1
|
Veličković D, Anderton CR. Spatial Glycomics and Kidney Disease. Semin Nephrol 2025:151581. [PMID: 40210529 DOI: 10.1016/j.semnephrol.2025.151581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
Glycans are critical for the kidney's physiological and pathological cellular functions, and our ability to see their spatial distributions within tissues has helped us reveal how these carbohydrate moieties are involved in many of these processes. This review discusses the role of different types of glycans in kidney biology and disease, common approaches used for glycan imaging, and how glycan imaging has helped us better understand kidney pathology. We mainly focus on emerging methods using mass spectrometry imaging (MSI) because this technology is untargeted and provides complete information on glycan composition compared to the other methods, such as lectin and metabolite labeling, which are targeted and often inform only on the specific part of a glycan structure. We especially focus on protein N-glycosylation, as this is one of the most common post-translational modifications, and these moieties play a vital role in renal structure and function. The recent advancements in MSI of N-glycans we reviewed have provided new insights into the pathophysiology of the kidney and paved the way for clinical application. Semin Nephrol 36:x-xx © 20xx Elsevier Inc. All rights reserved.
Collapse
Affiliation(s)
- Dušan Veličković
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington Pacific Northwest National Laboratory.
| | - Christopher R Anderton
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington Pacific Northwest National Laboratory
| |
Collapse
|
2
|
Veličković D, Shapiro JP, Parikh SV, Rovin B, Toto RD, Vazquez MA, Poggio ED, O'Toole JF, Sedor JR, Alexandrov T, Jain S, Bitzer M, Hodgin J, Veličković M, Sharma K, Anderton CR. Protein N-glycans in Healthy and Sclerotic Glomeruli in Diabetic Kidney Disease. J Am Soc Nephrol 2024; 35:00001751-990000000-00327. [PMID: 38771634 PMCID: PMC11387035 DOI: 10.1681/asn.0000000000000393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/15/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Diabetes is expected to directly impact renal glycosylation, yet to date, there has not been a comprehensive evaluation of alterations in N-glycan composition in the glomeruli of patients with diabetic kidney disease (DKD). METHODS We used untargeted mass spectrometry imaging to identify N-glycan structures in healthy and sclerotic glomeruli in FFPE sections from needle biopsies of five patients with DKD and three healthy kidney samples. Regional proteomics was performed on glomeruli from additional biopsies from the same patients to compare the abundances of enzymes involved in glycosylation. Secondary analysis of single nuclei transcriptomics (snRNAseq) data was used to inform on transcript levels of glycosylation machinery in different cell types and states. RESULTS We detected 120 N-glycans, and among them identified twelve of these protein post-translated modifications that were significantly increased in glomeruli. All glomeruli-specific N-glycans contained an N-acetyllactosamine (LacNAc) epitope. Five N-glycan structures were highly discriminant between sclerotic and healthy glomeruli. Sclerotic glomeruli had an additional set of glycans lacking fucose linked to their core, and they did not show tetra-antennary structures that are common in healthy glomeruli. Orthogonal omics analyses revealed lower protein abundance and lower gene expression involved in synthesizing fucosylated and branched N-glycans in sclerotic podocytes. In snRNAseq and regional proteomics analyses, we observed that genes and/or proteins involved in sialylation and LacNAc synthesis were also downregulated in DKD glomeruli, but this alteration remained undetectable by our spatial N-glycomics assay. CONCLUSIONS Integrative spatial glycomics, proteomics, and transcriptomics revealed protein N-glycosylation characteristic of sclerotic glomeruli in DKD.
Collapse
Affiliation(s)
- Dušan Veličković
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington
| | - John P Shapiro
- Department of Nephrology, The Ohio State University, Wexner Medical Center, Columbus, Ohio
| | - Samir V Parikh
- Department of Nephrology, The Ohio State University, Wexner Medical Center, Columbus, Ohio
| | - Brad Rovin
- Department of Nephrology, The Ohio State University, Wexner Medical Center, Columbus, Ohio
| | - Robert D Toto
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Miguel A Vazquez
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Emilio D Poggio
- Department of Nephrology and Hypertension, Cleveland Clinic, Cleveland, Ohio
| | - John F O'Toole
- Department of Nephrology and Hypertension, Cleveland Clinic, Cleveland, Ohio
| | - John R Sedor
- Department of Nephrology and Hypertension, Cleveland Clinic, Cleveland, Ohio
| | - Theodore Alexandrov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- BioStudio, BioInnovation Institute, Copenhagen, Denmark
| | - Sanjay Jain
- Department of Medicine, Washington University School of Medicine, St. Louis
| | - Markus Bitzer
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Jeffrey Hodgin
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Marija Veličković
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington
| | - Kumar Sharma
- Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Christopher R Anderton
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington
- Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
3
|
Martins FL, Ribeiro-Silva JC, Nistala R, Girardi ACC. Bidirectional relation between dipeptidyl peptidase 4 and angiotensin II type I receptor signaling. Am J Physiol Cell Physiol 2024; 326:C1203-C1211. [PMID: 38581656 PMCID: PMC11193519 DOI: 10.1152/ajpcell.00734.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/11/2024] [Accepted: 02/11/2024] [Indexed: 04/08/2024]
Abstract
Cardiometabolic diseases are often associated with heightened levels of angiotensin II (Ang II), which accounts for the observed oxidative stress, inflammation, and fibrosis. Accumulating evidence indicates a parallel upregulation of dipeptidyl dipeptidase 4 (DPP4) activity in cardiometabolic diseases, with its inhibition shown to mitigate oxidative stress, inflammation, and fibrosis. These findings highlight an overlap between the pathophysiological mechanisms used by Ang II and DPP4. Recent evidence demonstrates that targeted inhibition of DPP4 prevents the rise in Ang II and its associated molecules in experimental models of cardiometabolic diseases. Similarly, inhibitors of the angiotensin I-converting enzyme (ACE) or Ang II type 1 receptor (AT1R) blockers downregulate DPP4 activity, establishing a bidirectional relationship between DPP4 and Ang II. Here, we discuss the current evidence supporting the cross talk between Ang II and DPP4, along with the potential mechanisms promoting this cross regulation. A comprehensive analysis of this bidirectional relationship across tissues will advance our understanding of how DPP4 and Ang II collectively promote the development and progression of cardiometabolic diseases.
Collapse
Affiliation(s)
- Flavia L Martins
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
- Division of Nephrology, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, United States
| | - Joao Carlos Ribeiro-Silva
- Department of Ophthalmology & Visual Sciences, State University of New York Upstate Medical University, Syracuse, New York, United States
| | - Ravi Nistala
- Division of Nephrology, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, United States
| | - Adriana C C Girardi
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| |
Collapse
|
4
|
Yadav SPS, Yu A, Zhao J, Singh J, Kakkar S, Chakraborty S, Mechref Y, Molitoris B, Wagner MC. Glycosylation of a key cubilin Asn residue results in reduced binding to albumin. J Biol Chem 2022; 298:102371. [PMID: 35970386 PMCID: PMC9485058 DOI: 10.1016/j.jbc.2022.102371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 10/28/2022] Open
Abstract
Kidney disease often manifests with an increase in proteinuria, which can result from both glomerular and/or proximal tubule injury. The proximal tubules are the major site of protein and peptide endocytosis of the glomerular filtrate, and cubilin is the proximal tubule brush border membrane glycoprotein receptor that binds filtered albumin and initiates its processing in proximal tubules. Albumin also undergoes multiple modifications depending upon the physiologic state. We previously documented that carbamylated albumin had reduced cubilin binding, but the effects of cubilin modifications on binding albumin remain unclear. Here, we investigate the cubilin-albumin binding interaction to define the impact of cubilin glycosylation and map the key glycosylation sites while also targeting specific changes in a rat model of proteinuria. We identified a key Asn residue, N1285, that when glycosylated reduced albumin binding. In addition, we found a pH-induced conformation change may contribute to ligand release. To further define the albumin-cubilin binding site, we determined the solution structure of cubilin's albumin-binding domain, CUB7,8, using small-angle X-ray scattering and molecular modeling. We combined this information with mass spectrometry crosslinking experiments of CUB7,8 and albumin that provides a model of the key amino acids required for cubilin-albumin binding. Together, our data supports an important role for glycosylation in regulating the cubilin interaction with albumin, which is altered in proteinuria and provides new insight into the binding interface necessary for the cubilin-albumin interaction.
Collapse
Affiliation(s)
- Shiv Pratap Singh Yadav
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Jasdeep Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Saloni Kakkar
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | | | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Bruce Molitoris
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mark C Wagner
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
5
|
Cai Y, Ren W, Wang H, Bian Q. In-depth profiling of urinary N-glycome in diabetic kidney disease by ultrafast glycoprotein immobilization for glycan extraction (UltraGIG). Anal Chim Acta 2022; 1221:340144. [DOI: 10.1016/j.aca.2022.340144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/13/2022] [Accepted: 07/03/2022] [Indexed: 11/01/2022]
|
6
|
Han Q, Wang X, Ding X, Hao J, Li Q, Wang J, Yu H, Tang Z, Yang F, Cai G, Zhang D, Zhu H. Salivary Glycopatterns as Potential Non-Invasive Biomarkers for Diagnosing and Reflecting Severity and Prognosis of Diabetic Nephropathy. Front Endocrinol (Lausanne) 2022; 13:790586. [PMID: 35432212 PMCID: PMC9009518 DOI: 10.3389/fendo.2022.790586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/10/2022] [Indexed: 12/29/2022] Open
Abstract
Discriminating between diabetic nephropathy (DN) and non-diabetic renal disease (NDRD) can help provide more specific treatments. However, there are no ideal biomarkers for their differentiation. Thus, the aim of this study was to identify biomarkers for diagnosing and predicting the progression of DN by investigating different salivary glycopatterns. Lectin microarrays were used to screen different glycopatterns in patients with DN or NDRD. The results were validated by lectin blotting. Logistic regression and artificial neural network analyses were used to construct diagnostic models and were validated in in another cohort. Pearson's correlation analysis, Cox regression, and Kaplan-Meier survival curves were used to analyse the correlation between lectins, and disease severity and progression. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) and bioinformatics analyses were used to identify corresponding glycoproteins and predict their function. Both the logistic regression model and the artificial neural network model achieved high diagnostic accuracy. The levels of Aleuria aurantia lectin (AAL), Lycopersicon esculentum lectin (LEL), Lens culinaris lectin (LCA), Vicia villosa lectin (VVA), and Narcissus pseudonarcissus lectin (NPA) were significantly correlated with the clinical and pathological parameters related to DN severity. A high level of LCA and a low level of LEL were associated with a higher risk of progression to end-stage renal disease. Glycopatterns in the saliva could be a non-invasive tool for distinguishing between DN and NDRD. The AAL, LEL, LCA, VVA, and NPA levels could reflect the severity of DN, and the LEL and LCA levels could indicate the prognosis of DN.
Collapse
Affiliation(s)
- Qiuxia Han
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xiaochen Wang
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Xiaonan Ding
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Jing Hao
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Qi Li
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Jifeng Wang
- The Key Laboratory of Protein and Peptide Pharmaceuticals, Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an, China
| | - Zhen Tang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an, China
| | - Fuquan Yang
- The Key Laboratory of Protein and Peptide Pharmaceuticals, Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Dong Zhang
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Hanyu Zhu
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| |
Collapse
|
7
|
LECTINS IN THE INVESTIGATION OF RENAL PATHOLOGIES. WORLD OF MEDICINE AND BIOLOGY 2022. [DOI: 10.26724/2079-8334-2022-1-79-204-208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Yu A, Zhao J, Yadav SPS, Molitoris BA, Wagner MC, Mechref Y. Changes in the Expression of Renal Brush Border Membrane N-Glycome in Model Rats with Chronic Kidney Diseases. Biomolecules 2021; 11:1677. [PMID: 34827675 PMCID: PMC8616023 DOI: 10.3390/biom11111677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic kidney disease (CKD) is defined by a reduced renal function i.e., glomerular filtration rate (GFR), and the presence of kidney damage is determined by measurement of proteinuria or albuminuria. Albuminuria increases with age and can result from glomerular and/or proximal tubule (PT) alterations. Brush-border membranes (BBMs) on PT cells play an important role in maintaining the stability of PT functions. The PT BBM, a highly dynamic, organized, specialized membrane, contains a variety of glycoproteins required for the functions of PT. Since protein glycosylation regulates many protein functions, the alteration of glycosylation due to the glycan changes has attracted more interests for a variety of disease studies recently. In this work, liquid chromatography-tandem mass spectrometry was utilized to analyze the abundances of permethylated glycans from rats under control to mild CKD, severe CKD, and diabetic conditions. The most significant differences were observed in sialylation level with the highest present in the severe CKD and diabetic groups. Moreover, high mannose N-glycans was enriched in the CKD BBMs. Characterization of all the BBM N-glycan changes supports that these changes are likely to impact the functional properties of the dynamic PT BBM. Further, these changes may lead to the potential discovery of glycan biomarkers for improved CKD diagnosis and new avenues for therapeutic treatments.
Collapse
Affiliation(s)
- Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Texas City, TX 79409, USA; (A.Y.); (J.Z.)
| | - Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Texas City, TX 79409, USA; (A.Y.); (J.Z.)
| | - Shiv Pratap S. Yadav
- Nephrology Division, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (S.P.S.Y.); (B.A.M.); (M.C.W.)
| | - Bruce A. Molitoris
- Nephrology Division, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (S.P.S.Y.); (B.A.M.); (M.C.W.)
| | - Mark C. Wagner
- Nephrology Division, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (S.P.S.Y.); (B.A.M.); (M.C.W.)
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Texas City, TX 79409, USA; (A.Y.); (J.Z.)
| |
Collapse
|
9
|
Is tumour-expressed aminopeptidase N (APN/CD13) structurally and functionally unique? Biochim Biophys Acta Rev Cancer 2021; 1876:188641. [PMID: 34695533 DOI: 10.1016/j.bbcan.2021.188641] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022]
Abstract
Aminopeptidase N (APN/CD13) is a multifunctional glycoprotein that acts as a peptidase, receptor, and signalling molecule in a tissue-dependent manner. The activities of APN have been implicated in the progression of many cancers, pointing toward significant therapeutic potential for cancer treatment. However, despite the tumour-specific functions of this protein that have been uncovered, the ubiquitous nature of its expression in normal tissues as generally reported remains a limitation to the potential utility of APN as a target for cancer therapeutics and drug discovery. With this in mind, we have extensively explored the literature, and present a comprehensive review that for the first-time provides evidence to support the suggestion that tumour-expressed APN may in fact be unique in structure, function, substrate specificity and activity, contrary to its nature in normal tissues. The review also focuses on the biology of APN, and its "moonlighting" functional roles in both normal physiology and cancer development. Several APN-targeting approaches that have been explored over recent decades as therapeutic strategies in cancer treatment, including APN-targeting agents reported both in preclinical and clinical studies, are also extensively discussed. This review concludes by posing critical questions about APN that remain unanswered and unexplored, hence providing opportunities for further research.
Collapse
|
10
|
Sugiyama N, Tawada M, Sun T, Suzuki Y, Kinashi H, Yamaguchi M, Katsuno T, Aten J, Vlahu CA, van Kuppevelt TH, Takei Y, Ishimoto T, Maruyama S, Mizuno M, Ito Y. Low-GDP, pH-neutral solutions preserve peritoneal endothelial glycocalyx during long-term peritoneal dialysis. Clin Exp Nephrol 2021; 25:1035-1046. [PMID: 33999275 DOI: 10.1007/s10157-021-02078-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND During peritoneal dialysis (PD), solute transport and ultrafiltration are mainly achieved by the peritoneal blood vasculature. Glycocalyx lies on the surface of endothelial cells and plays a role in vascular permeability. Low-glucose degradation product (GDP), pH-neutral PD solutions reportedly offer higher biocompatibility and lead to less peritoneal injury. However, the effects on the vasculature have not been clarified. METHODS Peritoneal tissues from 11 patients treated with conventional acidic solutions (acidic group) and 11 patients treated with low-GDP, pH-neutral solutions (neutral group) were examined. Control tissues were acquired from 5 healthy donors of kidney transplants (control group). CD31 and ratio of luminal diameter to vessel diameter (L/V ratio) were evaluated to identify endothelial cells and vasculopathy, respectively. Immunostaining for heparan sulfate (HS) domains and Ulex europaeus agglutinin-1 (UEA-1) binding was performed to assess sulfated glycosaminoglycans and the fucose-containing sugar chain of glycocalyx. RESULTS Compared with the acidic group, the neutral group showed higher CD31 positivity. L/V ratio was significantly higher in the neutral group, suggesting less progression of vasculopathy. Both HS expression and UEA-1 binding were higher in the neutral group, whereas HS expression was markedly more preserved than UEA-1 binding in the acidic group. In vessels with low L/V ratio, which were found only in the acidic group, HS expression and UEA-1 binding were diminished, suggesting a loss of glycocalyx. CONCLUSION Peritoneal endothelial glycocalyx was more preserved in patients treated with low-GDP, pH-neutral solution. The use of low-GDP, pH-neutral solutions could help to protect peritoneal vascular structures and functions.
Collapse
Affiliation(s)
- Naoya Sugiyama
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuhiro Tawada
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Nephrology and Rheumatology, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Ting Sun
- Department of Nephrology and Rheumatology, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Yasuhiro Suzuki
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Kinashi
- Department of Nephrology and Rheumatology, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Makoto Yamaguchi
- Department of Nephrology and Rheumatology, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Takayuki Katsuno
- Department of Nephrology and Rheumatology, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Jan Aten
- Department of Pathology, Amsterdam University Medical Center (Location AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Carmen A Vlahu
- Department of Pathology, Amsterdam University Medical Center (Location AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yoshifumi Takei
- Department of Medicinal Biochemistry, Aichi Gakuin University School of Pharmacy, Nagoya, Japan
| | - Takuji Ishimoto
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shoichi Maruyama
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Mizuno
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiko Ito
- Department of Nephrology and Rheumatology, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.
| |
Collapse
|
11
|
Hevey R, Pouw RB, Harris C, Ricklin D. Sweet turning bitter: Carbohydrate sensing of complement in host defence and disease. Br J Pharmacol 2020; 178:2802-2822. [PMID: 33140840 DOI: 10.1111/bph.15307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022] Open
Abstract
The complement system plays a major role in threat recognition and in orchestrating responses to microbial intruders and accumulating debris. This immune surveillance is largely driven by lectins that sense carbohydrate signatures on foreign, diseased and healthy host cells and act as complement activators, regulators or receptors to shape appropriate immune responses. While carbohydrate sensing protects our bodies, misguided or impaired recognition can contribute to disease. Moreover, pathogenic microbes have evolved to evade complement by mimicking host signatures. While complement is recognized as a disease factor, we only slowly start to appreciate the role of carbohydrate interactions in the underlying processes. A better understanding of complement's sweet side will contribute to a better description of disease mechanisms and enhanced diagnostic and therapeutic options. This review introduces the key components in complement-mediated carbohydrate sensing, discusses their role in health and disease, and touches on the potential effects of carbohydrate-related disease intervention. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Rachel Hevey
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Richard B Pouw
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Claire Harris
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Ricklin
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
12
|
Hutcheson AR, Thompson K, Maurer JJ, Ferguson N, Grogan K, Roney S, Seahorn H, Lobsinger C, Lee MD. Differentiating Vaccine-Related Fowl Cholera from Naturally Occurring Disease. Avian Dis 2020; 64:437-444. [PMID: 33347552 DOI: 10.1637/aviandiseases-d-20-00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/18/2020] [Indexed: 11/05/2022]
Abstract
Vaccine-related fowl cholera must be considered when flock mortality increases after use of a live Pasteurella multocida vaccine product. All registered live vaccines serotype as Heddleston 3,4; however, in some regions this is also the most common serotype of outbreak isolates in broiler breeders and turkeys. Therefore, serotyping may not be useful for diagnosing vaccine-related fowl cholera. This project sought to apply a vaccine-specific test to differentiate vaccine-related disease from naturally occurring outbreaks. Results indicate that vaccine strains were commonly isolated from broiler breeders exhibiting signs of fowl cholera postvaccination, but some of these isolates exhibited only serotype 4 antigenicity. The isolates' lipopolysaccharides, the target antigen for serotyping, contained compositional changes that may explain the varying serotype results and virulence of the commercial preparations. These results suggest that vaccine-related disease may be common in broiler breeders, and live commercial vaccine preparations need to be assessed for serotype and titer prior to use in order to reduce vaccine-related fowl cholera.
Collapse
Affiliation(s)
- Anna R Hutcheson
- Poultry Diagnostic and Research Center, The University of Georgia, Athens, GA 30601
| | - Kasey Thompson
- Poultry Diagnostic and Research Center, The University of Georgia, Athens, GA 30601
| | - John J Maurer
- Poultry Diagnostic and Research Center, The University of Georgia, Athens, GA 30601
| | - Naola Ferguson
- Poultry Diagnostic and Research Center, The University of Georgia, Athens, GA 30601
| | - Karen Grogan
- Poultry Diagnostic and Research Center, The University of Georgia, Athens, GA 30601
| | - Stephen Roney
- Poultry Diagnostic and Research Center, The University of Georgia, Athens, GA 30601
| | - Harmony Seahorn
- Poultry Diagnostic and Research Center, The University of Georgia, Athens, GA 30601
| | - Chris Lobsinger
- Poultry Diagnostic and Research Center, The University of Georgia, Athens, GA 30601
| | - Margie D Lee
- Poultry Diagnostic and Research Center, The University of Georgia, Athens, GA 30601
| |
Collapse
|
13
|
Xiao Y, Zheng L, Zou X, Wang J, Zhong J, Zhong T. Extracellular vesicles in type 2 diabetes mellitus: key roles in pathogenesis, complications, and therapy. J Extracell Vesicles 2019; 8:1625677. [PMID: 31258879 PMCID: PMC6586118 DOI: 10.1080/20013078.2019.1625677] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 05/15/2019] [Accepted: 05/28/2019] [Indexed: 01/01/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM), a chronic disease, is widely prevalent all over the world. In recent years, the roles of some extracellular vesicles (EVs) in T2DM have attracted much attention. EVs are bilayer membrane vesicles secreted from most cells and can participate in regulating various physiological and pathological processes in vivo by being transported between cells. Recently, it was discovered that some abnormal EVs can contribute to the occurrence of T2DM by inducing insulin resistance and can also participate in the complications of T2DM. In addition, some stem/progenitor cells-derived EVs have a potential application in the therapy of T2DM. This review introduces basic concepts of EVs and summarizes the roles of EVs in the pathogenesis, complications, and therapy of T2DM.
Collapse
Affiliation(s)
- Yongwei Xiao
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Lei Zheng
- Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaofeng Zou
- Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jigang Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China.,Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianing Zhong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China.,Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China.,Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
14
|
Liu M, Yu H, Zhang D, Han Q, Yang X, Liu X, Wang J, Zhang K, Yang F, Cai G, Chen X, Zhu H. Alteration of glycosylation in serum proteins: a new potential indicator to distinguish non-diabetic renal diseases from diabetic nephropathy. RSC Adv 2018; 8:38872-38882. [PMID: 35558281 PMCID: PMC9090655 DOI: 10.1039/c8ra06832a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/13/2018] [Indexed: 11/21/2022] Open
Abstract
Diabetic nephropathy (DN) and nondiabetic renal disease (NDRD) are two major categories of renal diseases in diabetes mellitus patients. The clinical differentiation among them is usually not so clear and effective. In this study, sera from DN and NDRD patients were collected, and glycan profiles of serum proteins from DN and NDRD patients were investigated and compared by using lectin microarray and lectin blot. Then, altered glycoproteins were enriched by lectin coupled magnetic particle conjugate and characterized by LC-MS/MS. We found significant change in glycan patterns between DN and NDRD patients. In particular, the relative abundance of the glycopattern of Galβ1-3GalNAc which was identified by BPL (Bauhinia purpurea lectin) was significantly decreased in DN patients compared to four types of NDRD patients (p < 0.05). Moreover, BPL blotting indicated that the proteins with a molecular weight of about 53 kDa exhibited low staining signal in DN compared to all NDRD groups, which was consistent with results of lectin microarrays. After enriching by BPL and identification by LC-MS/MS, a total of 235 and 258 proteins were characterized from NDRD and DN respectively. Among these, the relative abundance of 12 isolated serum proteins exhibited significantly alteration between DN and NDRD (p < 0.05). Our findings indicated not only the relative abundance of Galβ1-3GalNAc on serum proteins but also certain glycoproteins modified with this glycopattern showed a difference between DN and NDRD patients. This suggested that the analysis of this alteration by using urine specimens may constitute an additional valuable diagnostic tool for differentiating DN and NDRD with a non-invasive method.
Collapse
Affiliation(s)
- Moyan Liu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases 28 Fuxing Road, Haidian District Beijing 100853 China .,Second Department of Cadre Ward, General Hospital of Jinan Military Region Jinan 250000 China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University Xi'an Shaanxi 710069 China
| | - Dong Zhang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases 28 Fuxing Road, Haidian District Beijing 100853 China
| | - Qiuxia Han
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University 1 East Jianshe Road Zhengzhou 450052 China
| | - Xiaoli Yang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases 28 Fuxing Road, Haidian District Beijing 100853 China
| | - Xiawei Liu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University Xi'an Shaanxi 710069 China
| | - Jifeng Wang
- The Key Laboratory of Protein and Peptide Pharmaceuticals, Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences Beijing 100101 China
| | - Kun Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University Xi'an Shaanxi 710069 China
| | - Fuquan Yang
- The Key Laboratory of Protein and Peptide Pharmaceuticals, Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences Beijing 100101 China
| | - Guangyan Cai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases 28 Fuxing Road, Haidian District Beijing 100853 China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases 28 Fuxing Road, Haidian District Beijing 100853 China
| | - Hanyu Zhu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases 28 Fuxing Road, Haidian District Beijing 100853 China
| |
Collapse
|
15
|
Peng Y, Lin H, Han M, Li L. Serum carbohydrate antigen 153 and renal function in patients with type 2 diabetes mellitus. J Clin Lab Anal 2018; 32:e22461. [PMID: 29701319 PMCID: PMC6816901 DOI: 10.1002/jcla.22461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/04/2018] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The aim of our study was to investigate the correlation between serum carbohydrate antigen 153 (CA153) and renal function in patients with type 2 diabetes mellitus (T2DM). METHODS A total of 184 patients with T2DM were included, and renal function was assessed by the modification of diet in renal disease (MDRD) formula adjusted coefficient of the Chinese people. RESULTS Serum CA153 concentrations were positively correlated with blood glucose (BG) and glycated hemoglobin (HbA1c) (r = .204, P = .005; r = .165, P = .025) in patients with T2DM. There was a negative correlation between serum CA153 and estimated glomerular filtration rate (GFR) (r = -.229, P = .002) in whole patients with T2DM; similarly, the correlations were observed in both women and men (r = -.228, P = .028 for women, r = -.231, P = .028 for men). Multiple linear regression analysis suggested that serum CA153 was still significantly correlated with estimated GFR (beta = -0.286, P < .001). CONCLUSIONS Serum CA153 is negatively correlated with estimated GFR in patients with T2DM, and serum CA153 may be a potentially useful clinical biomarker to assess renal function in the study population.
Collapse
Affiliation(s)
- You‐Fan Peng
- Department of EndocrinologyZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Hao Lin
- Department of Clinical Science and ResearchZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Man‐Man Han
- Department of EndocrinologyZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Ling Li
- Department of EndocrinologyZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
| |
Collapse
|
16
|
Mise K, Imamura M, Yamaguchi S, Teshigawara S, Tone A, Uchida HA, Eguchi J, Nakatsuka A, Ogawa D, Yoshida M, Yamada M, Shikata K, Wada J. Identification of Novel Urinary Biomarkers for Predicting Renal Prognosis in Patients With Type 2 Diabetes by Glycan Profiling in a Multicenter Prospective Cohort Study: U-CARE Study 1. Diabetes Care 2018; 41:1765-1775. [PMID: 29930140 DOI: 10.2337/dc18-0030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 05/14/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Because quantifying glycans with complex structures is technically challenging, little is known about the association of glycosylation profiles with the renal prognosis in diabetic kidney disease (DKD). RESEARCH DESIGN AND METHODS In 675 patients with type 2 diabetes, we assessed the baseline urinary glycan signals binding to 45 lectins with different specificities. The end point was a decrease of estimated glomerular filtration rate (eGFR) by ≥30% from baseline or dialysis for end-stage renal disease. RESULTS During a median follow-up of 4.0 years, 63 patients reached the end point. Cox proportional hazards analysis revealed that urinary levels of glycans binding to six lectins were significantly associated with the outcome after adjustment for known indicators of DKD, although these urinary glycans, except that for DBA, were highly correlated with baseline albuminuria and eGFR. Hazard ratios for these lectins were (+1 SD for the glycan index) as follows: SNA (recognizing glycan Siaα2-6Gal/GalNAc), 1.42 (95% CI 1.14-1.76); RCA120 (Galβ4GlcNAc), 1.28 (1.01-1.64); DBA (GalNAcα3GalNAc), 0.80 (0.64-0.997); ABA (Galβ3GalNAc), 1.29 (1.02-1.64); Jacalin (Galβ3GalNAc), 1.30 (1.02-1.67); and ACA (Galβ3GalNAc), 1.32 (1.04-1.67). Adding these glycan indexes to a model containing known indicators of progression improved prediction of the outcome (net reclassification improvement increased by 0.51 [0.22-0.80], relative integrated discrimination improvement increased by 0.18 [0.01-0.35], and the Akaike information criterion decreased from 296 to 287). CONCLUSIONS The urinary glycan profile identified in this study may be useful for predicting renal prognosis in patients with type 2 diabetes. Additional investigation of glycosylation changes and urinary glycan excretion in DKD is needed.
Collapse
Affiliation(s)
- Koki Mise
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mariko Imamura
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Yamaguchi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Sanae Teshigawara
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Atsuhito Tone
- Diabetes Center, Okayama University Hospital, Okayama, Japan
| | - Haruhito A Uchida
- Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Jun Eguchi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Atsuko Nakatsuka
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Daisuke Ogawa
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Michihiro Yoshida
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | | | - Kenichi Shikata
- Division of Clinical Research of New Drugs and Therapeutics, Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
17
|
Uchida T, Oda T, Matsubara H, Watanabe A, Takechi H, Oshima N, Sakurai Y, Kumagai H. Renoprotective effects of a dipeptidyl peptidase 4 inhibitor in a mouse model of progressive renal fibrosis. Ren Fail 2017; 39:340-349. [PMID: 28118775 PMCID: PMC6014509 DOI: 10.1080/0886022x.2017.1279553] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although the effects of dipeptidyl peptidase 4 (DPP-4) inhibitors beyond their hypoglycemic action have been reported, whether these inhibitors have renoprotective effects in nondiabetic chronic kidney disease (CKD) is unclear. We examined the therapeutic effects of DPP-4 inhibition in mice with unilateral ureteral obstruction (UUO), a nondiabetic model of progressive renal fibrosis. After UUO surgery, mice were administered either the DPP-4 inhibitor alogliptin or a vehicle by oral gavage once a day for 10 days. Physiological parameters, degrees of renal fibrosis and inflammation, and molecules related to renal fibrosis and inflammation were then evaluated using sham-operated mice as controls. Positive area of α-smooth muscle actin was significantly smaller and expression of transforming growth factor β messenger RNA was significantly lower in the alogliptin-treated group than in the vehicle-treated group. Renal total collagen content was also significantly lower in the alogliptin-treated group than in the vehicle-treated group. These results suggest that alogliptin exerted renoprotective antifibrotic effects. The positive area of F4/80 was significantly smaller and expression of CD68 messenger RNA was significantly lower in the alogliptin-treated group than in the vehicle-treated group, suggesting an anti-inflammatory action by the DPP-4 inhibitor. Compared to the results for the vehicle-treated group, expression of markers for M1 macrophages tended to be lower in the alogliptin-treated group, and the relative expression of M2 macrophages tended to be higher. These data indicate the various protective effects of DPP-4 inhibition in nondiabetic mice with UUO. DPP-4 inhibitors may therefore be promising therapeutic choices even for nondiabetic CKD patients.
Collapse
Affiliation(s)
- Takahiro Uchida
- a Department of Nephrology and Endocrinology , National Defense Medical College , Tokorozawa , Saitama , Japan
| | - Takashi Oda
- b Department of Nephrology , Tokyo Medical University Hachioji Medical Center , Hachioji , Tokyo , Japan
| | - Hidehito Matsubara
- a Department of Nephrology and Endocrinology , National Defense Medical College , Tokorozawa , Saitama , Japan
| | - Atsushi Watanabe
- a Department of Nephrology and Endocrinology , National Defense Medical College , Tokorozawa , Saitama , Japan
| | - Hanako Takechi
- a Department of Nephrology and Endocrinology , National Defense Medical College , Tokorozawa , Saitama , Japan
| | - Naoki Oshima
- a Department of Nephrology and Endocrinology , National Defense Medical College , Tokorozawa , Saitama , Japan
| | - Yutaka Sakurai
- c Department of Preventive Medicine and Public Health , National Defense Medical College , Tokorozawa , Saitama , Japan
| | - Hiroo Kumagai
- a Department of Nephrology and Endocrinology , National Defense Medical College , Tokorozawa , Saitama , Japan
| |
Collapse
|
18
|
Zhu H, Liu M, Yu H, Liu X, Zhong Y, Shu J, Fu X, Cai G, Chen X, Geng W, Yang X, Wu M, Li Z, Zhang D. Glycopatterns of Urinary Protein as New Potential Diagnosis Indicators for Diabetic Nephropathy. J Diabetes Res 2017; 2017:5728087. [PMID: 28401167 PMCID: PMC5376433 DOI: 10.1155/2017/5728087] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 12/24/2016] [Accepted: 01/04/2017] [Indexed: 11/17/2022] Open
Abstract
Diabetic nephropathy is a major cause of chronic kidney disease and end-stage kidney disease. However, so little is known about alterations of the glycopatterns in urine with the development of diabetic nephropathy. Presently, we interrogated glycopatterns in urine specimens using a lectin microarray. The results showed that expression levels of Siaα2-6Gal/GalNAc recognized by SNA exhibited significantly increased tendency with the development of diabetic nephropathy; moreover, SNA blotting indicated glycoproteins (90 kDa, 70 kDa, and 40 kDa) in urine may contribute to this alteration. Furthermore, the glycopatterns of (GlcNAc)2-4 recognized by STL exhibited difference between diabetic and nondiabetic nephropathy. The results of urinary protein microarray fabricated by another 48 urine specimens also indicated (GlcNAc)2-4 is a potential indictor to differentiate the patients with diabetic nephropathy from nondiabetic nephropathy. Furtherly, STL blotting showed that the 50 kDa glycoproteins were correlated with this alteration. In conclusion, our data provide pivotal information to monitor the development of diabetic nephropathy and distinguish between diabetic nephropathy and nondiabetic renal disease based on precise alterations of glycopatterns in urinary proteins, but further studies are needed in this regard.
Collapse
Affiliation(s)
- Hanyu Zhu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Moyan Liu
- Department of Nephrology, General Hospital of Jinan Military Command, Jinan, China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Xiawei Liu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Yaogang Zhong
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Xinle Fu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Guangyan Cai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Wenjia Geng
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Xiaoli Yang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Minghui Wu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Dong Zhang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| |
Collapse
|
19
|
Liljedahl L, Pedersen MH, Norlin J, McGuire JN, James P. N-glycosylation proteome enrichment analysis in kidney reveals differences between diabetic mouse models. Clin Proteomics 2016; 13:22. [PMID: 27757071 PMCID: PMC5065702 DOI: 10.1186/s12014-016-9123-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/23/2016] [Indexed: 11/26/2022] Open
Abstract
Background Diabetic nephropathy (DN) is a late complication in both type 1 diabetes mellitus (T1DM) and T2DM. Already at an early stage of DN morphological changes occur at the cell surface and in the extracellular matrix where the majority of the proteins carry N-linked glycosylations. These glycosylated proteins are highly important in cell adhesion and cell–matrix processes but not much is known about how they change in DN or whether the distinct etiology of T1DM and T2DM could have an effect on their abundances. Method We enriched for the N-glycosylated kidney proteome in db/db mice dosed with insulin or vehicle, in streptozotocin-induced (STZ) diabetic mice and healthy control mice dosed with vehicle. Glycopeptides were analyzed with label-free shotgun mass spectrometry and differential protein abundances identified in both mouse models were compared using multivariate analyses. Results The majority of the N-glycosylated proteins were similarly regulated in both mouse models. However, distinct differences between the two mouse models were for example seen for integrin-β1, a protein expressed mainly in the glomeruli which abundance was increased in the STZ diabetic mice while decreased in the db/db mice and for the sodium/glucose cotransporter-1, mainly expressed in the proximal tubules which abundance was increased in the db/db mice but decreased in the STZ diabetic mice. Insulin had an effect on the level of both glomerular and tubular proteins in the db/db mice. It decreased the abundance of G-protein coupled receptor-116 and of tyrosine-protein phosphatase non-receptor type substrate-1 away from the level in the healthy control mice. Conclusions Our finding of differences in the N-glycosylation protein profiles in the db/db and STZ mouse models suggest that the etiology of DN could give rise to variations in the cell adhesion and cell–matrix composition in T1DM and T2DM. Thus, N-glycosylated protein differences could be a clue to dissimilarities in T1DM and T2DM at later stages of DN. Furthermore, we observed insulin specific regulation of N-glycosylated proteins both in the direction of and away from the abundances in healthy control mice. Electronic supplementary material The online version of this article (doi:10.1186/s12014-016-9123-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leena Liljedahl
- Department of Immunotechnology, Lund University, House 406, Medicon Village, 221 83 Lund, Sweden
| | | | - Jenny Norlin
- Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | | | - Peter James
- Department of Immunotechnology, Lund University, House 406, Medicon Village, 221 83 Lund, Sweden
| |
Collapse
|
20
|
Angiotensin II Stimulation of DPP4 Activity Regulates Megalin in the Proximal Tubules. Int J Mol Sci 2016; 17:ijms17050780. [PMID: 27213360 PMCID: PMC4881597 DOI: 10.3390/ijms17050780] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 01/14/2023] Open
Abstract
Proteinuria is a marker of incipient kidney injury in many disorders, including obesity. Previously, we demonstrated that megalin, a receptor endocytotic protein in the proximal tubule, is downregulated in obese mice, which was prevented by inhibition of dipeptidyl protease 4 (DPP4). Obesity is thought to be associated with upregulation of intra-renal angiotensin II (Ang II) signaling via the Ang II Type 1 receptor (AT1R) and Ang II suppresses megalin expression in proximal tubule cells in vitro. Therefore, we tested the hypothesis that Ang II will suppress megalin protein via activation of DPP4. We used Ang II (200 ng/kg/min) infusion in mice and Ang II (10−8 M) treatment of T35OK-AT1R proximal tubule cells to test our hypothesis. Ang II-infused mouse kidneys displayed increases in DPP4 activity and decreases in megalin. In proximal tubule cells, Ang II stimulated DPP4 activity concurrent with suppression of megalin. MK0626, a DPP4 inhibitor, partially restored megalin expression similar to U0126, a mitogen activated protein kinase (MAPK)/extracellular regulated kinase (ERK) kinase kinase (MEK) 1/2 inhibitor and AG1478, an epidermal growth factor receptor (EGFR) inhibitor. Similarly, Ang II-induced ERK phosphorylation was suppressed with MK0626 and Ang II-induced DPP4 activity was suppressed by U0126. Therefore, our study reveals a cross talk between AT1R signaling and DPP4 activation in the regulation of megalin and underscores the significance of targeting DPP4 in the prevention of obesity related kidney injury progression.
Collapse
|
21
|
Watson C, James S, O'Connell E, Gallagher J, O'Reilly J, Tallon E, Baugh J, O'Connell J, O'Shea D, Ledwidge M, McDonald K. Influence of diabetes on natriuretic peptide thresholds in screening for Stage B heart failure. Biomarkers 2016; 21:538-43. [PMID: 27049231 DOI: 10.3109/1354750x.2016.1160427] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Natriuretic peptide (NP) has been shown to be an effective screening tool to identify patients with Stage B heart failure and to have clinical value in preventing heart failure progression. The impact of associated metabolic confounders on the screening utility of NP needs clarification. OBJECTIVE To assess the impact of diabetes mellitus (DM) on NP screening for asymptomatic Stage B heart failure. MATERIALS AND METHODS The study population consisted of 1368 asymptomatic patients with cardiovascular risk factors recruited from general practice as part of the STOP-HF trial. B-type NP (BNP) was quantified at point-of-care. RESULTS BNP was found to be as accurate for detecting Stage B heart failure in DM patients compared to non-DM patients (AUC 0.75 [0.71,0.78] and 0.77 [0.72,0.82], respectively). However, different BNP thresholds are required to achieve the same level of diagnostic sensitivity in DM compared with non-DM patients. To achieve 80% sensitivity a difference of 5-ng/L lower is required for patients with DM. CONCLUSION Although a significantly different BNP threshold is detected for patients with DM, the BNP concentration difference is small and unlikely to warrant a clinically different diagnostic threshold.
Collapse
Affiliation(s)
- Chris Watson
- a Wellcome-Wolfson Building, Centre for Experimental Medicine , Queen's University Belfast , Belfast , Northern Ireland ;,b Chronic Cardiovascular Disease Management Group , St Vincent's University Hospital Healthcare Group , Dublin , Ireland
| | - Stephanie James
- b Chronic Cardiovascular Disease Management Group , St Vincent's University Hospital Healthcare Group , Dublin , Ireland
| | - Eoin O'Connell
- b Chronic Cardiovascular Disease Management Group , St Vincent's University Hospital Healthcare Group , Dublin , Ireland
| | - Joe Gallagher
- b Chronic Cardiovascular Disease Management Group , St Vincent's University Hospital Healthcare Group , Dublin , Ireland
| | - James O'Reilly
- c School of Medicine , University College Dublin , Belfield, Dublin , Ireland
| | - Elaine Tallon
- b Chronic Cardiovascular Disease Management Group , St Vincent's University Hospital Healthcare Group , Dublin , Ireland
| | - John Baugh
- c School of Medicine , University College Dublin , Belfield, Dublin , Ireland
| | - Jean O'Connell
- d Department of Endocrinology , St Vincent's University Hospital Healthcare Group , Elm Park, Dublin , Ireland
| | - Donal O'Shea
- d Department of Endocrinology , St Vincent's University Hospital Healthcare Group , Elm Park, Dublin , Ireland
| | - Mark Ledwidge
- b Chronic Cardiovascular Disease Management Group , St Vincent's University Hospital Healthcare Group , Dublin , Ireland
| | - Ken McDonald
- b Chronic Cardiovascular Disease Management Group , St Vincent's University Hospital Healthcare Group , Dublin , Ireland ;,c School of Medicine , University College Dublin , Belfield, Dublin , Ireland
| |
Collapse
|
22
|
Gurbanov R, Bilgin M, Severcan F. Restoring effect of selenium on the molecular content, structure and fluidity of diabetic rat kidney brush border cell membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:845-54. [DOI: 10.1016/j.bbamem.2016.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 02/02/2023]
|
23
|
Abstract
PURPOSE OF REVIEW Recent advances in epigenetics indicate the involvement of several epigenetic modifications in the pathogenesis of acute kidney injury (AKI). The purpose of this review is to summarize our understanding of recent advances in the epigenetic regulation of AKI and provide mechanistic insight into the role of acetylation, methylation, and microRNA expression in the pathological processes of AKI. RECENT FINDINGS Enhancement of protein acetylation by pharmacological inhibition of histone deacetylases leads to more severe tubular injury and impairment of renal structural and functional recovery. The changes in promoter DNA methylation occur in the kidney with ischemia/reperfusion. microRNA expression is associated with regulation of both renal injury and regeneration after AKI. SUMMARY Recent studies on epigenetic regulation indicate that acetylation, methylation, and microRNA expression are critically implicated in the pathogenesis of AKI. Strategies targeting epigenetic processes may hold a therapeutic potential for patients with AKI.
Collapse
|
24
|
Østergaard JA, Ruseva MM, Malik TH, Hoffmann-Petersen IT, Pickering MC, Thiel S, Hansen TK. Increased Autoreactivity of the Complement-Activating Molecule Mannan-Binding Lectin in a Type 1 Diabetes Model. J Diabetes Res 2016; 2016:1825738. [PMID: 26977416 PMCID: PMC4764751 DOI: 10.1155/2016/1825738] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/22/2015] [Accepted: 01/11/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Diabetic kidney disease is the leading cause of end-stage renal failure despite intensive treatment of modifiable risk factors. Identification of new drug targets is therefore of paramount importance. The complement system is emerging as a potential new target. The lectin pathway of the complement system, initiated by the carbohydrate-recognition molecule mannan-binding lectin (MBL), is linked to poor kidney prognosis in diabetes. We hypothesized that MBL activates complement upon binding within the diabetic glomerulus. METHODS We investigated this by comparing complement deposition and activation in kidneys from streptozotocin-induced diabetic mice and healthy control mice. RESULTS After 20 weeks of diabetes, glomerular deposition of MBL was significantly increased. Diabetic animals had 2.0-fold higher (95% CI 1.6-2.5) immunofluorescence intensity from anti-MBL antibodies compared with controls (P < 0.001). Diabetes and control groups did not differ in glomerular immunofluorescence intensity obtained by antibodies against complement factors C4, C3, and C9. However, the circulating complement activation product C3a was increased in diabetes as compared to control mice (P = 0.04). CONCLUSION 20 weeks of diabetes increased MBL autoreactivity in the kidney and circulating C3a concentration. Together with previous findings, these results indicate direct effects of MBL within the kidney in diabetes.
Collapse
Affiliation(s)
- Jakob Appel Østergaard
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital and Department of Clinical Medicine, Faculty of Health, Aarhus University, 8000 Aarhus, Denmark
- The Danish Diabetes Academy, 5000 Odense, Denmark
- *Jakob Appel Østergaard:
| | - Marieta Milkova Ruseva
- Centre for Complement and Inflammation Research, Imperial College London, London W12 0NN, UK
| | - Talat Habib Malik
- Centre for Complement and Inflammation Research, Imperial College London, London W12 0NN, UK
| | - Ingeborg Torp Hoffmann-Petersen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital and Department of Clinical Medicine, Faculty of Health, Aarhus University, 8000 Aarhus, Denmark
| | - Matthew Caleb Pickering
- Centre for Complement and Inflammation Research, Imperial College London, London W12 0NN, UK
| | - Steffen Thiel
- Department of Biomedicine, Faculty of Health, Aarhus University, 8000 Aarhus, Denmark
| | - Troels Krarup Hansen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital and Department of Clinical Medicine, Faculty of Health, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
25
|
Qian X, Li X, Ilori TO, Klein JD, Hughey RP, Li CJ, Alli AA, Guo Z, Yu P, Song X, Chen G. RNA-seq analysis of glycosylation related gene expression in STZ-induced diabetic rat kidney inner medulla. Front Physiol 2015; 6:274. [PMID: 26483702 PMCID: PMC4590316 DOI: 10.3389/fphys.2015.00274] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 09/17/2015] [Indexed: 12/30/2022] Open
Abstract
The UT-A1 urea transporter is crucial to the kidney's ability to generate concentrated urine. Native UT-A1 from kidney inner medulla (IM) is a heavily glycosylated protein with two glycosylation forms of 97 and 117 kDa. In diabetes, UT-A1 protein abundance, particularly the 117 kD isoform, is significantly increased corresponding to an increased urea permeability in perfused IM collecting ducts, which plays an important role in preventing the osmotic diuresis caused by glucosuria. However, how the glycan carbohydrate structure change and the glycan related enzymes regulate kidney urea transport activity, particularly under diabetic condition, is largely unknown. In this study, using sugar-specific binding lectins, we found that the carbohydrate structure of UT-A1 is changed with increased amounts of sialic acid, fucose, and increased glycan branching under diabetic conditions. These changes were accompanied by altered UT-A1 association with the galectin proteins, β-galactoside glycan binding proteins. To explore the molecular basis of the alterations of glycan structures, the highly sensitive next generation sequencing (NGS) technology, Illumina RNA-seq, was employed to analyze genes involved in the process of UT-A1 glycosylation using streptozotocin (STZ)—induced diabetic rat kidney. Differential gene expression analysis combining with quantitative PCR revealed that expression of a number of important glycosylation related genes were changed under diabetic conditions. These genes include the glycosyltransferase genes Mgat4a, the sialylation enzymes St3gal1 and St3gal4 and glycan binding protein galectin-3, -5, -8, and -9. In contrast, although highly expressed in kidney IM, the glycosyltransferase genes Mgat1, Mgat2, and fucosyltransferase Fut8, did not show any changes. Conclusions: In diabetes, not only is UT-A1 protein abundance increased but the protein's glycan structure is also significantly changed. UT-A1 protein becomes highly sialylated, fucosylated and branched. Consistently, a number of crucial glycosylation related genes are changed under diabetic conditions. The alteration of these genes may contribute to changes in the UT-A1 glycan structure and therefore modulate kidney urea transport activity and alleviate osmotic diuresis caused by glucosuria in diabetes.
Collapse
Affiliation(s)
- Xiaoqian Qian
- Department of Physiology, Emory University School of Medicine Atlanta, GA, USA ; Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University Harbin, China
| | - Xuechen Li
- Department of Physiology, Emory University School of Medicine Atlanta, GA, USA
| | - Titilayo O Ilori
- Renal Division, Department of Medicine, Emory University School of Medicine Atlanta, GA, USA
| | - Janet D Klein
- Department of Physiology, Emory University School of Medicine Atlanta, GA, USA ; Renal Division, Department of Medicine, Emory University School of Medicine Atlanta, GA, USA
| | - Rebecca P Hughey
- Renal-Electrolyte Division and Department of Cell Biology and Physiology, Department of Medicine, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| | - Cong-Jun Li
- Bovine Functional Genomics Laboratory, United States Department of Agriculture - Agricultural Research Service Beltsville, MD, USA
| | - Abdel A Alli
- Department of Physiology, Emory University School of Medicine Atlanta, GA, USA
| | - Zhengyu Guo
- Department of Electrical and Computer Engineering, TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University College Station, TX, USA
| | - Peng Yu
- Department of Electrical and Computer Engineering, TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University College Station, TX, USA
| | - Xiang Song
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University Harbin, China
| | - Guangping Chen
- Department of Physiology, Emory University School of Medicine Atlanta, GA, USA ; Renal Division, Department of Medicine, Emory University School of Medicine Atlanta, GA, USA
| |
Collapse
|