabolic and protein profiles of these neurogenetic disorders have helped shed light on the pathogenetic mechanisms. By investigating different pathways in MDs, often with the aim of identifying disease biomarkers, it is possible to identify molecular processes underlying the disease. In this perspective, omics technologies such as proteomics and metabolomics considered in this review, can support unresolved mitochondrial questions, helping to improve outcomes for patients.
Collapse
Affiliation(s)
- Jacopo Gervasoni
- Fondazione Policlinico Universitario ‘Agostino Gemelli’ IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (L.S.); (S.S.); (G.P.)
| | - Aniello Primiano
- Fondazione Policlinico Universitario ‘Agostino Gemelli’ IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (L.S.); (S.S.); (G.P.)
| | - Michela Cicchinelli
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of Sacred Heart, 00168 Rome, Italy;
| | - Lavinia Santucci
- Fondazione Policlinico Universitario ‘Agostino Gemelli’ IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (L.S.); (S.S.); (G.P.)
| | - Serenella Servidei
- Fondazione Policlinico Universitario ‘Agostino Gemelli’ IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (L.S.); (S.S.); (G.P.)
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Andrea Urbani
- Fondazione Policlinico Universitario ‘Agostino Gemelli’ IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (L.S.); (S.S.); (G.P.)
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of Sacred Heart, 00168 Rome, Italy;
| | - Guido Primiano
- Fondazione Policlinico Universitario ‘Agostino Gemelli’ IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (L.S.); (S.S.); (G.P.)
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Federica Iavarone
- Fondazione Policlinico Universitario ‘Agostino Gemelli’ IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (L.S.); (S.S.); (G.P.)
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of Sacred Heart, 00168 Rome, Italy;
| |
Collapse
|
6
|
Joshi N, Garapati K, Ghose V, Kandasamy RK, Pandey A. Recent progress in mass spectrometry-based urinary proteomics. Clin Proteomics 2024; 21:14. [PMID: 38389064 PMCID: PMC10885485 DOI: 10.1186/s12014-024-09462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Serum or plasma is frequently utilized in biomedical research; however, its application is impeded by the requirement for invasive sample collection. The non-invasive nature of urine collection makes it an attractive alternative for disease characterization and biomarker discovery. Mass spectrometry-based protein profiling of urine has led to the discovery of several disease-associated biomarkers. Proteomic analysis of urine has not only been applied to disorders of the kidney and urinary bladder but also to conditions affecting distant organs because proteins excreted in the urine originate from multiple organs. This review provides a progress update on urinary proteomics carried out over the past decade. Studies summarized in this review have expanded the catalog of proteins detected in the urine in a variety of clinical conditions. The wide range of applications of urine analysis-from characterizing diseases to discovering predictive, diagnostic and prognostic markers-continues to drive investigations of the urinary proteome.
Collapse
Affiliation(s)
- Neha Joshi
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Kishore Garapati
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Vivek Ghose
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
| | - Richard K Kandasamy
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Akhilesh Pandey
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India.
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA.
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
7
|
Moritz L, Schumann A, Pohl M, Köttgen A, Hannibal L, Spiekerkoetter U. A systematic review of metabolomic findings in adult and pediatric renal disease. Clin Biochem 2024; 123:110703. [PMID: 38097032 DOI: 10.1016/j.clinbiochem.2023.110703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/29/2023]
Abstract
Chronic kidney disease (CKD) affects over 0.5 billion people worldwide across their lifetimes. Despite a growingly ageing world population, an increase in all-age prevalence of kidney disease persists. Adult-onset forms of kidney disease often result from lifestyle-modifiable metabolic illnesses such as type 2 diabetes. Pediatric and adolescent forms of renal disease are primarily caused by morphological abnormalities of the kidney, as well as immunological, infectious and inherited metabolic disorders. Alterations in energy metabolism are observed in CKD of varying causes, albeit the molecular mechanisms underlying pathology are unclear. A systematic indexing of metabolites identified in plasma and urine of patients with kidney disease alongside disease enrichment analysis uncovered inborn errors of metabolism as a framework that links features of adult and pediatric kidney disease. The relationship of genetics and metabolism in kidney disease could be classified into three distinct landscapes: (i) Normal genotypes that develop renal damage because of lifestyle and / or comorbidities; (ii) Heterozygous genetic variants and polymorphisms that result in unique metabotypes that may predispose to the development of kidney disease via synergistic heterozygosity, and (iii) Homozygous genetic variants that cause renal impairment by perturbing metabolism, as found in children with monogenic inborn errors of metabolism. Interest in the identification of early biomarkers of onset and progression of CKD has grown steadily in the last years, though it has not translated into clinical routine yet. This systematic review indexes findings of differential concentration of metabolites and energy pathway dysregulation in kidney disease and appraises their potential use as biomarkers.
Collapse
Affiliation(s)
- Lennart Moritz
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany; Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Anke Schumann
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany; Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Martin Pohl
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Luciana Hannibal
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany.
| | - Ute Spiekerkoetter
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|
8
|
Ferreira F, Gonçalves Bacelar C, Lisboa-Gonçalves P, Paulo N, Quental R, Nunes AT, Silva R, Tavares I. Renal manifestations in adults with mitochondrial disease from the mtDNA m.3243A>G pathogenic variant. Nefrologia 2023; 43 Suppl 2:1-7. [PMID: 38355238 DOI: 10.1016/j.nefroe.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/15/2023] [Indexed: 02/16/2024] Open
Abstract
Mitochondrial diseases are a phenotype and genotype heterogeneous group of disorders that typically have a multisystemic involvement. The m.3243A>G pathogenic variant is the most frequent mitochondrial DNA defect, and it causes several different clinical syndromes, such as mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS), and the maternally inherited diabetes and deafness (MIDD) syndromes. Not frequently reported, renal involvement in these diseases is probably underestimated, yet it increases morbidity. It generally manifests as subnephrotic proteinuria and progressive deterioration of kidney function. Adult presentation of mitochondrial diseases is hard to recognize, especially in oligosymptomatic patients or those with exclusive kidney involvement. However, suspicion should always arise when family history, particularly on the maternal side, and multisystemic symptoms, most often of the central nervous system and skeletal muscles, are present. In this review we discuss the clinical diagnosis and approach of patients with renal manifestations in the context of the mtDNA m.3243A>G pathogenic variant.
Collapse
Affiliation(s)
- Filipa Ferreira
- Serviço de Nefrologia, Centro Hospitalar e Universitário de São João, Porto, Portugal; Departamento de Medicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.
| | | | - Pedro Lisboa-Gonçalves
- Serviço de Nefrologia, Centro Hospitalar e Universitário de São João, Porto, Portugal; Departamento de Medicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Núria Paulo
- Serviço de Nefrologia, Centro Hospitalar e Universitário de São João, Porto, Portugal; Departamento de Medicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Rita Quental
- Serviço de Genética Médica, Centro Hospitalar e Universitário de São João, Porto, Portugal
| | - Ana Teresa Nunes
- Serviço de Nefrologia, Centro Hospitalar e Universitário de São João, Porto, Portugal; Grupo de Investigação e Desenvolvimento em Nefrologia e Doenças Infeciosas, I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Roberto Silva
- Serviço de Anatomia Patológica, Centro Hospitalar e Universitário de São João, Porto, Portugal
| | - Isabel Tavares
- Serviço de Nefrologia, Centro Hospitalar e Universitário de São João, Porto, Portugal; Departamento de Medicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal; Grupo de Investigação e Desenvolvimento em Nefrologia e Doenças Infeciosas, I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
9
|
Conti F, Di Martino S, Drago F, Bucolo C, Micale V, Montano V, Siciliano G, Mancuso M, Lopriore P. Red Flags in Primary Mitochondrial Diseases: What Should We Recognize? Int J Mol Sci 2023; 24:16746. [PMID: 38069070 PMCID: PMC10706469 DOI: 10.3390/ijms242316746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Primary mitochondrial diseases (PMDs) are complex group of metabolic disorders caused by genetically determined impairment of the mitochondrial oxidative phosphorylation (OXPHOS). The unique features of mitochondrial genetics and the pivotal role of mitochondria in cell biology explain the phenotypical heterogeneity of primary mitochondrial diseases and the resulting diagnostic challenges that follow. Some peculiar features ("red flags") may indicate a primary mitochondrial disease, helping the physician to orient in this diagnostic maze. In this narrative review, we aimed to outline the features of the most common mitochondrial red flags offering a general overview on the topic that could help physicians to untangle mitochondrial medicine complexity.
Collapse
Affiliation(s)
- Federica Conti
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
| | - Filippo Drago
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95213 Catania, Italy
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
| | - Vincenzo Montano
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy (P.L.)
| | - Gabriele Siciliano
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy (P.L.)
| | - Michelangelo Mancuso
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy (P.L.)
| | - Piervito Lopriore
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy (P.L.)
| |
Collapse
|
10
|
Pejchinovski I, Turkkan S, Pejchinovski M. Recent Advances of Proteomics in Management of Acute Kidney Injury. Diagnostics (Basel) 2023; 13:2648. [PMID: 37627907 PMCID: PMC10453063 DOI: 10.3390/diagnostics13162648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Acute Kidney Injury (AKI) is currently recognized as a life-threatening disease, leading to an exponential increase in morbidity and mortality worldwide. At present, AKI is characterized by a significant increase in serum creatinine (SCr) levels, typically followed by a sudden drop in glomerulus filtration rate (GFR). Changes in urine output are usually associated with the renal inability to excrete urea and other nitrogenous waste products, causing extracellular volume and electrolyte imbalances. Several molecular mechanisms were proposed to be affiliated with AKI development and progression, ultimately involving renal epithelium tubular cell-cycle arrest, inflammation, mitochondrial dysfunction, the inability to recover and regenerate proximal tubules, and impaired endothelial function. Diagnosis and prognosis using state-of-the-art clinical markers are often late and provide poor outcomes at disease onset. Inappropriate clinical assessment is a strong disease contributor, actively driving progression towards end stage renal disease (ESRD). Proteins, as the main functional and structural unit of the cell, provide the opportunity to monitor the disease on a molecular level. Changes in the proteomic profiles are pivotal for the expression of molecular pathways and disease pathogenesis. Introduction of highly-sensitive and innovative technology enabled the discovery of novel biomarkers for improved risk stratification, better and more cost-effective medical care for the ill patients and advanced personalized medicine. In line with those strategies, this review provides and discusses the latest findings of proteomic-based biomarkers and their prospective clinical application for AKI management.
Collapse
Affiliation(s)
- Ilinka Pejchinovski
- Department of Quality Assurance, Nikkiso Europe GmbH, 30885 Langenhagen, Germany; (I.P.); (S.T.)
| | - Sibel Turkkan
- Department of Quality Assurance, Nikkiso Europe GmbH, 30885 Langenhagen, Germany; (I.P.); (S.T.)
| | - Martin Pejchinovski
- Department of Analytical Instruments Group, Thermo Fisher Scientific, 82110 Germering, Germany
| |
Collapse
|
11
|
Li Y, Fan J, Zhu W, Niu Y, Wu M, Zhang A. Therapeutic Potential Targeting Podocyte Mitochondrial Dysfunction in Focal Segmental Glomerulosclerosis. KIDNEY DISEASES (BASEL, SWITZERLAND) 2023; 9:254-264. [PMID: 37900001 PMCID: PMC10601935 DOI: 10.1159/000530344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/18/2023] [Indexed: 10/31/2023]
Abstract
Background Podocytes are essential components of the glomerular filtration barrier and essential for the proper filtration function of the glomerulus. Podocyte injury under various stress conditions is the primary pathogenesis and key determinant of focal segmental glomerulosclerosis (FSGS) with prominent clinical manifestations of proteinuria or nephrotic syndrome. Summary Under physiological conditions, a highly coordinated mitochondrial quality control system, including antioxidant defenses, mitochondrial dynamics (fusion, fission, and mitophagy), and mitochondrial biogenesis, guarantees the sophisticated structure and various functions of podocytes. However, under FSGS pathological conditions, mitochondria encounter oxidative stress, dynamics disturbances, and defective mitochondrial biogenesis. Moreover, mutations in mitochondrial DNA and mitochondria-related genes are also strongly associated with FSGS. Based on these pieces of evidence, bioactive agents that function to relieve mitochondrial oxidative stress and promote mitochondrial biogenesis have been proven effective in preclinical FSGS models. Targeting the mitochondrial network is expected to provide new therapeutic strategies for the treatment of FSGS and delay its progression to end-stage renal disease. Key Messages Mitochondrial dysfunction plays a key role in podocyte injury and FSGS progression. This review summarized recent advances in the study of mitochondrial homeostatic imbalance and dysfunction in FSGS and discussed the potential of mitochondria-targeted therapeutics in improving FSGS and retarding its progression to end-stage renal disease.
Collapse
Affiliation(s)
- Yuting Li
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jiaojiao Fan
- School of Medicine, Southeast University, Nanjing, China
| | - Wenping Zhu
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yujia Niu
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Mengqiu Wu
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Ali F, Ali S, Mohamed S, Khan I, Khan I, Khan S, Khan F, Alfeel AH, Higazi H. Analysis of mitochondrial DNA mutations in Pakistani population diagnosed with cardiovascular diseases. BRAZ J BIOL 2023; 84:e266924. [PMID: 36856233 DOI: 10.1590/1519-6984.266924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/29/2022] [Indexed: 03/02/2023] Open
Abstract
Heart and blood vessel disorders, such as coronary heart disease, brain vessel disease, rheumatic heart disease, and others, are together referred to as cardiovascular disease (CVD). In this study, we sought to determine how mitochondrial Leucine Transfer RNA genes and CVDs are related (MT-L1 and MT-L2). From CVD patients in Peshawar, a total of 27 saliva samples were taken. Leu-tRNA genes expressed by mitochondria were amplified using polymerase chain reaction after DNA was removed. Ten samples were sent for sequencing after PCR and gene cleaning. We obtained all of the sequenced results, which were subsequently aligned and evaluated against the mitochondrial revised Cambridge Reference Sequence (rCRS). However, in our sequenced samples, Leu-tRNA MT-L1 and MT-L2 genes were determined to be unaltered. Thus, it is suggested that a large population be taken into account while screening for mutations in the mitochondrial encoded Leu-tRNA MT-L1 and MT-L2 genes of cardiac patients in areas of Pakistan. Additionally, it is recommended that patients with cardiac problems should also have other mitochondrial encoded genes checked for potential mutations. This could result in the identification of genetic markers that could be used for early CVD screening in Pakistan.
Collapse
Affiliation(s)
- F Ali
- Dalian Medical University, Department of Cell Biology, Dalian, Liaoning, China
| | - S Ali
- Gulf Medical University, College of Health Sciences, Department of Medical Laboratory Sciences, Ajman, United Arab Emirates
| | - S Mohamed
- Gulf Medical University, College of Health Sciences, Department of Medical Laboratory Sciences, Ajman, United Arab Emirates
| | - I Khan
- Lanzhou University, School of Life Sciences, Department of Microbiology, Lanzhou, Gansu, China
| | - I Khan
- Khyber Medical University, Department of Microbiology, Peshawar, Pakistan
| | - S Khan
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - F Khan
- Pir Mehr Ali Shah Arid Agriculture University, Department of Zoology, Rawalpindi, Pakistan
| | - A H Alfeel
- Gulf Medical University, College of Health Sciences, Department of Medical Laboratory Sciences, Ajman, United Arab Emirates
| | - H Higazi
- Gulf Medical University, College of Health Sciences, Department of Medical Laboratory Sciences, Ajman, United Arab Emirates
| |
Collapse
|
13
|
Paredes-Fuentes AJ, Oliva C, Urreizti R, Yubero D, Artuch R. Laboratory testing for mitochondrial diseases: biomarkers for diagnosis and follow-up. Crit Rev Clin Lab Sci 2023; 60:270-289. [PMID: 36694353 DOI: 10.1080/10408363.2023.2166013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The currently available biomarkers generally lack the specificity and sensitivity needed for the diagnosis and follow-up of patients with mitochondrial diseases (MDs). In this group of rare genetic disorders (mutations in approximately 350 genes associated with MDs), all clinical presentations, ages of disease onset and inheritance types are possible. Blood, urine, and cerebrospinal fluid surrogates are well-established biomarkers that are used in clinical practice to assess MD. One of the main challenges is validating specific and sensitive biomarkers for the diagnosis of disease and prediction of disease progression. Profiling of lactate, amino acids, organic acids, and acylcarnitine species is routinely conducted to assess MD patients. New biomarkers, including some proteins and circulating cell-free mitochondrial DNA, with increased diagnostic specificity have been identified in the last decade and have been proposed as potentially useful in the assessment of clinical outcomes. Despite these advances, even these new biomarkers are not sufficiently specific and sensitive to assess MD progression, and new biomarkers that indicate MD progression are urgently needed to monitor the success of novel therapeutic strategies. In this report, we review the mitochondrial biomarkers that are currently analyzed in clinical laboratories, new biomarkers, an overview of the most common laboratory diagnostic techniques, and future directions regarding targeted versus untargeted metabolomic and genomic approaches in the clinical laboratory setting. Brief descriptions of the current methodologies are also provided.
Collapse
Affiliation(s)
- Abraham J Paredes-Fuentes
- Division of Inborn Errors of Metabolism-IBC, Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Clara Oliva
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Roser Urreizti
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Delia Yubero
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Department of Genetic and Molecular Medicine-IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Rafael Artuch
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
14
|
Nielsen SR, Hansen SG, Bistrup C, Brusgaard K, Frederiksen AL. Bone Deformities and Kidney Failure: Coincidence of PHEX-Related Hypophosphatemic Rickets and m.3243A>G Mitochondrial Disease. Calcif Tissue Int 2022; 111:641-645. [PMID: 35916905 DOI: 10.1007/s00223-022-01010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/08/2022] [Indexed: 12/01/2022]
Abstract
X-linked hypophosphatemic rickets (XLH) and m.3243A>G mitochondrial disease share several clinical findings, including short stature, hearing impairment (HI), nephropathy, and hypertension. Here, we report on a case with the rare coincidence of these two genetic conditions. In early childhood, the patient presented with hypophosphatemia and bone deformities and was clinically diagnosed with XLH. This was genetically verified in adulthood with the identification of a de novo pathogenic deletion in phosphate-regulating endopeptidase homolog X-linked (PHEX). In addition, the patient developed HI and hypertension and when his mother was diagnosed with m.3243A>G, subsequent genetic testing confirmed the patient to carry the same variant. Over the next two decades, the patient developed progressive renal impairment however without nephrocalcinosis known to associate with XLH which could indicate an m.3243A>G-related kidney disease. Parallel with the progression of renal impairment, the patient developed hyperphosphatemia and secondary hyperparathyroidism. In conclusion, this case represents a complex clinical phenotype with the reversal of hypo- to hyperphosphatemia in XLH potentially mediated by the development of an m.3243A>G-associated nephropathy.
Collapse
Affiliation(s)
- Simone Rask Nielsen
- Department of Clinical Genetics, Aalborg University Hospital, Ladegaardsgade 5, 5. Floor, 9000, Aalborg, Denmark.
- Department of Clinical Research, Aalborg University, Aalborg, Denmark.
| | | | - Claus Bistrup
- Department of Nephrology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Klaus Brusgaard
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Anja Lisbeth Frederiksen
- Department of Clinical Genetics, Aalborg University Hospital, Ladegaardsgade 5, 5. Floor, 9000, Aalborg, Denmark
- Department of Clinical Research, Aalborg University, Aalborg, Denmark
| |
Collapse
|
15
|
Bakis H, Trimouille A, Vermorel A, Goizet C, Belaroussi Y, Schutz S, Solé G, Combe C, Martin-Negrier ML, Rigothier C. Renal involvement is frequent in adults with primary mitochondrial disorders: an observational study. Clin Kidney J 2022; 16:100-110. [PMID: 36726431 PMCID: PMC9871853 DOI: 10.1093/ckj/sfac195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
Background Mitochondrial functions are controlled by genes of both mitochondrial and nuclear DNA. Pathogenic variants affecting any of these are responsible for primary mitochondrial disorders (MIDs), which can be diagnosed during adulthood. Kidney functions are highly dependent on mitochondrial respiration. However, the prevalence of MID-associated nephropathies (MIDANs) is unknown in the adult population. We aimed to address this point and to provide a full characterization of MIDANs in this population. Methods We retrospectively included for observational study adults (≥16 years of age) with genetically diagnosed MID between 2000 and 2020 in our tertiary care academic centre when they had a chronic kidney disease (CKD) evaluation. MIDANs were ascertained by CKD occurring in MIDs. The phenotypic, biological, histopathological and genotypic characteristics were recorded from the medical charts. Results We included 80 MID-affected adults and ascertained MIDANs in 28/80 (35%). Kidney diseases under the care of a nephrologist occurred in only 14/28 (50%) of the adults with MIDAN. MIDANs were tubulointerstitial nephropathy in 14/28 patients (50%) and glomerular diseases in 9/28 (32.1%). In adults with MID, MIDAN was negatively associated with higher albumin levels {odds ratio [OR] 0.79 [95% confidence interval (CI) 0.67-0.95]} and vision abnormalities [OR 0.17 (95% CI 0.03-0.94)] and positively associated with hypertension [OR 4.23 (95% CI 1.04-17.17)]. Conclusion MIDANs are frequent among adult MIDs. They are mostly represented by tubulointerstitial nephropathy or glomerular disease. Vision abnormalities, hypertension and albumin levels were independently associated with MIDANs. Our results pave the way for prospective studies investigating the prevalence of MIDANs among undetermined kidney disease populations.
Collapse
Affiliation(s)
| | - Aurélien Trimouille
- CHU de Bordeaux, Service de Génétique Médicale, Bordeaux, France,Université de Bordeaux, INSERM U1211, Bordeaux, France
| | - Agathe Vermorel
- CHU de Bordeaux, Service de Néphrologie, Transplantation, Dialyse et Aphérèses, Bordeaux, France,CHU de Bordeaux, Service de Pathologie, Bordeaux, France
| | - Cyril Goizet
- CHU de Bordeaux, Service de Génétique Médicale, Bordeaux, France,CHU de Bordeaux, Centre de Référence pour les Maladies Mitochondriales de l’Enfant à l’Adulte (CARAMMEL), Bordeaux, France,Université de Bordeaux, INSERM U1211, Bordeaux, France
| | - Yaniss Belaroussi
- Université de Bordeaux, INSERM, Bordeaux Population Health Center, ISPED, Bordeaux, France,CHU de Bordeaux, Bordeaux, France,Institut Bergonié, INSERM CIC1401, Clinical and Epidemiological Research Unit, Bordeaux, France
| | - Sacha Schutz
- CHU de Brest, Laboratoire de Génétique Moléculaire, Brest, France,Université de Brest, INSERM, EFS, UMR1078, GGB, Brest, France
| | - Guilhem Solé
- CHU de Bordeaux, Département de Neurologie, Unité Nerf-Muscle, Bordeaux, France,CHU de Bordeaux, AOC National Reference Center for Neuromuscular Disorders, Bordeaux, France
| | - Christian Combe
- CHU de Bordeaux, Service de Néphrologie, Transplantation, Dialyse et Aphérèses, Bordeaux, France,Tissue Bioengineering, U1026, INSERM, Bordeaux, France
| | - Marie-Laure Martin-Negrier
- CHU de Bordeaux, Service de Génétique Médicale, Bordeaux, France,CHU de Bordeaux, Centre de Référence pour les Maladies Mitochondriales de l’Enfant à l’Adulte (CARAMMEL), Bordeaux, France,Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France,CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Claire Rigothier
- CHU de Bordeaux, Service de Néphrologie, Transplantation, Dialyse et Aphérèses, Bordeaux, France,CHU de Bordeaux, Centre de Référence pour les Maladies Mitochondriales de l’Enfant à l’Adulte (CARAMMEL), Bordeaux, France,Tissue Bioengineering, U1026, INSERM, Bordeaux, France
| |
Collapse
|
16
|
Metrics of progression and prognosis in untreated adults with thymidine kinase 2 deficiency: An observational study. Neuromuscul Disord 2022; 32:728-735. [PMID: 35907766 DOI: 10.1016/j.nmd.2022.07.399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/23/2022] [Accepted: 07/13/2022] [Indexed: 11/21/2022]
Abstract
This historical cohort study evaluated clinical characteristics of progression and prognosis in adults with thymidine kinase 2 deficiency (TK2d). Records were available for 17 untreated adults with TK2d (mean age of onset, 32 years), including longitudinal data from 6 patients (mean follow-up duration, 26.5 months). Pearson's correlation assessed associations between standard motor and respiratory assessments, clinical characteristics, and laboratory values. Longitudinal data were assessed by linear regression mixed models. Respiratory involvement progressed at an annual rate of 8.16% decrement in forced vital capacity (FVC). Most patients under noninvasive ventilation (NIV) remained ambulant (12/14, 86%), reduced FVC was not associated with concomitant decline in 6-minute walk test (6MWT), and 6MWT results were not correlated with FVC. Disease severity, assessed by age at NIV onset, correlated most strongly at diagnosis with: creatinine levels (r = 0.8036; P = 0.0009), followed by FVC (r = 0.7265; P = 0.0033), mtDNA levels in muscle (r = 0.7933; P = 0.0188), and age at disease onset (r = 0.7128; P = 0.0042). This population of adults with TK2d demonstrates rapid deterioration of respiratory muscles, which progresses independently of motor impairment. The results support FVC at diagnosis, mtDNA levels in muscle, and age at disease onset as prognostic indicators. Creatinine levels may also be potentially prognostic, as previously reported in other neuromuscular disorders.
Collapse
|
17
|
Mechanisms of podocyte injury and implications for diabetic nephropathy. Clin Sci (Lond) 2022; 136:493-520. [PMID: 35415751 PMCID: PMC9008595 DOI: 10.1042/cs20210625] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/25/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
Albuminuria is the hallmark of both primary and secondary proteinuric glomerulopathies, including focal segmental glomerulosclerosis (FSGS), obesity-related nephropathy, and diabetic nephropathy (DN). Moreover, albuminuria is an important feature of all chronic kidney diseases (CKDs). Podocytes play a key role in maintaining the permselectivity of the glomerular filtration barrier (GFB) and injury of the podocyte, leading to foot process (FP) effacement and podocyte loss, the unifying underlying mechanism of proteinuric glomerulopathies. The metabolic insult of hyperglycemia is of paramount importance in the pathogenesis of DN, while insults leading to podocyte damage are poorly defined in other proteinuric glomerulopathies. However, shared mechanisms of podocyte damage have been identified. Herein, we will review the role of haemodynamic and oxidative stress, inflammation, lipotoxicity, endocannabinoid (EC) hypertone, and both mitochondrial and autophagic dysfunction in the pathogenesis of the podocyte damage, focussing particularly on their role in the pathogenesis of DN. Gaining a better insight into the mechanisms of podocyte injury may provide novel targets for treatment. Moreover, novel strategies for boosting podocyte repair may open the way to podocyte regenerative medicine.
Collapse
|
18
|
Denmark D, Ruhoy I, Wittmann B, Ashki H, Koran LM. Altered Plasma Mitochondrial Metabolites in Persistently Symptomatic Individuals after a GBCA-Assisted MRI. TOXICS 2022; 10:56. [PMID: 35202243 PMCID: PMC8879776 DOI: 10.3390/toxics10020056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/24/2022] [Indexed: 12/22/2022]
Abstract
Despite the impressive safety of gadolinium (Gd)-based contrast agents (GBCAs), a small number of patients report the onset of new, severe, ongoing symptoms after even a single exposure-a syndrome termed Gadolinium Deposition Disease (GDD). Mitochondrial dysfunction and oxidative stress have been repeatedly implicated by animal and in vitro studies as mechanisms of Gd/GBCA-related toxicity, and as pathogenic in other diseases with similarities in presentation. Here, we aimed to molecularly characterize and explore potential metabolic associations with GDD symptoms. Detailed clinical phenotypes were systematically obtained for a small cohort of individuals (n = 15) with persistent symptoms attributed to a GBCA-enhanced MRI and consistent with provisional diagnostic criteria for GDD. Global untargeted mass spectroscopy-based metabolomics analyses were performed on plasma samples and examined for relevance with both single marker and pathways approaches. In addition to GDD criteria, frequently reported symptoms resembled those of patients with known mitochondrial-related diseases. Plasma differences compared to a healthy, asymptomatic reference cohort were suggested for 45 of 813 biochemicals. A notable proportion of these are associated with mitochondrial function and related disorders, including nucleotide and energy superpathways, which were over-represented. Although early evidence, coincident clinical and biochemical indications of potential mitochondrial involvement in GDD are remarkable in light of preclinical models showing adverse Gd/GBCA effects on multiple aspects of mitochondrial function. Further research on the potential contributory role of these markers and pathways in persistent symptoms attributed to GBCA exposure is recommended.
Collapse
Affiliation(s)
- DeAunne Denmark
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3710 SW US Veterans Hospital Road, Mail Code R&D40, Portland, OR 97239, USA;
| | - Ilene Ruhoy
- Mount Sinai South Nassau Chiari-EDS Center, 1420 Broadway, Hewlett, NY 11557, USA;
| | - Bryan Wittmann
- Owlstone Medical, 600 Park Offices Drive, Suite 140, Research Triangle Park, NC 27709, USA;
| | - Haleh Ashki
- Prime Genomics, Inc., 319 Bernardo Avenue, Mountain View, CA 94041, USA;
| | - Lorrin M. Koran
- Department of Psychiatry and Behavioral Sciences, OCD Clinic, Stanford University Medical Center, 401 Quarry Road, Stanford, CA 94305, USA
| |
Collapse
|
19
|
Clinicopathological Features of Mitochondrial Nephropathy. Kidney Int Rep 2022; 7:580-590. [PMID: 35257070 PMCID: PMC8897298 DOI: 10.1016/j.ekir.2021.12.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction The clinicopathologic characteristics of nephropathy associated with mitochondrial disease (MD) remain unknown. We retrospectively analyzed a cohort of patients with proteinuria, decreased glomerular filtration rate, or Fanconi syndrome who had a genetic mutation confirmed as the cause of MD, defined as mitochondrial nephropathy. Methods This nationwide survey included 757 nephrology sections throughout Japan, and consequently, data on 81 cases of mitochondrial nephropathy were collected. Results The most common renal manifestation observed during the disease course was proteinuria. Hearing loss was the most common comorbidity; a renal-limited phenotype was observed only in mitochondrial DNA (mtDNA) point mutation and COQ8B mutation cases. We found a median time delay of 6.0 years from onset of renal manifestations to diagnosis. Focal segmental glomerular sclerosis (FSGS) was the most common pathologic diagnosis. We then focused on 63 cases with the m.3243A>G mutation. The rate of cases with diabetes was significantly higher among adult-onset cases than among childhood-onset cases. Pathologic diagnoses were more variable in adult-onset cases, including diabetic nephropathy, nephrosclerosis, tubulointerstitial nephropathy, and minor glomerular abnormalities. During the median observation period of 11.0 years from the first onset of renal manifestations in patients with m.3243A>G, renal replacement therapy (RRT) was initiated in 50.8% of patients. Death occurred in 25.4% of the patients during the median observation period of 12.0 years. The median estimated glomerular filtration rate (eGFR) decline was 5.4 ml/min per 1.73 m2/yr in the cases, especially 8.3 ml/min per 1.73 m2/yr in FSGS cases, with m.3243A>G. Conclusion Here, we described the clinicopathologic features and prognosis of mitochondrial nephropathy using large-scale data.
Collapse
|
20
|
Audzeyenka I, Bierżyńska A, Lay AC. Podocyte Bioenergetics in the Development of Diabetic Nephropathy: The Role of Mitochondria. Endocrinology 2022; 163:6429716. [PMID: 34791124 PMCID: PMC8660556 DOI: 10.1210/endocr/bqab234] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 01/11/2023]
Abstract
Diabetic nephropathy (DN) is the leading cause of kidney failure, with an increasing incidence worldwide. Mitochondrial dysfunction is known to occur in DN and has been implicated in the underlying pathogenesis of disease. These complex organelles have an array of important cellular functions and involvement in signaling pathways, and understanding the intricacies of these responses in health, as well as how they are damaged in disease, is likely to highlight novel therapeutic avenues. A key cell type damaged early in DN is the podocyte, and increasing studies have focused on investigating the role of mitochondria in podocyte injury. This review will summarize what is known about podocyte mitochondrial dynamics in DN, with a particular focus on bioenergetic pathways, highlighting key studies in this field and potential opportunities to target, enhance or protect podocyte mitochondrial function in the treatment of DN.
Collapse
Affiliation(s)
- Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdańsk, Poland
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
- Correspondence: Irena Audzeyenka, PhD, Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza St. 63, 80-308 Gdansk, Poland.
| | - Agnieszka Bierżyńska
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Abigail C Lay
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
21
|
Vaishali K, Kumar N, Rao V, Kovela RK, Sinha MK. Exercise and Mitochondrial Function: Importance and InferenceA Mini Review. Curr Mol Med 2021; 22:755-760. [PMID: 34844538 DOI: 10.2174/1566524021666211129110542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/06/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022]
Abstract
Skeletal muscles must generate and distribute energy properly in order to function perfectly. Mitochondria in skeletal muscle cells form vast networks to meet this need, and their functions may improve as a result of exercise. In the present review, we discussed exercise-induced mitochondrial adaptations, age-related mitochondrial decline, and a biomarker as a mitochondrial function indicator and exercise interference.
Collapse
Affiliation(s)
- Vaishali K
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka. India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar. India
| | - Vanishree Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka. India
| | - Rakesh Krishna Kovela
- Department of Neurophysiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Medical Sciences, Sawangi (Meghe), Wardha, Maharashtra. India
| | - Mukesh Kumar Sinha
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka. India
| |
Collapse
|
22
|
Saffari A, Cannet C, Blaschek A, Hahn A, Hoffmann GF, Johannsen J, Kirsten R, Kockaya M, Kölker S, Müller-Felber W, Roos A, Schäfer H, Schara U, Spraul M, Trefz FK, Vill K, Wick W, Weiler M, Okun JG, Ziegler A. 1H-NMR-based metabolic profiling identifies non-invasive diagnostic and predictive urinary fingerprints in 5q spinal muscular atrophy. Orphanet J Rare Dis 2021; 16:441. [PMID: 34670613 PMCID: PMC8527822 DOI: 10.1186/s13023-021-02075-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/10/2021] [Indexed: 11/13/2022] Open
Abstract
Background 5q spinal muscular atrophy (SMA) is a disabling and life-limiting neuromuscular disease. In recent years, novel therapies have shown to improve clinical outcomes. Yet, the absence of reliable biomarkers renders clinical assessment and prognosis of possibly already affected newborns with a positive newborn screening result for SMA imprecise and difficult. Therapeutic decisions and stratification of individualized therapies remain challenging, especially in symptomatic children. The aim of this proof-of-concept and feasibility study was to explore the value of 1H-nuclear magnetic resonance (NMR)-based metabolic profiling in identifying non-invasive diagnostic and prognostic urinary fingerprints in children and adolescents with SMA. Results Urine samples were collected from 29 treatment-naïve SMA patients (5 pre-symptomatic, 9 SMA 1, 8 SMA 2, 7 SMA 3), 18 patients with Duchenne muscular dystrophy (DMD) and 444 healthy controls. Using machine-learning algorithms, we propose a set of prediction models built on urinary fingerprints that showed potential diagnostic value in discriminating SMA patients from controls and DMD, as well as predictive properties in separating between SMA types, allowing predictions about phenotypic severity. Interestingly, preliminary results of the prediction models suggest additional value in determining biochemical onset of disease in pre-symptomatic infants with SMA identified by genetic newborn screening and furthermore as potential therapeutic monitoring tool. Conclusions This study provides preliminary evidence for the use of 1H-NMR-based urinary metabolic profiling as diagnostic and prognostic biomarker in spinal muscular atrophy. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-02075-x.
Collapse
Affiliation(s)
- Afshin Saffari
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | | | - Astrid Blaschek
- Division of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, LMU Hospital, Dr. von Hauner Children's Hospital, Munich, Germany
| | - Andreas Hahn
- Department of Child Neurology, University Hospital Gießen, Gießen, Germany
| | - Georg F Hoffmann
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Jessika Johannsen
- Department of Pediatrics, Neuropediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Romy Kirsten
- NCT Liquidbank, National Center for Tumor Diseases, Heidelberg, Germany
| | | | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Wolfgang Müller-Felber
- Division of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, LMU Hospital, Dr. von Hauner Children's Hospital, Munich, Germany
| | - Andreas Roos
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, Centre for Neuromuscular Disorders in Children, Children's University Clinic Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Ulrike Schara
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, Centre for Neuromuscular Disorders in Children, Children's University Clinic Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Friedrich K Trefz
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Katharina Vill
- Division of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, LMU Hospital, Dr. von Hauner Children's Hospital, Munich, Germany
| | - Wolfgang Wick
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus Weiler
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen G Okun
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Andreas Ziegler
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
| |
Collapse
|
23
|
Gonzalez E, Azkargorta M, Garcia-Vallicrosa C, Prieto-Elordui J, Elortza F, Blanco-Sampascual S, Falcon-Perez JM. Could protein content of Urinary Extracellular Vesicles be useful to detect Cirrhosis in Alcoholic Liver Disease? Int J Biol Sci 2021; 17:1864-1877. [PMID: 34131392 PMCID: PMC8193259 DOI: 10.7150/ijbs.59725] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/10/2021] [Indexed: 12/13/2022] Open
Abstract
Alcohol abuse has a high impact on the mortality and morbidity related to a great number of diseases and is responsible for the development of alcoholic liver disease (ALD). It remains challenging to detect and evaluate its severity, which is crucial for prognosis. In this work, we studied if urinary EVs (uEVs) could serve in diagnose and evaluate cirrhosis in ALD. To this purpose, uEVs characterization by cryo-electron microscopy (Cryo-EM), Nanoparticle Tracking Analysis (NTA) and Western blotting (WB) was performed in a cohort of 21 controls and 21 cirrhotic patients. Then, proteomics of uEVs was carried out in a second cohort of 6 controls and 8 patients in order to identify new putative biomarkers for cirrhosis in ALD. Interestingly, uEVs concentration, size and protein composition were altered in cirrhotic patients. From a total of 1304 proteins identified in uEVs, 90 of them were found to be altered in cirrhotic patients. The results suggest that uEVs could be considered as a tool and a supplier of new biomarkers for cirrhosis in ALD, whose application would be especially relevant in chronic patients. Yet, further research is necessary to obtain more relevant result in clinical terms.
Collapse
Affiliation(s)
- Esperanza Gonzalez
- Exosomes Laboratory. Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Mikel Azkargorta
- Proteomics Platform. Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Clara Garcia-Vallicrosa
- Exosomes Laboratory. Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | | | - Felix Elortza
- Proteomics Platform. Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | | | - Juan Manuel Falcon-Perez
- Exosomes Laboratory. Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Madrid, Spain
- IKERBASQUE Basque Foundation for Science Bilbao Spain
| |
Collapse
|
24
|
Thompson PW. Developing new treatments in partnership for primary mitochondrial disease: What does industry need from academics, and what do academics need from industry? J Inherit Metab Dis 2021; 44:301-311. [PMID: 33141457 DOI: 10.1002/jimd.12326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
Developing novel therapeutics for primary mitochondrial disease is likely to require significant academia-industry collaboration. Translational assessments, a tool often used in industry at target validation stage, can highlight disease specific development challenges which requires focused collaborative effort. For PMD, definition of pivotal trial populations and primary endpoints is challenging given lack of clinical precedence, high numbers of subgroups with overlapping symptoms despite common genetics. Disease pathophysiology has not been systematically assessed simultaneously with outcomes in available natural history studies, resulting in a lack of pathophysiology biomarker utilization in clinical trials. Preclinical model systems are available to assist drug development efforts, although these may require better standardization and access. Multistakeholder precompetitive efforts have been used to progress disease pathophysiology biomarker and confirmatory clinical trial endpoint readiness in neurological disease with limited treatment options, such as rare familial Parkinson's disease. This type of approach may be beneficial for PMD therapeutic development, although requires significant funding and time, supported by industry and other funding bodies. Industry expertise on chemistry, data quality and drug development know-how is available to support academic drug development efforts. A combination of industry mindset-reduction of uncertainty to provide an indication statement supportable by evidence-together with academic approach-question-based studies to understand disease mechanisms and patients-has great potential to deliver novel PMD therapeutics.
Collapse
Affiliation(s)
- Paul W Thompson
- Mission Therapeutics, Babraham Research Campus, Cambridge, UK
| |
Collapse
|
25
|
Esterhuizen K, Lindeque JZ, Mason S, van der Westhuizen FH, Rodenburg RJ, de Laat P, Smeitink JAM, Janssen MCH, Louw R. One mutation, three phenotypes: novel metabolic insights on MELAS, MIDD and myopathy caused by the m.3243A > G mutation. Metabolomics 2021; 17:10. [PMID: 33438095 DOI: 10.1007/s11306-020-01769-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/31/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The m.3243A > G mitochondrial DNA mutation is one of the most common mitochondrial disease-causing mutations, with a carrier rate as high as 1:400. This point mutation affects the MT-TL1 gene, ultimately affecting the oxidative phosphorylation system and the cell's energy production. Strikingly, the m.3243A > G mutation is associated with different phenotypes, including mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), maternally inherited diabetes and deafness (MIDD) and myopathy. OBJECTIVES We investigated urine metabolomes of MELAS, MIDD and myopathy patients in order to identify affected metabolic pathways and possible treatment options. METHODS A multiplatform metabolomics approach was used to comprehensively analyze the metabolome and compare metabolic profiles of different phenotypes caused by the m.3243A > G mutation. Our analytical array consisted of NMR spectroscopy, LC-MS/MS and GC-TOF-MS. RESULTS The investigation revealed phenotypic specific metabolic perturbations, as well as metabolic similarities between the different phenotypes. We show that glucose metabolism is highly disturbed in the MIDD phenotype, but not in MELAS or myopathy, remodeled fatty acid oxidation is characteristic of the MELAS patients, while one-carbon metabolism is strongly modified in both MELAS and MIDD, but not in the myopathy group. Lastly we identified increased creatine in the urine of the myopathy patients, but not in MELAS or MIDD. CONCLUSION We conclude by giving novel insight on the phenotypes of the m.3243A > G mutation from a metabolomics point of view. Directives are also given for future investigations that could lead to better treatment options for patients suffering from this debilitating disease.
Collapse
Affiliation(s)
- Karien Esterhuizen
- Mitochondria Research Laboratory, Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - J Zander Lindeque
- Mitochondria Research Laboratory, Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Shayne Mason
- Mitochondria Research Laboratory, Human Metabolomics, North-West University, Potchefstroom, South Africa
| | | | - Richard J Rodenburg
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Paul de Laat
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Jan A M Smeitink
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Mirian C H Janssen
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
- Department of Internal Medicine, Radboud Center for Mitochondrial Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Roan Louw
- Mitochondria Research Laboratory, Human Metabolomics, North-West University, Potchefstroom, South Africa.
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, South Africa.
| |
Collapse
|
26
|
Govers LP, Toka HR, Hariri A, Walsh SB, Bockenhauer D. Mitochondrial DNA mutations in renal disease: an overview. Pediatr Nephrol 2021; 36:9-17. [PMID: 31925537 PMCID: PMC7701126 DOI: 10.1007/s00467-019-04404-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 12/28/2022]
Abstract
Kidneys have a high energy demand to facilitate the reabsorption of the glomerular filtrate. For this reason, renal cells have a high density of mitochondria. Mitochondrial cytopathies can be the result of a mutation in both mitochondrial and nuclear DNA. Mitochondrial dysfunction can lead to a variety of renal manifestations. Examples of tubular manifestations are renal Fanconi Syndrome, which is often found in patients diagnosed with Kearns-Sayre and Pearson's marrow-pancreas syndrome, and distal tubulopathies, which result in electrolyte disturbances such as hypomagnesemia. Nephrotic syndrome can be a glomerular manifestation of mitochondrial dysfunction and is typically associated with focal segmental glomerular sclerosis on histology. Tubulointerstitial nephritis can also be seen in mitochondrial cytopathies and may lead to end-stage renal disease. The underlying mechanisms of these cytopathies remain incompletely understood; therefore, current therapies focus mainly on symptom relief. A better understanding of the molecular disease mechanisms is critical in order to improve treatments.
Collapse
Affiliation(s)
- Larissa P Govers
- Department of Renal Medicine, University College London, London, UK
| | - Hakan R Toka
- Manatee Kidney Diseases Consultants, Bradenton, USA
| | - Ali Hariri
- Clinical Development, Sanofi Rare Disease, Boston, USA
| | - Stephen B Walsh
- Department of Renal Medicine, University College London, London, UK
| | - Detlef Bockenhauer
- Department of Renal Medicine, University College London, London, UK.
- Renal Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, UK.
| |
Collapse
|
27
|
Schijvens AM, van de Kar NC, Bootsma-Robroeks CM, Cornelissen EA, van den Heuvel LP, Schreuder MF. Mitochondrial Disease and the Kidney With a Special Focus on CoQ 10 Deficiency. Kidney Int Rep 2020; 5:2146-2159. [PMID: 33305107 PMCID: PMC7710892 DOI: 10.1016/j.ekir.2020.09.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial cytopathies include a heterogeneous group of diseases that are characterized by impaired oxidative phosphorylation, leading to multi-organ involvement and progressive clinical deterioration. Most mitochondrial cytopathies that cause kidney symptoms are characterized by tubular defects, but glomerular, tubulointerstitial, and cystic diseases have also been described. Mitochondrial cytopathies can result from mitochondrial or nuclear DNA mutations. Early recognition of defects in the coenzyme Q10 (CoQ10) biosynthesis is important, as patients with primary CoQ10 deficiency may be responsive to treatment with oral CoQ10 supplementation, in contrast to most mitochondrial diseases. A literature search was conducted to investigate kidney involvement in genetic mitochondrial cytopathies and to identify mitochondrial and nuclear DNA mutations involved in mitochondrial kidney disease. Furthermore, we identified all reported cases to date with a CoQ10 deficiency with glomerular involvement, including 3 patients with variable renal phenotypes in our clinic. To date, 144 patients from 95 families with a primary CoQ10 deficiency and glomerular involvement have been described based on mutations in PDSS1, PDSS2, COQ2, COQ6, and COQ8B/ADCK4. This review provides an overview of kidney involvement in genetic mitochondrial cytopathies with a special focus on CoQ10 deficiency.
Collapse
Affiliation(s)
- Anne M. Schijvens
- Department of Pediatric Nephrology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Amalia Children’s Hospital, Nijmegen, the Netherlands
| | - Nicole C. van de Kar
- Department of Pediatric Nephrology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Amalia Children’s Hospital, Nijmegen, the Netherlands
| | - Charlotte M. Bootsma-Robroeks
- Department of Pediatric Nephrology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Amalia Children’s Hospital, Nijmegen, the Netherlands
| | - Elisabeth A. Cornelissen
- Department of Pediatric Nephrology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Amalia Children’s Hospital, Nijmegen, the Netherlands
| | - Lambertus P. van den Heuvel
- Department of Pediatric Nephrology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Amalia Children’s Hospital, Nijmegen, the Netherlands
- Department of Development and Regeneration,University Hospital Leuven, Leuven, Belgium
| | - Michiel F. Schreuder
- Department of Pediatric Nephrology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Amalia Children’s Hospital, Nijmegen, the Netherlands
| |
Collapse
|
28
|
Abstract
Mitochondrial disease presenting in childhood is characterized by clinical, biochemical and genetic complexity. Some children are affected by canonical syndromes, but the majority have nonclassical multisystemic disease presentations involving virtually any organ in the body. Each child has a unique constellation of clinical features and disease trajectory, leading to enormous challenges in diagnosis and management of these heterogeneous disorders. This review discusses the classical mitochondrial syndromes presenting most frequently in childhood and then presents an organ-based perspective including systems less frequently linked to mitochondrial disease, such as skin and hair abnormalities and immune dysfunction. An approach to diagnosis is then presented, encompassing clinical evaluation and biochemical, neuroimaging and genetic investigations, and emphasizing the problem of phenocopies. The impact of next-generation sequencing is discussed, together with the importance of functional validation of novel genetic variants never previously linked to mitochondrial disease. The review concludes with a brief discussion of currently available and emerging therapies. The field of mitochondrial medicine has made enormous strides in the last 30 years, with approaching 400 different genes across two genomes now linked to primary mitochondrial disease. However, many important questions remain unanswered, including the reasons for tissue specificity and variability of clinical presentation of individuals sharing identical gene defects, and a lack of disease-modifying therapies and biomarkers to monitor disease progression and/or response to treatment.
Collapse
Affiliation(s)
- S Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
29
|
Bakis H, Trimouille A, Vermorel A, Redonnet I, Goizet C, Boulestreau R, Lacombe D, Combe C, Martin-Négrier ML, Rigothier C. Adult onset tubulo-interstitial nephropathy in MT-ND5-related phenotypes. Clin Genet 2020; 97:628-633. [PMID: 31713837 DOI: 10.1111/cge.13670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 11/29/2022]
Abstract
Kidney is a highly adenosine triphosphate dependent organ in human body. Healthy and functional mitochondria are essential for normal kidney function. Clinical and genetic variability are the hallmarks of mitochondrial disorders. We report here the involvement of two MT-ND5 pathogenic variants encoding for ND5 subunit of respiratory chain complex I, the m.13513G>A and the m.13514A>G, in adult-onset kidney disease in three unrelated patients. The first patient had myopathy encephalopathy lactic acidosis and stroke syndrome, left ventricular hypertrophy with Wolff-Parkinson-White syndrome and tubulo-interstitial kidney disease. The second presented Leber hereditary optic neuropathy associated with tubulo-interstitial kidney disease. The third presented with an isolated chronic tubulo-interstitial kidney disease. These mutations have never been associated with adulthood mitochondrial nephropathy. These case reports highlight the importance to consider mitochondrial dysfunction in tubulo-interstitial kidney disease.
Collapse
Affiliation(s)
- Hugo Bakis
- Service de Néphrologie Transplantation Dialyse et Aphérèses, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Aurélien Trimouille
- Service de Génétique médicale, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France.,lNSERM U1211, Université de Bordeaux, Bordeaux, France
| | - Agathe Vermorel
- Service de Pathologie, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Isabelle Redonnet
- Laboratoire de Biochimie, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France.,Centre de référence pour les maladies mitochondriales de l'enfant à l'adulte (CARAMMEL), Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France.,lNSERM U1211, Université de Bordeaux, Bordeaux, France
| | - Cyril Goizet
- Service de Génétique médicale, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France.,Centre de référence pour les maladies mitochondriales de l'enfant à l'adulte (CARAMMEL), Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France.,lNSERM U1211, Université de Bordeaux, Bordeaux, France
| | - Romain Boulestreau
- Service de Cardiologie et d'Hypertension Artérielle, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Didier Lacombe
- Service de Génétique médicale, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France.,Centre de référence pour les maladies mitochondriales de l'enfant à l'adulte (CARAMMEL), Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France.,lNSERM U1211, Université de Bordeaux, Bordeaux, France
| | - Christian Combe
- Service de Néphrologie Transplantation Dialyse et Aphérèses, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France.,Tissue Bioengineering, U1026, INSERM, Bordeaux, France
| | - Marie-Laure Martin-Négrier
- Service de Pathologie, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France.,Centre de référence pour les maladies mitochondriales de l'enfant à l'adulte (CARAMMEL), Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France.,UMR5293, Université de Bordeaux, Bordeaux, France
| | - Claire Rigothier
- Service de Néphrologie Transplantation Dialyse et Aphérèses, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France.,Tissue Bioengineering, U1026, INSERM, Bordeaux, France
| |
Collapse
|
30
|
Esterhuizen K, Lindeque JZ, Mason S, van der Westhuizen FH, Suomalainen A, Hakonen AH, Carroll CJ, Rodenburg RJ, de Laat PB, Janssen MC, Smeitink JA, Louw R. A urinary biosignature for mitochondrial myopathy, encephalopathy, lactic acidosis and stroke like episodes (MELAS). Mitochondrion 2019; 45:38-45. [DOI: 10.1016/j.mito.2018.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/27/2018] [Accepted: 02/15/2018] [Indexed: 12/27/2022]
|
31
|
Buzkova J, Nikkanen J, Ahola S, Hakonen AH, Sevastianova K, Hovinen T, Yki-Järvinen H, Pietiläinen KH, Lönnqvist T, Velagapudi V, Carroll CJ, Suomalainen A. Metabolomes of mitochondrial diseases and inclusion body myositis patients: treatment targets and biomarkers. EMBO Mol Med 2018; 10:e9091. [PMID: 30373890 PMCID: PMC6284386 DOI: 10.15252/emmm.201809091] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 09/14/2018] [Accepted: 09/24/2018] [Indexed: 01/18/2023] Open
Abstract
Mitochondrial disorders (MDs) are inherited multi-organ diseases with variable phenotypes. Inclusion body myositis (IBM), a sporadic inflammatory muscle disease, also shows mitochondrial dysfunction. We investigated whether primary and secondary MDs modify metabolism to reveal pathogenic pathways and biomarkers. We investigated metabolomes of 25 mitochondrial myopathy or ataxias patients, 16 unaffected carriers, six IBM and 15 non-mitochondrial neuromuscular disease (NMD) patients and 30 matched controls. MD and IBM metabolomes clustered separately from controls and NMDs. MDs and IBM showed transsulfuration pathway changes; creatine and niacinamide depletion marked NMDs, IBM and infantile-onset spinocerebellar ataxia (IOSCA). Low blood and muscle arginine was specific for patients with m.3243A>G mutation. A four-metabolite blood multi-biomarker (sorbitol, alanine, myoinositol, cystathionine) distinguished primary MDs from others (76% sensitivity, 95% specificity). Our omics approach identified pathways currently used to treat NMDs and mitochondrial stroke-like episodes and proposes nicotinamide riboside in MDs and IBM, and creatine in IOSCA and IBM as novel treatment targets. The disease-specific metabolic fingerprints are valuable "multi-biomarkers" for diagnosis and promising tools for follow-up of disease progression and treatment effect.
Collapse
Affiliation(s)
- Jana Buzkova
- Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, Helsinki, Finland
| | - Joni Nikkanen
- Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, Helsinki, Finland
| | - Sofia Ahola
- Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, Helsinki, Finland
| | - Anna H Hakonen
- Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, Helsinki, Finland
| | - Ksenia Sevastianova
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Topi Hovinen
- Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, Helsinki, Finland
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Kirsi H Pietiläinen
- Research Programs Unit, Diabetes and Obesity, Obesity Research Unit, University of Helsinki, Helsinki, Finland
- Abdominal Centre, Endocrinology, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Tuula Lönnqvist
- Department of Child Neurology, Children's Hospital, University of Helsinki, Helsinki, Finland
| | - Vidya Velagapudi
- Metabolomics Unit, Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Christopher J Carroll
- Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, Helsinki, Finland
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St. George's University of London, London, UK
| | - Anu Suomalainen
- Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, Helsinki, Finland
- Department of Neurosciences, Helsinki University Hospital, Helsinki, Finland
- Neuroscience Centre, Helsinki Institute Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
32
|
Rahman J, Rahman S. Mitochondrial medicine in the omics era. Lancet 2018; 391:2560-2574. [PMID: 29903433 DOI: 10.1016/s0140-6736(18)30727-x] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/28/2018] [Accepted: 03/14/2018] [Indexed: 12/16/2022]
Abstract
Mitochondria are dynamic bioenergetic organelles whose maintenance requires around 1500 proteins from two genomes. Mutations in either the mitochondrial or nuclear genome can disrupt a plethora of cellular metabolic and homoeostatic functions. Mitochondrial diseases represent one of the most common and severe groups of inherited genetic disorders, characterised by clinical, biochemical, and genetic heterogeneity, diagnostic odysseys, and absence of disease-modifying curative therapies. This Review aims to discuss recent advances in mitochondrial biology and medicine arising from widespread use of high-throughput omics technologies, and also includes a broad discussion of emerging therapies for mitochondrial disease. New insights into both bioenergetic and biosynthetic mitochondrial functionalities have expedited the genetic diagnosis of primary mitochondrial disorders, and identified novel mitochondrial pathomechanisms and new targets for therapeutic intervention. As we enter this new era of mitochondrial medicine, underpinned by global unbiased approaches and multifaceted investigation of mitochondrial function, omics technologies will continue to shed light on unresolved mitochondrial questions, paving the way for improved outcomes for patients with mitochondrial diseases.
Collapse
Affiliation(s)
- Joyeeta Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Shamima Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK; Metabolic Unit, Great Ormond Street Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
33
|
CHORIOCAPILLARIS SIGNAL VOIDS IN MATERNALLY INHERITED DIABETES AND DEAFNESS AND IN PSEUDOXANTHOMA ELASTICUM. Retina 2018; 37:2008-2014. [PMID: 28092344 DOI: 10.1097/iae.0000000000001497] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To evaluate the pattern of choriocapillaris signal voids in maternally inherited diabetes and deafness and in pseudoxanthoma elasticum in eyes before the development of any geographic atrophy. METHODS The choriocapillaris under the central macula was imaged with the Optovue RTVue XR Avanti using a 10 μm slab thickness. Automatic local thresholding of the resultant raw data extracted areas of absent flow signal, called signal voids, and these were counted and logarithmically binned. The signal void patterns were analyzed in four eyes of two patients with maternally inherited diabetes and deafness and four eyes of three patients with pseudoxanthoma elasticum. None of the patients had geographic atrophy. These data were compared with 55 eyes of 38 healthy control subjects and analyzed with generalized estimating equations. RESULTS The choriocapillaris images in maternally inherited diabetes and deafness and pseudoxanthoma elasticum show that the model of signal voids followed a power law distribution, but with a slope and offset much lower than the normal control group, adjusted for age (P < 0.001). The eyes in the disease group were much more likely to have signal voids greater than 40,000 μm. CONCLUSION Before the development of any overt geographic atrophy, patients with maternally inherited diabetes and deafness and pseudoxanthoma elasticum show pronounced abnormalities of choriocapillaris flow. Current clinical measures of retinal pigment epithelial health only look for areas of cell death, as in geographic atrophy. It is not possible to determine from current imaging if the choriocapillaris loss precedes potential loss of function of the retinal pigment epithelium, such as secretion of vascular endothelial growth factor.
Collapse
|
34
|
Finsterer J, Zarrouk-Mahjoub S. Biomarkers for Detecting Mitochondrial Disorders. J Clin Med 2018; 7:E16. [PMID: 29385732 PMCID: PMC5852432 DOI: 10.3390/jcm7020016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 12/28/2017] [Accepted: 01/19/2018] [Indexed: 01/22/2023] Open
Abstract
(1) Objectives: Mitochondrial disorders (MIDs) are a genetically and phenotypically heterogeneous group of slowly or rapidly progressive disorders with onset from birth to senescence. Because of their variegated clinical presentation, MIDs are difficult to diagnose and are frequently missed in their early and late stages. This is why there is a need to provide biomarkers, which can be easily obtained in the case of suspecting a MID to initiate the further diagnostic work-up. (2) Methods: Literature review. (3) Results: Biomarkers for diagnostic purposes are used to confirm a suspected diagnosis and to facilitate and speed up the diagnostic work-up. For diagnosing MIDs, a number of dry and wet biomarkers have been proposed. Dry biomarkers for MIDs include the history and clinical neurological exam and structural and functional imaging studies of the brain, muscle, or myocardium by ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), MR-spectroscopy (MRS), positron emission tomography (PET), or functional MRI. Wet biomarkers from blood, urine, saliva, or cerebrospinal fluid (CSF) for diagnosing MIDs include lactate, creatine-kinase, pyruvate, organic acids, amino acids, carnitines, oxidative stress markers, and circulating cytokines. The role of microRNAs, cutaneous respirometry, biopsy, exercise tests, and small molecule reporters as possible biomarkers is unsolved. (4) Conclusions: The disadvantages of most putative biomarkers for MIDs are that they hardly meet the criteria for being acceptable as a biomarker (missing longitudinal studies, not validated, not easily feasible, not cheap, not ubiquitously available) and that not all MIDs manifest in the brain, muscle, or myocardium. There is currently a lack of validated biomarkers for diagnosing MIDs.
Collapse
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung, Postfach 20, 1180 Vienna, Austria.
| | - Sinda Zarrouk-Mahjoub
- El Manar and Genomics Platform, Pasteur Institute of Tunis, University of Tunis, Tunis 1068, Tunisia.
| |
Collapse
|
35
|
Steele HE, Horvath R, Lyon JJ, Chinnery PF. Monitoring clinical progression with mitochondrial disease biomarkers. Brain 2017; 140:2530-2540. [PMID: 28969370 PMCID: PMC5841218 DOI: 10.1093/brain/awx168] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/14/2017] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial disorders are genetically determined metabolic diseases due to a biochemical deficiency of the respiratory chain. Given that multi-system involvement and disease progression are common features of mitochondrial disorders they carry substantial morbidity and mortality. Despite this, no disease-modifying treatments exist with clear clinical benefits, and the current best management of mitochondrial disease is supportive. Several therapeutic strategies for mitochondrial disorders are now at a mature preclinical stage. Some are making the transition into early-phase patient trials, but the lack of validated biomarkers of disease progression presents a challenge when developing new therapies for patients. This update discusses current biomarkers of mitochondrial disease progression including metabolomics, circulating serum markers, exercise physiology, and both structural and functional imaging. We discuss the advantages and disadvantages of each approach, and consider emerging techniques with a potential role in trials of new therapies.
Collapse
Affiliation(s)
- Hannah E Steele
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Rita Horvath
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Jon J Lyon
- GlaxoSmithKline, Molecular Safety and Disposition, Ware, SG12 0DP, UK
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK.,MRC Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| |
Collapse
|
36
|
Metabolomics of mitochondrial disease. Mitochondrion 2017; 35:97-110. [DOI: 10.1016/j.mito.2017.05.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 05/08/2017] [Accepted: 05/26/2017] [Indexed: 12/21/2022]
|
37
|
Mitochondrial cytopathies and the kidney. Nephrol Ther 2017; 13 Suppl 1:S23-S28. [DOI: 10.1016/j.nephro.2017.01.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 01/25/2017] [Indexed: 01/24/2023]
|
38
|
Emma F, Montini G, Parikh SM, Salviati L. Mitochondrial dysfunction in inherited renal disease and acute kidney injury. Nat Rev Nephrol 2016; 12:267-80. [PMID: 26804019 PMCID: PMC5469549 DOI: 10.1038/nrneph.2015.214] [Citation(s) in RCA: 276] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mitochondria are increasingly recognized as key players in genetic and acquired renal diseases. Most mitochondrial cytopathies that cause renal symptoms are characterized by tubular defects, but glomerular, tubulointerstitial and cystic diseases have also been described. For example, defects in coenzyme Q10 (CoQ10) biosynthesis and the mitochondrial DNA 3243 A>G mutation are important causes of focal segmental glomerulosclerosis in children and in adults, respectively. Although they sometimes present with isolated renal findings, mitochondrial diseases are frequently associated with symptoms related to central nervous system and neuromuscular involvement. They can result from mutations in nuclear genes that are inherited according to classic Mendelian rules or from mutations in mitochondrial DNA, which are transmitted according to more complex rules of mitochondrial genetics. Diagnosis of mitochondrial disorders involves clinical characterization of patients in combination with biochemical and genetic analyses. In particular, prompt diagnosis of CoQ10 biosynthesis defects is imperative because of their potentially reversible nature. In acute kidney injury (AKI), mitochondrial dysfunction contributes to the physiopathology of tissue injury, whereas mitochondrial biogenesis has an important role in the recovery of renal function. Potential therapies that target mitochondrial dysfunction or promote mitochondrial regeneration are being developed to limit renal damage during AKI and promote repair of injured tissue.
Collapse
Affiliation(s)
- Francesco Emma
- Division of Nephrology and Dialysis, Ospedale Pediatrico Bambino Gesù-IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - Giovanni Montini
- Pediatric Nephrology and Dialysis Unit, Department of Clinical Sciences and Community Health, University of Milan, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Via della Commenda 9, Milano, Italy
| | - Samir M Parikh
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts 02215, USA
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, Via Giustiniani 3, 35128, Padova, Italy
| |
Collapse
|