1
|
Zhang Y, Shen M, Zhang B, Li X, Cheng H, Feng D, Han Y, Luo Z, Zhou Y. A Novel Role of Adipokine 'Intelectin-1': Ameliorating Renal Fibrosis Through Inhibition of Renal Tubular Epithelial Cell Senescence. FASEB J 2025; 39:e70653. [PMID: 40387543 DOI: 10.1096/fj.202403361r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 04/17/2025] [Accepted: 05/08/2025] [Indexed: 05/20/2025]
Abstract
Renal fibrosis is a common pathological process associated with chronic kidney disease (CKD) progression. Intelectin-1, a newly identified adipokine, has been demonstrated to protect renal function in mice with type 2 diabetic nephropathy. However, the role of intelectin-1 in renal fibrosis and the underlying mechanisms remain unclear. This study aimed to: (1) investigate the effects of intelectin-1 on renal fibrosis in mice, and (2) explore the potential involvement of intelectin-1 in regulating renal tubular epithelial cells (TECs) senescence and mitochondrial dysfunction. To our knowledge, these findings represent the first demonstration that intelectin-1 treatment significantly attenuates renal fibrosis in unilateral ureteral obstruction (UUO) in mice by effectively inhibiting TECs senescence. Furthermore, intelectin-1 treatment alleviated mitochondrial dysfunction in TECs, as evidenced by improved mitochondrial membrane potential and decreased mitochondrial reactive oxygen species (mtROS) production. Mechanistically, intelectin-1 treatment activated AMPK signaling that subsequently inhibited the mTOR and p38 pathways. In conclusion, our findings suggest that intelectin-1 attenuates renal fibrosis in mice by inhibiting TECs senescence and alleviating mitochondrial dysfunction via AMPK/mTOR/p38MAPK signaling. These results provide a potential therapeutic target for the treatment of renal fibrosis in CKD. Further studies are warranted to explore the clinical relevance and translational potential of adipokines, including intelectin-1, in human renal fibrosis.
Collapse
Affiliation(s)
- Yunna Zhang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Mengxia Shen
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Bo Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaohong Li
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Haipeng Cheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Dandan Feng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yang Han
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Ziqiang Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yan Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
2
|
Ye J, Qiu C, Zhang L. Knockdown of Leucine-rich alpha-2-glycoprotein 1 alleviates renal ischemia-reperfusion injury by inhibiting NOX4-mediated apoptosis, inflammation, and oxidative stress. Exp Cell Res 2025; 444:114341. [PMID: 39566877 DOI: 10.1016/j.yexcr.2024.114341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Renal ischemia-reperfusion (I/R) injury leads mainly to acute kidney injury. Leucine-rich alpha-2-glycoprotein 1 (LRG) is upregulated in kidney tissues of mice after renal I/R injury. However, its role in renal I/R injury has not been fully elucidated. A mouse model of renal I/R injury was constructed by unilateral renal pedicle clamping and reperfusion. Mice undergoing I/R procedures exhibited renal function impairment and increased LRG protein expression compared with mice receiving sham operations. Tail vein injection with lentivirus carrying shLRG decreased renal I/R injury-induced increase in caspase-3 activity, IL-1β and IL-18 concentrations, and ROS production. Furthermore, shRNA-mediated LRG knockdown in HK-2 cells protected against H/R-induced cell damage. LRG could upregulate the expression of NADPH oxidase 4 (NOX4). We also determined the increased NOX4 expression in kidney tissues of renal I/R-operated mice and H/R-treated HK-2 cells. NOX4 overexpression reversed the inhibitory role of LRG knockdown in HK-2 cell damage caused by H/R. Collectively, our findings demonstrate that LRG knockdown decreases the NOX4 expression, thereby alleviating renal I/R injury by inhibiting cell apoptosis, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Jianfeng Ye
- Department of Kidney Transplantation, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Cheng Qiu
- Department of Kidney Transplantation, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Lexi Zhang
- Department of Kidney Transplantation, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China.
| |
Collapse
|
3
|
Pan S, Yuan T, Xia Y, Yu W, Zhou X, Cheng F. Role of Histone Modifications in Kidney Fibrosis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:888. [PMID: 38929505 PMCID: PMC11205584 DOI: 10.3390/medicina60060888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024]
Abstract
Chronic kidney disease (CKD) is characterized by persistent kidney dysfunction, ultimately resulting in end-stage renal disease (ESRD). Renal fibrosis is a crucial pathological feature of CKD and ESRD. However, there is no effective treatment for this condition. Despite the complex molecular mechanisms involved in renal fibrosis, increasing evidence highlights the crucial role of histone modification in its regulation. The reversibility of histone modifications offers promising avenues for therapeutic strategies to block or reverse renal fibrosis. Therefore, a comprehensive understanding of the regulatory implications of histone modifications in fibrosis may provide novel insights into more effective and safer therapeutic approaches. This review highlights the regulatory mechanisms and recent advances in histone modifications in renal fibrosis, particularly histone methylation and histone acetylation. The aim is to explore the potential of histone modifications as targets for treating renal fibrosis.
Collapse
Affiliation(s)
| | | | | | | | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.P.); (T.Y.); (Y.X.); (W.Y.)
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.P.); (T.Y.); (Y.X.); (W.Y.)
| |
Collapse
|
4
|
Wang FT, Wu TQ, Lin Y, Jiao YR, Li JY, Ruan Y, Yin L, Chen CQ. The role of the CXCR6/CXCL16 axis in the pathogenesis of fibrotic disease. Int Immunopharmacol 2024; 132:112015. [PMID: 38608478 DOI: 10.1016/j.intimp.2024.112015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
CXC chemokine receptor 6 (CXCR6), a seven-transmembrane domain G-protein-coupled receptor, plays a pivotal regulatory role in inflammation and tissue damage through its interaction with CXC chemokine ligand 16 (CXCL16). This axis is implicated in the pathogenesis of various fibrotic diseases and correlates with clinical parameters that indicate disease severity, activity, and prognosis in organ fibrosis, including afflictions of the liver, kidney, lung, cardiovascular system, skin, and intestines. Soluble CXCL16 (sCXCL16) serves as a chemokine, facilitating the migration and recruitment of CXCR6-expressing cells, while membrane-bound CXCL16 (mCXCL16) functions as a transmembrane protein with adhesion properties, facilitating intercellular interactions by binding to CXCR6. The CXCR6/CXCL16 axis is established to regulate the cycle of damage and repair during chronic inflammation, either through modulating immune cell-mediated intercellular communication or by independently influencing fibroblast homing, proliferation, and activation, with each pathway potentially culminating in the onset and progression of fibrotic diseases. However, clinically exploiting the targeting of the CXCR6/CXCL16 axis requires further elucidation of the intricate chemokine interactions within fibrosis pathogenesis. This review explores the biology of CXCR6/CXCL16, its multifaceted effects contributing to fibrosis in various organs, and the prospective clinical implications of these insights.
Collapse
Affiliation(s)
- Fang-Tao Wang
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Tian-Qi Wu
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yin Lin
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yi-Ran Jiao
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ji-Yuan Li
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yu Ruan
- Surgery and Anesthesia Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lu Yin
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Chun-Qiu Chen
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
5
|
Wang Y, Jiao B, Hu Z, Wang Y. Critical Role of histone deacetylase 3 in the regulation of kidney inflammation and fibrosis. Kidney Int 2024; 105:775-790. [PMID: 38286179 DOI: 10.1016/j.kint.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 01/31/2024]
Abstract
Chronic kidney disease (CKD) is characterized by kidney inflammation and fibrosis. However, the precise mechanisms leading to kidney inflammation and fibrosis are poorly understood. Since histone deacetylase is involved in inflammation and fibrosis in other tissues, we examined the role of histone deacetylase 3 (HDAC3) in the regulation of inflammation and kidney fibrosis. HDAC3 is induced in the kidneys of animal models of CKD but mice with conditional HDAC3 deletion exhibit significantly reduced fibrosis in the kidneys compared with control mice. The expression of proinflammatory and profibrotic genes was significantly increased in the fibrotic kidneys of control mice, which was impaired in mice with HDAC3 deletion. Genetic deletion or pharmacological inhibition of HDAC3 reduced the expression of proinflammatory genes in cultured monocytes/macrophages. Mechanistically, HDAC3 deacetylates Lys122 of NF-κB p65 subunit turning on transcription. RGFP966, a selective HDAC3 inhibitor, reduced fibrosis in cells and in animal models by blocking NF-κB p65 binding to κB-containing DNA sequences. Thus, our study identified HDAC3 as a critical regulator of inflammation and fibrosis of the kidney through deacetylation of NF-κB unlocking its transcriptional activity. Hence, targeting HDAC3 could serve as a novel therapeutic strategy for CKD.
Collapse
Affiliation(s)
- Yuguo Wang
- Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Baihai Jiao
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Zhaoyong Hu
- Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Yanlin Wang
- Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA; Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA; Renal Section, VA Connecticut Healthcare System, West Haven, Connecticut, USA.
| |
Collapse
|
6
|
Liu J, Zhang J, Zhao X, Pan C, Liu Y, Luo S, Miao X, Wu T, Cheng X. Identification of CXCL16 as a diagnostic biomarker for obesity and intervertebral disc degeneration based on machine learning. Sci Rep 2023; 13:21316. [PMID: 38044363 PMCID: PMC10694141 DOI: 10.1038/s41598-023-48580-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is the primary cause of neck and back pain. Obesity has been established as a significant risk factor for IDD. The objective of this study was to explore the molecular mechanisms affecting obesity and IDD by identifying the overlapping crosstalk genes associated with both conditions. The identification of specific diagnostic biomarkers for obesity and IDD would have crucial clinical implications. We obtained gene expression profiles of GSE70362 and GSE152991 from the Gene Expression Omnibus, followed by their analysis using two machine learning algorithms, least absolute shrinkage and selection operator and support vector machine-recursive feature elimination, which enabled the identification of C-X-C motif chemokine ligand 16 (CXCL16) as a shared diagnostic biomarker for obesity and IDD. Additionally, gene set variant analysis was used to explore the potential mechanism of CXCL16 in these diseases, and CXCL16 was found to affect IDD through its effect on fatty acid metabolism. Furthermore, correlation analysis between CXCL16 and immune cells demonstrated that CXCL16 negatively regulated T helper 17 cells to promote IDD. Finally, independent external datasets (GSE124272 and GSE59034) were used to verify the diagnostic efficacy of CXCL16. In conclusion, a common diagnostic biomarker for obesity and IDD, CXCL16, was identified using a machine learning algorithm. This study provides a new perspective for exploring the possible mechanisms by which obesity impacts the development of IDD.
Collapse
Affiliation(s)
- Jiahao Liu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Jian Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Xiaokun Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Chongzhi Pan
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Yuchi Liu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Shengzhong Luo
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Xinxin Miao
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China
- Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Tianlong Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China
- Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xigao Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China.
- Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
7
|
Liang H, Liu B, Gao Y, Nie J, Feng S, Yu W, Wen S, Su X. Jmjd3/IRF4 axis aggravates myeloid fibroblast activation and m2 macrophage to myofibroblast transition in renal fibrosis. Front Immunol 2022; 13:978262. [PMID: 36159833 PMCID: PMC9494509 DOI: 10.3389/fimmu.2022.978262] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Renal fibrosis commonly occurs in the process of chronic kidney diseases. Here, we explored the role of Jumonji domain containing 3 (Jmjd3)/interferon regulatory factor 4 (IRF4) axis in activation of myeloid fibroblasts and transition of M2 macrophages into myofibroblasts transition (M2MMT) in kidney fibrosis. In mice, Jmjd3 and IRF4 were highly induced in interstitial cells of kidneys with folic acid or obstructive injury. Jmjd3 deletion in myeloid cells or Jmjd3 inhibitor reduced the levels of IRF4 in injured kidneys. Myeloid Jmjd3 depletion impaired bone marrow-derived fibroblasts activation and M2MMT in folic acid or obstructive nephropathy, resulting in reduction of extracellular matrix (ECM) proteins expression, myofibroblasts formation and renal fibrosis progression. Pharmacological inhibition of Jmjd3 also prevented myeloid fibroblasts activation, M2MMT, and kidney fibrosis development in folic acid nephropathy. Furthermore, IRF4 disruption inhibited myeloid myofibroblasts accumulation, M2MMT, ECM proteins accumulation, and showed milder fibrotic response in obstructed kidneys. Bone marrow transplantation experiment showed that wild-type mice received IRF4-/- bone marrow cells presented less myeloid fibroblasts activation in injured kidneys and exhibited much less kidney fibrosis after unilateral ureteral obstruction. Myeloid Jmjd3 deletion or Jmjd3 inhibitor attenuated expressions of IRF4, α-smooth muscle actin and fibronectin and impeded M2MMT in cultured monocytes exposed to IL-4. Conversely, overexpression IRF4 abrogated the effect of myeloid Jmjd3 deletion on M2MMT. Thus, Jmjd3/IRF4 signaling has a crucial role in myeloid fibroblasts activation, M2 macrophages to myofibroblasts transition, extracellular matrix protein deposition, and kidney fibrosis progression.
Collapse
Affiliation(s)
- Hua Liang
- Department of Anesthesiology, Foshan Women and Children Hospital, Foshan, China
- Department of Anesthesiology, Affiliated Foshan Women and Children Hospital of Southern Medical University, Foshan, China
| | - Benquan Liu
- Department of Anesthesiology, The First People’s Hospital of Foshan, Foshan, China
| | - Ying Gao
- Department of Anesthesiology, The First People’s Hospital of Foshan, Foshan, China
| | - Jiayi Nie
- Department of Anesthesiology, The First People’s Hospital of Foshan, Foshan, China
| | - Shuyun Feng
- Department of Anesthesiology, The First People’s Hospital of Foshan, Foshan, China
| | - Wenqiang Yu
- Department of Anesthesiology, The First People’s Hospital of Foshan, Foshan, China
- *Correspondence: Wenqiang Yu, ; Xi Su,
| | - Shihong Wen
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xi Su
- Department of Paediatrics, Foshan Women and Children Hospital, Foshan, China
- *Correspondence: Wenqiang Yu, ; Xi Su,
| |
Collapse
|
8
|
Chen J, Tang Y, Zhong Y, Wei B, Huang XR, Tang PMK, Xu A, Lan HY. P2Y12 inhibitor clopidogrel inhibits renal fibrosis by blocking macrophage-to-myofibroblast transition. Mol Ther 2022; 30:3017-3033. [PMID: 35791881 PMCID: PMC9481993 DOI: 10.1016/j.ymthe.2022.06.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/07/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022] Open
Abstract
Clopidogrel, a P2Y12 inhibitor, is a novel anti-fibrosis agent for chronic kidney disease (CKD), but its mechanisms remain unclear, which we investigated by silencing P2Y12 or treating unilateral ureteral obstruction (UUO) in LysM-Cre/Rosa Tomato mice with clopidogrel in vivo and in vitro. We found that P2Y12 was significantly increased and correlated with progressive renal fibrosis in CKD patients and UUO mice. Phenotypically, up to 82% of P2Y12-expressing cells within the fibrosing kidney were of macrophage origin, identified by co-expressing CD68/F4/80 antigens or a macrophage-lineage-tracing marker Tomato. Unexpectedly, more than 90% of P2Y12-expressing macrophages were undergoing macrophage-to-myofibroblast transition (MMT) by co-expressing alpha smooth muscle actin (α-SMA), which was also confirmed by single-cell RNA sequencing. Functionally, clopidogrel improved the decline rate of the estimated glomerular filtration rate (eGFR) in patients with CKD and significantly inhibited renal fibrosis in UUO mice. Mechanistically, P2Y12 expression was induced by transforming growth factor β1 (TGF-β1) and promoted MMT via the Smad3-dependent mechanism. Thus, silencing or pharmacological inhibition of P2Y12 was capable of inhibiting TGF-β/Smad3-mediated MMT and progressive renal fibrosis in vivo and in vitro. In conclusion, P2Y12 is highly expressed by macrophages in fibrosing kidneys and mediates renal fibrosis by promoting MMT via TGF-β/Smad3 signaling. Thus, P2Y12 inhibitor maybe a novel and effective anti-fibrosis agent for CKD.
Collapse
Affiliation(s)
- Junzhe Chen
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China; Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ying Tang
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yu Zhong
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Biao Wei
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao-Ru Huang
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, Guangdong Academy of Medical Science, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Patrick Ming-Kuen Tang
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China; Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China.
| | - Anping Xu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Hui-Yao Lan
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, Guangdong Academy of Medical Science, Guangdong Provincial People's Hospital, Guangzhou, China.
| |
Collapse
|
9
|
Wei J, Xu Z, Yan X. The role of the macrophage-to-myofibroblast transition in renal fibrosis. Front Immunol 2022; 13:934377. [PMID: 35990655 PMCID: PMC9389037 DOI: 10.3389/fimmu.2022.934377] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/13/2022] [Indexed: 12/20/2022] Open
Abstract
Renal fibrosis causes structural and functional impairment of the kidney, which is a dominant component of chronic kidney disease. Recently, a novel mechanism, macrophage-to-myofibroblast transition (MMT), has been identified as a crucial component in renal fibrosis as a response to chronic inflammation. It is a process by which bone marrow-derived macrophages differentiate into myofibroblasts during renal injury and promote renal fibrosis. Here, we summarized recent evidence and mechanisms of MMT in renal fibrosis. Understanding this phenomenon and its underlying signal pathway would be beneficial to find therapeutic targets for renal fibrosis in chronic kidney disease.
Collapse
Affiliation(s)
- Jia Wei
- *Correspondence: Jia Wei, ; Xiang Yan,
| | | | - Xiang Yan
- *Correspondence: Jia Wei, ; Xiang Yan,
| |
Collapse
|
10
|
Liu Z, Wang W, Li X, Tang S, Meng D, Xia W, Wang H, Wu Y, Zhou X, Zhang J. Capsaicin ameliorates renal fibrosis by inhibiting TGF-β1-Smad2/3 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154067. [PMID: 35349832 DOI: 10.1016/j.phymed.2022.154067] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/14/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND PURPOSE Chronic kidney disease (CKD), characterized by renal fibrosis, is a global refractory disease with few effective therapeutic strategies. It has been reported that capsaicin exerts many pharmacological effects including liver and cardiac fibrosis. However, whether capsaicin plays a therapeutic role in renal fibrosis remains unclear. METHODS We investigated antifibrotic effects of capsaicin in two mouse renal fibrosis models as follows: C57BL/6J mice were subjected to unilateral ureteral obstruction (UUO) and fed with an adenine-rich diet. We uncovered and verified the mechanisms of capsaicin in human proximal tubular epithelial cells (HK2). We mainly used histochemistry, immunohistochemistry and immunofluorescence staining, western blot assay, biochemical examination and other tools to examine the effects of capsaicin on renal fibrosis and the underlying mechanisms. RESULTS Capsaicin treatment significantly alleviated fibronectin and collagen depositions in the tubulointerstitium of the injured kidneys from UUO and adenine-fed mice. Meanwhile, capsaicin treatment obviously reduced α-SMA expression. Moreover, capsaicin treatment dramatically protected against the phenotypic alteration of tubular epithelial cells by increasing E-cadherin expression and decreasing vimentin expression during renal fibrosis. Mechanistically, capsaicin treatment effectively suppressed α-SMA and vimentin expressions but promoted E-cadherin expression in HK2 cells mainly through the inhibition of TGF-β1-Smad2/3 signaling. CONCLUSION Capsaicin significantly ameliorated renal fibrosis possibly by retarding the activation of myofibroblasts and protecting against the phenotypic alteration of tubular epithelial cells mainly through the inhibition of TGF-β1-Smad2/3 signaling. Thus, our findings may provide a new insight into the clinical application of capsaicin in renal fibrosis.
Collapse
Affiliation(s)
- Zhenyu Liu
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, PR China
| | - Weili Wang
- School of Medicine, Chongqing University, Chongqing 400030, PR China; College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Xueqin Li
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, PR China
| | - Sha Tang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, PR China
| | - Dongwei Meng
- Institute of Immunology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China
| | - Wenli Xia
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, PR China
| | - Hong Wang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, PR China
| | - Yuzhang Wu
- Institute of Immunology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China
| | - Xinyuan Zhou
- Institute of Immunology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China.
| | - Jingbo Zhang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, PR China.
| |
Collapse
|
11
|
Jiao B, An C, Du H, Tran M, Wang P, Zhou D, Wang Y. STAT6 Deficiency Attenuates Myeloid Fibroblast Activation and Macrophage Polarization in Experimental Folic Acid Nephropathy. Cells 2021; 10:3057. [PMID: 34831280 PMCID: PMC8623460 DOI: 10.3390/cells10113057] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 01/02/2023] Open
Abstract
Renal fibrosis is a pathologic feature of chronic kidney disease, which can lead to end-stage kidney disease. Myeloid fibroblasts play a central role in the pathogenesis of renal fibrosis. However, the molecular mechanisms pertaining to myeloid fibroblast activation remain to be elucidated. In the present study, we examine the role of signal transducer and activator of transcription 6 (STAT6) in myeloid fibroblast activation, macrophage polarization, and renal fibrosis development in a mouse model of folic acid nephropathy. STAT6 is activated in the kidney with folic acid nephropathy. Compared with folic-acid-treated wild-type mice, STAT6 knockout mice had markedly reduced myeloid fibroblasts and myofibroblasts in the kidney with folic acid nephropathy. Furthermore, STAT6 knockout mice exhibited significantly less CD206 and PDGFR-β dual-positive fibroblast accumulation and M2 macrophage polarization in the kidney with folic acid nephropathy. Consistent with these findings, STAT6 knockout mice produced less extracellular matrix protein, exhibited less severe interstitial fibrosis, and preserved kidney function in folic acid nephropathy. Taken together, these results have shown that STAT6 plays a critical role in myeloid fibroblasts activation, M2 macrophage polarization, extracellular matrix protein production, and renal fibrosis development in folic acid nephropathy. Therefore, targeting STAT6 may provide a novel therapeutic strategy for fibrotic kidney disease.
Collapse
Affiliation(s)
- Baihai Jiao
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA; (B.J.); (C.A.); (H.D.); metr (M.T.); (D.Z.)
| | - Changlong An
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA; (B.J.); (C.A.); (H.D.); metr (M.T.); (D.Z.)
| | - Hao Du
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA; (B.J.); (C.A.); (H.D.); metr (M.T.); (D.Z.)
| | - Melanie Tran
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA; (B.J.); (C.A.); (H.D.); metr (M.T.); (D.Z.)
| | - Penghua Wang
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030, USA;
| | - Dong Zhou
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA; (B.J.); (C.A.); (H.D.); metr (M.T.); (D.Z.)
| | - Yanlin Wang
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA; (B.J.); (C.A.); (H.D.); metr (M.T.); (D.Z.)
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06030, USA
- Institute for Systems Genomics, University of Connecticut School of Medicine, Farmington, CT 06030, USA
- Renal Section, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|
12
|
Jiao B, An C, Tran M, Du H, Wang P, Zhou D, Wang Y. Pharmacological Inhibition of STAT6 Ameliorates Myeloid Fibroblast Activation and Alternative Macrophage Polarization in Renal Fibrosis. Front Immunol 2021; 12:735014. [PMID: 34512669 PMCID: PMC8426438 DOI: 10.3389/fimmu.2021.735014] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022] Open
Abstract
A hallmark of chronic kidney disease is renal fibrosis, which can result in progressive loss of kidney function. Currently, there is no effective therapy for renal fibrosis. Therefore, there is an urgent need to identify potential drug targets for renal fibrosis. In this study, we examined the effect of a selective STAT6 inhibitor, AS1517499, on myeloid fibroblast activation, macrophage polarization, and development of renal fibrosis in two experimental murine models. To investigate the effect of STAT6 inhibition on myeloid fibroblast activation, macrophage polarization, and kidney fibrosis, wild-type mice were subjected to unilateral ureteral obstruction or folic acid administration and treated with AS1517499. Mice treated with vehicle were used as control. At the end of experiments, kidneys were harvested for analysis of myeloid fibroblast activation, macrophage polarization, and renal fibrosis and function. Unilateral ureteral obstruction or folic acid administration induced STAT6 activation in interstitial cells of the kidney, which was significantly abolished by AS1517499 treatment. Mice treated with AS1517499 accumulated fewer myeloid fibroblasts and myofibroblasts in the kidney with ureteral obstruction or folic acid nephropathy compared with vehicle-treated mice. Moreover, AS1517499 significantly suppressed M2 macrophage polarization in the injured kidney. Furthermore, AS1517499 markedly reduced the expression levels of extracellular matrix proteins, and development of kidney fibrosis and dysfunction. These findings suggest that AS1517499 inhibits STAT6 activation, suppresses myeloid fibroblast activation, reduces M2 macrophage polarization, attenuates extracellular matrix protein production, and preserves kidney function. Therefore, targeting STAT6 with AS1517499 is a novel therapeutic approach for chronic kidney disease.
Collapse
Affiliation(s)
- Baihai Jiao
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Changlong An
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Melanie Tran
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Hao Du
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Penghua Wang
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Dong Zhou
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Yanlin Wang
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, United States
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, United States
- Institute for Systems Genomics, University of Connecticut School of Medicine, Farmington, CT, United States
- Renal Section, Veterans Affairs Connecticut Healthcare System, West Haven, CT, United States
| |
Collapse
|
13
|
Wang X, Chen J, Xu J, Xie J, Harris DCH, Zheng G. The Role of Macrophages in Kidney Fibrosis. Front Physiol 2021; 12:705838. [PMID: 34421643 PMCID: PMC8378534 DOI: 10.3389/fphys.2021.705838] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/07/2021] [Indexed: 12/27/2022] Open
Abstract
The phenotypic heterogeneity and functional diversity of macrophages confer on them complexed roles in the development and progression of kidney diseases. After kidney injury, bone marrow-derived monocytes are rapidly recruited to the glomerulus and tubulointerstitium. They are activated and differentiated on site into pro-inflammatory M1 macrophages, which initiate Th1-type adaptive immune responses and damage normal tissues. In contrast, anti-inflammatory M2 macrophages induce Th2-type immune responses, secrete large amounts of TGF-β and anti-inflammatory cytokines, transform into αSMA+ myofibroblasts in injured kidney, inhibit immune responses, and promote wound healing and tissue fibrosis. Previous studies on the role of macrophages in kidney fibrosis were mainly focused on inflammation-associated injury and injury repair. Apart from macrophage-secreted profibrotic cytokines, such as TGF-β, evidence for a direct contribution of macrophages to kidney fibrosis is lacking. However, under inflammatory conditions, Wnt ligands are derived mainly from macrophages and Wnt signaling is central in the network of multiple profibrotic pathways. Largely underinvestigated are the direct contribution of macrophages to profibrotic signaling pathways, macrophage phenotypic heterogeneity and functional diversity in relation to kidney fibrosis, and on their cross-talk with other cells in profibrotic signaling networks that cause fibrosis. Here we aim to provide an overview on the roles of macrophage phenotypic and functional diversity in their contribution to pro-fibrotic signaling pathways, and on the therapeutic potential of targeting macrophages for the treatment of kidney fibrosis.
Collapse
Affiliation(s)
- Xiaoling Wang
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
- Clinical Laboratory, Shanxi Academy of Traditional Chinese Medicine, Taiyuan, China
| | - Jianwei Chen
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Jun Xu
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jun Xie
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - David C. H. Harris
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Guoping Zheng
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
14
|
Liu B, Jiang J, Liang H, Xiao P, Lai X, Nie J, Yu W, Gao Y, Wen S. Natural killer T cell/IL-4 signaling promotes bone marrow-derived fibroblast activation and M2 macrophage-to-myofibroblast transition in renal fibrosis. Int Immunopharmacol 2021; 98:107907. [PMID: 34243040 DOI: 10.1016/j.intimp.2021.107907] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 12/29/2022]
Abstract
Renal fibrosis is a histological manifestation of chronic kidney disease. Natural killer T (NKT) cells have a critical role in the pathogenesis of fibrotic disorder. However, the role of NKT cells in regulating kidney fibrosis remains largely unknown. In the current study, we showed that the percentages of NKT+ cells and NKT+-IL-4+ cells were notably increased in folic acid (FA) and obstructive nephropathy. CD1d deficiency protected mice from renal fibrosis induced by FA and obstructive injury. Specifically, Loss of CD1d reduced bone marrow-derived myofibroblasts and CD206+/α-smooth muscle actin+ cells in the kidneys of injured mice. But mice treated with α-galactosylceramide (α-GC, a specific activator of NKT cells) developed more severe fibrosis, accumulated more myeloid myofibroblasts and M2 macrophages-myofibroblasts transition (M2MMT) cells in FA injured kidneys. Furthermore, IL-4 expression was markedly reduced in CD1d deficiency mice but increased in α-GC-treated mice. Administration of IL-4 abrogates the inhibiting effect of CD1d deficiency on renal fibrosis, bone marrow-derived fibroblasts activation, and M2MMT in FA injured kidneys. Conversely, pharmacological inhibition of IL-4 attenuated the development of renal fibrosis, decreased bone marrow-derived myofibroblasts, and suppressed M2MMT. Thus, this study revealed a novel role of NKT cells in the bone marrow-derived fibroblasts activation and M2MMT during renal fibrosis. Targeting NKT cell/IL-4 signaling may be an effective treatment for renal fibrosis.
Collapse
Affiliation(s)
- Benquan Liu
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan 528000, China; Translational Institute of Anesthesiology and Perioperative Medicine, The First People's Hospital of Foshan, Foshan 528000, China
| | - Jun Jiang
- Department of Emergency Medicine, The First People's Hospital of Foshan, Foshan 528000, China
| | - Hua Liang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan 528000, China; Translational Institute of Anesthesiology and Perioperative Medicine, The First People's Hospital of Foshan, Foshan 528000, China.
| | - Ping Xiao
- Institute of Clinical Medicine, The First People's Hospital of Foshan, Foshan 528000, China
| | - Xiaohong Lai
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan 528000, China
| | - Jiayi Nie
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan 528000, China
| | - Wenqiang Yu
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan 528000, China
| | - Ying Gao
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan 528000, China
| | - Shihong Wen
- Department of Anesthesiology, The First Affiliated Hospital of SUN YAT-SEN University, Guangzhou 510080, China
| |
Collapse
|
15
|
Kim KS, Lee JS, Park JH, Lee EY, Moon JS, Lee SK, Lee JS, Kim JH, Kim HS. Identification of Novel Biomarker for Early Detection of Diabetic Nephropathy. Biomedicines 2021; 9:457. [PMID: 33922243 PMCID: PMC8146473 DOI: 10.3390/biomedicines9050457] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/23/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the most common complications of diabetes mellitus. After development of DN, patients will progress to end-stage renal disease, which is associated with high morbidity and mortality. Here, we developed early-stage diagnostic biomarkers to detect DN as a strategy for DN intervention. For the DN model, Zucker diabetic fatty rats were used for DN phenotyping. The results revealed that DN rats showed significantly increased blood glucose, blood urea nitrogen (BUN), and serum creatinine levels, accompanied by severe kidney injury, fibrosis and microstructural changes. In addition, DN rats showed significantly increased urinary excretion of kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL). Transcriptome analysis revealed that new DN biomarkers, such as complementary component 4b (C4b), complementary factor D (CFD), C-X-C motif chemokine receptor 6 (CXCR6), and leukemia inhibitory factor (LIF) were identified. Furthermore, they were found in the urine of patients with DN. Since these biomarkers were detected in the urine and kidney of DN rats and urine of diabetic patients, the selected markers could be used as early diagnosis biomarkers for chronic diabetic nephropathy.
Collapse
Affiliation(s)
- Kyeong-Seok Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (K.-S.K.); (J.-S.L.); (J.-H.P.)
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Jin-Sol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (K.-S.K.); (J.-S.L.); (J.-H.P.)
| | - Jae-Hyeon Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (K.-S.K.); (J.-S.L.); (J.-H.P.)
| | - Eun-Young Lee
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Korea;
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Jong-Seok Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea;
| | - Sang-Kyu Lee
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea;
| | - Jong-Sil Lee
- Department of Pathology, Institute of Health Sciences, College of Medicine, Gyeongsang National University Hospital, Jinju 52727, Korea;
| | - Jung-Hwan Kim
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Hyung-Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (K.-S.K.); (J.-S.L.); (J.-H.P.)
| |
Collapse
|
16
|
The Role of CXCL16 in the Pathogenesis of Cancer and Other Diseases. Int J Mol Sci 2021; 22:ijms22073490. [PMID: 33800554 PMCID: PMC8036711 DOI: 10.3390/ijms22073490] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/15/2022] Open
Abstract
CXCL16 is a chemotactic cytokine belonging to the α-chemokine subfamily. It plays a significant role in the progression of cancer, as well as the course of atherosclerosis, renal fibrosis, and non-alcoholic fatty liver disease (NAFLD). Since there has been no review paper discussing the importance of this chemokine in various diseases, we have collected all available knowledge about CXCL16 in this review. In the first part of the paper, we discuss background information about CXCL16 and its receptor, CXCR6. Next, we focus on the importance of CXCL16 in a variety of diseases, with an emphasis on cancer. We discuss the role of CXCL16 in tumor cell proliferation, migration, invasion, and metastasis. Next, we describe the role of CXCL16 in the tumor microenvironment, including involvement in angiogenesis, and its significance in tumor-associated cells (cancer associated fibroblasts (CAF), microglia, tumor-associated macrophages (TAM), tumor-associated neutrophils (TAN), mesenchymal stem cells (MSC), myeloid suppressor cells (MDSC), and regulatory T cells (Treg)). Finally, we focus on the antitumor properties of CXCL16, which are mainly caused by natural killer T (NKT) cells. At the end of the article, we summarize the importance of CXCL16 in cancer therapy.
Collapse
|
17
|
Chen H, Fan Y, Jing H, Tang S, Huang Z, Liao M, Lin S, Zhong J, Zhou J. LncRNA Gm12840 mediates WISP1 to regulate ischemia-reperfusion-induced renal fibrosis by sponging miR-677-5p. Epigenomics 2020; 12:2205-2218. [PMID: 33351669 DOI: 10.2217/epi-2020-0054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Aim: We aimed to identify that long noncoding RNAs (lncRNAs) are involved in ischemia-reperfusion (IR)-induced late fibrosis of kidney and may constitute novel therapeutic strategies for acute kidney injury-induced chronic kidney disease. Materials & methods: We performed the mouse model of IR later induced renal fibrosis and analyzed lncRNA profiles using second-generation sequencing during the pathogenesis. Results: The expression levels of 43 lncRNAs and 141 lncRNAs were respectively changed significantly 7 days and 2 weeks after IR treatment. Based on the correlation analysis of the differentially expressed genes, the interaction networks of lncRNAs, miRNAs and mRNA were structured. Conclusion: LncRNA (Gm12840) could act as a sponge for miR-677-5p to mediate fibroblast activation induced by TGF-β1 via the WISP1/PKB (Akt) signaling pathway.
Collapse
Affiliation(s)
- Hongtao Chen
- Department of Anesthesiology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Guangzhou, Guangdong 510060, PR China
| | - Youling Fan
- Department of Anesthesiology, Panyu Central Hospital, 8 Fuyu West Road, Guangzhou, Guangdong 511400, PR China
| | - Huan Jing
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, 183 Zhongshan West Road, Guangzhou, Guangdong 510630, PR China
| | - Simin Tang
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, 183 Zhongshan West Road, Guangzhou, Guangdong 510630, PR China
| | - Zhenxing Huang
- Department of Anesthesiology, The First People's Hospital of Foshan, 81 North Lingnan Avenue, Foshan, Guangdong 528000, PR China
| | - Meijuan Liao
- Department of Anesthesiology, The First People's Hospital of Foshan, 81 North Lingnan Avenue, Foshan, Guangdong 528000, PR China
| | - Sen Lin
- Department of Anesthesiology, The First People's Hospital of Foshan, 81 North Lingnan Avenue, Foshan, Guangdong 528000, PR China
| | - Jiying Zhong
- Department of Anesthesiology, The First People's Hospital of Foshan, 81 North Lingnan Avenue, Foshan, Guangdong 528000, PR China
| | - Jun Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, 183 Zhongshan West Road, Guangzhou, Guangdong 510630, PR China
| |
Collapse
|
18
|
Neural transcription factor Pou4f1 promotes renal fibrosis via macrophage-myofibroblast transition. Proc Natl Acad Sci U S A 2020; 117:20741-20752. [PMID: 32788346 DOI: 10.1073/pnas.1917663117] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Unresolved inflammation can lead to tissue fibrosis and impaired organ function. Macrophage-myofibroblast transition (MMT) is one newly identified mechanism by which ongoing chronic inflammation causes progressive fibrosis in different forms of kidney disease. However, the mechanisms underlying MMT are still largely unknown. Here, we discovered a brain-specific homeobox/POU domain protein Pou4f1 (Brn3a) as a specific regulator of MMT. Interestingly, we found that Pou4f1 is highly expressed by macrophages undergoing MMT in sites of fibrosis in human and experimental kidney disease, identified by coexpression of the myofibroblast marker, α-SMA. Unexpectedly, Pou4f1 expression peaked in the early stage in renal fibrogenesis in vivo and during MMT of bone marrow-derived macrophages (BMDMs) in vitro. Mechanistically, chromatin immunoprecipitation (ChIP) assay identified that Pou4f1 is a Smad3 target and the key downstream regulator of MMT, while microarray analysis defined a Pou4f1-dependent fibrogenic gene network for promoting TGF-β1/Smad3-driven MMT in BMDMs at the transcriptional level. More importantly, using two mouse models of progressive renal interstitial fibrosis featuring the MMT process, we demonstrated that adoptive transfer of TGF-β1-stimulated BMDMs restored both MMT and renal fibrosis in macrophage-depleted mice, which was prevented by silencing Pou4f1 in transferred BMDMs. These findings establish a role for Pou4f1 in MMT and renal fibrosis and suggest that Pou4f1 may be a therapeutic target for chronic kidney disease with progressive renal fibrosis.
Collapse
|
19
|
Abstract
Purpose This review highlights the roles of fibrocytes—their origin, markers, regulation and functions—including contributions to corneal wound healing and fibrosis. Methods Literature review. Results Peripheral blood fibroblast-like cells, called fibrocytes, are primarily generated as mature collagen-producing cells in the bone marrow. They are likely derived from the myeloid lineage, although the exact precursor remains unknown. Fibrocytes are identified by a combination of expressed markers, such as simultaneous expression of CD34 or CD45 or CD11b and collagen type I or collagen type III. Fibrocytes migrate into the wound from the blood where they participate in pathogen clearance, tissue regeneration, wound closure and angiogenesis. Transforming growth factor beta 1 (TGF-β1) and adiponectin induce expression of α-smooth muscle actin and extracellular matrix proteins through activation of Smad3 and adenosine monophosphate-activated protein kinase pathways, respectively. Fibrocytes are important contributors to the cornea wound healing response and there are several mechanisms through which fibrocytes contribute to fibrosis in the cornea and other organs, such as their differentiation into myofibroblasts, production of matrix metalloproteinase, secretion of tissue inhibitor of metalloproteinase, and release of TGF-β1. In some tissues, fibrocytes may also contribute to the basement membrane regeneration and to the resolution of fibrosis. Conclusions New methods that block fibrocyte generation, fibrocyte migration, and their differentiation into myofibroblasts, as well as their production of matrix metalloproteinases, tissue inhibitor of metalloproteinase, and TGF-β1, have therapeutic potential to reduce the accumulation of collagens, maintain tissue integrity and retard or prevent the development of fibrosis.
Collapse
|
20
|
Liu Y, Feng Q, Miao J, Wu Q, Zhou S, Shen W, Feng Y, Hou FF, Liu Y, Zhou L. C-X-C motif chemokine receptor 4 aggravates renal fibrosis through activating JAK/STAT/GSK3β/β-catenin pathway. J Cell Mol Med 2020; 24:3837-3855. [PMID: 32119183 PMCID: PMC7171406 DOI: 10.1111/jcmm.14973] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) has a high prevalence worldwide. Renal fibrosis is the common pathological feature in various types of CKD. However, the underlying mechanisms are not determined. Here, we adopted different CKD mouse models and cultured human proximal tubular cell line (HKC-8) to examine the expression of C-X-C motif chemokine receptor 4 (CXCR4) and β-catenin signalling, as well as their relationship in renal fibrosis. In CKD mice and humans with a variety of nephropathies, CXCR4 was dramatically up-regulated in tubules, with a concomitant activation of β-catenin. CXCR4 expression level was positively correlated with the expression of β-catenin target MMP-7. AMD3100, a CXCR4 receptor blocker, and gene knockdown of CXCR4 significantly inhibited the activation of JAK/STAT and β-catenin signalling, protected against tubular injury and renal fibrosis. CXCR4-induced renal fibrosis was inhibited by treatment with ICG-001, an inhibitor of β-catenin signalling. In HKC-8 cells, overexpression of CXCR4 induced activation of β-catenin and deteriorated cell injury. These effects were inhibited by ICG-001. Stromal cell-derived factor (SDF)-1α, the ligand of CXCR4, stimulated the activation of JAK2/STAT3 and JAK3/STAT6 signalling in HKC-8 cells. Overexpression of STAT3 or STAT6 decreased the abundance of GSK3β mRNA. Silencing of STAT3 or STAT6 significantly blocked SDF-1α-induced activation of β-catenin and fibrotic lesions. These results uncover a novel mechanistic linkage between CXCR4 and β-catenin activation in renal fibrosis in association with JAK/STAT/GSK3β pathway. Our studies also suggest that targeted inhibition of CXCR4 may provide better therapeutic effects on renal fibrosis by inhibiting multiple downstream signalling cascades.
Collapse
Affiliation(s)
- Yahong Liu
- Division of NephrologyState Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouChina
- Division of NephrologyThe Second Affiliated Hospital of Xingtai Medical CollegeXingtaiChina
| | - Qijian Feng
- Division of NephrologyState Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jinhua Miao
- Division of NephrologyState Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Qinyu Wu
- Division of NephrologyState Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Shan Zhou
- Division of NephrologyState Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Weiwei Shen
- Division of NephrologyState Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yanqiu Feng
- School of Biomedical EngineeringSouthern Medical UniversityGuangzhouChina
| | - Fan Fan Hou
- Division of NephrologyState Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Youhua Liu
- Division of NephrologyState Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Lili Zhou
- Division of NephrologyState Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
21
|
Terpstra ML, Remmerswaal EBM, van Aalderen MC, Wever JJ, Sinnige MJ, van der Bom-Baylon ND, Bemelman FJ, Geerlings SE. Circulating mucosal-associated invariant T cells in subjects with recurrent urinary tract infections are functionally impaired. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:80-92. [PMID: 32032475 PMCID: PMC7016840 DOI: 10.1002/iid3.287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
Abstract
Background Urinary tract infection recurrence is common, particularly in women and immunocompromised patients, such as renal transplant recipients (RTRs). Mucosal‐associated invariant T (MAIT) cells play a role in the antibacterial response by recognizing bacterial riboflavin metabolites produced by bacteria such as Escherichia coli. Here, we investigated whether MAIT cells are involved in the pathogenesis of recurrent urinary tract infections (RUTIs). Methods Using multichannel flow cytometry, we characterized the MAIT cell phenotype and function in blood from immunocompetent adults with (n = 13) and without RUTIs (n = 10) and in RTRs with (n = 9) and without RUTIs (n = 10). Results There were no differences in the numbers of MAIT cells between the study groups. MAIT cells in patients with RUTI expressed T‐bet more often than those in controls. MAIT cells from immunocompetent RUTI participants required more antigen‐presenting cells coincubated with E. coli to evoke a similar cytokine and degranulation response than those from controls. This effect was absent in the RTR with RUTI vs RTR control groups, where the overall percentage of MAIT cells that responded to stimulation was already reduced. Conclusion Circulating MAIT cells in immunocompetent individuals with RUTIs respond to bacterial stimuli with reduced efficacy, which suggests that they are involved in the pathogenesis of RUTIs.
Collapse
Affiliation(s)
- Matty L Terpstra
- Division of Nephrology, Department of Internal Medicine, Renal Transplant Unit, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ester B M Remmerswaal
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Michiel C van Aalderen
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Joyce J Wever
- Division of Nephrology, Department of Internal Medicine, Renal Transplant Unit, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marjan J Sinnige
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nelly D van der Bom-Baylon
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Frederike J Bemelman
- Division of Nephrology, Department of Internal Medicine, Renal Transplant Unit, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Suzanne E Geerlings
- Division of Infectious Diseases, Department of Internal Medicine, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Disruption of CXCR6 Ameliorates Kidney Inflammation and Fibrosis in Deoxycorticosterone Acetate/Salt Hypertension. Sci Rep 2020; 10:133. [PMID: 31924817 PMCID: PMC6954216 DOI: 10.1038/s41598-019-56933-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 12/19/2019] [Indexed: 01/03/2023] Open
Abstract
Circulating cells have a pathogenic role in the development of hypertensive nephropathy. However, how these cells infiltrate into the kidney are not fully elucidated. In this study, we investigated the role of CXCR6 in deoxycorticosterone acetate (DOCA)/salt-induced inflammation and fibrosis of the kidney. Following uninephrectomy, wild-type and CXCR6 knockout mice were treated with DOCA/salt for 3 weeks. Blood pressure was similar between wild-type and CXCR6 knockout mice at baseline and after treatment with DOCA/salt. Wild-type mice develop significant kidney injury, proteinuria, and kidney fibrosis after three weeks of DOCA/salt treatment. CXCR6 deficiency ameliorated kidney injury, proteinuria, and kidney fibrosis following treatment with DOCA/salt. Moreover, CXCR6 deficiency inhibited accumulation of bone marrow–derived fibroblasts and myofibroblasts in the kidney following treatment with DOCA/salt. Furthermore, CXCR6 deficiency markedly reduced the number of macrophages and T cells in the kidney after DOCA/salt treatment. In summary, our results identify a critical role of CXCR6 in the development of inflammation and fibrosis of the kidney in salt-sensitive hypertension.
Collapse
|
23
|
Abstract
Renal fibrosis is the final pathological process common to any ongoing, chronic kidney injury or maladaptive repair. Renal fibrosis is considered to be closely related to various cell types, such as fibroblasts, myofibroblasts, T cells, and other inflammatory cells. Multiple types of cells regulate renal fibrosis through the recruitment, proliferation, and activation of fibroblasts, and the production of the extracellular matrix. Cell trafficking is orchestrated by a family of small proteins called chemokines. Chemokines are cytokines with chemotactic properties, which are classified into 4 groups: CXCL, CCL, CX3CL, and XCL. Similarly, chemokine receptors are G protein-coupled seven-transmembrane receptors classified into 4 groups: XCR, CCR, CXCR, and CX3CR. Chemokine receptors are also implicated in the infiltration, differentiation, and survival of functional cells, triggering inflammation that leads to fibrosis development. In this review, we summarize the different chemokine receptors involved in the processes of fibrosis in different cell types. Further studies are required to identify the molecular mechanisms of chemokine signaling that contribute to renal fibrosis.
Collapse
|
24
|
An C, Jia L, Wen J, Wang Y. Targeting Bone Marrow-Derived Fibroblasts for Renal Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:305-322. [DOI: 10.1007/978-981-13-8871-2_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
25
|
Meng XM, Mak TSK, Lan HY. Macrophages in Renal Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:285-303. [PMID: 31399970 DOI: 10.1007/978-981-13-8871-2_13] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Monocytes/macrophages are highly involved in the process of renal injury, repair and fibrosis in many aspects of experimental and human renal diseases. Monocyte-derived macrophages, characterized by high heterogeneity and plasticity, are recruited, activated, and polarized in the whole process of renal fibrotic diseases in response to local microenvironment. As classically activated M1 or CD11b+/Ly6Chigh macrophages accelerate renal injury by producing pro-inflammatory factors like tumor necrosis factor-alpha (TNFα) and interleukins, alternatively activated M2 or CD11b+/Ly6Cintermediate macrophages may contribute to kidney repair by exerting anti-inflammation and wound healing functions. However, uncontrolled M2 macrophages or CD11b+/Ly6Clow macrophages promote renal fibrosis via paracrine effects or direct transition to myofibroblast-like cells via the process of macrophage-to-myofibroblast transition (MMT). In this regard, therapeutic strategies targeting monocyte/macrophage recruitment, activation, and polarization should be emphasized in the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Xiao-Ming Meng
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Thomas Shiu-Kwong Mak
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Chi Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Chi Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
26
|
Hypoxia and Renal Tubulointerstitial Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:467-485. [PMID: 31399980 DOI: 10.1007/978-981-13-8871-2_23] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hypoxia, one of the most common causes of kidney injury, is a key pathological condition in various kidney diseases. Renal fibrosis is the terminal pathway involved in the continuous progression of chronic kidney disease (CKD), characterized by glomerulosclerosis and tubulointerstitial fibrosis (TIF). Recent studies have shown that hypoxia is a key factor promoting the progression of TIF. Loss of microvasculature, reduced oxygen dispersion, and metabolic abnormality of cells in the kidney are the main causes of the hypoxic state. Hypoxia can, in turn, profoundly affect the tubular epithelial cells, endothelial cells, pericytes, fibroblasts, inflammatory cells, and progenitor cells. In this chapter, we reviewed the critical roles of hypoxia in the pathophysiology of TIF and discussed the potential of anti-hypoxia as its promising therapeutic target.
Collapse
|
27
|
Local angiotensin II contributes to tumor resistance to checkpoint immunotherapy. J Immunother Cancer 2018; 6:88. [PMID: 30208943 PMCID: PMC6134794 DOI: 10.1186/s40425-018-0401-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/24/2018] [Indexed: 12/27/2022] Open
Abstract
Background Current checkpoint immunotherapy has shown potential to control cancer by restoring or activating the immune system. Nevertheless, multiple mechanisms are involved in immunotherapy resistance which limits the clinical benefit of checkpoint inhibitors. An immunosuppressive microenvironment is an important factor mediating the original resistance of tumors to immunotherapy. A previous report by our group has demonstrated that local angiotensin II (AngII) predominantly exists in a tumor hypoxic microenvironment where hypoxic tumour cells produced AngII by a hypoxia-lactate-chymase-dependent mechanism. Results Here, using 4T1 and CT26 syngeneic mouse tumor models, we found that local AngII in the tumor microenvironment was involved in immune escape of tumour cells and an AngII signaling blockage sensitized tumours to checkpoint immunotherapy. Furthermore, an AngII signaling blockage reversed the tumor immunosuppressive microenvironment, and inhibition of angiotensinogen (AGT, a precursor of AngII) expression strongly triggered an immune-activating cytokine profile in hypoxic mouse cancer cells. More importantly, AGT silencing combined with a checkpoint blockage generated an abscopal effect in resistant tumors. Conclusion Our study demonstrated an important role of local AngII in the formation of a tumor immunosuppressive microenvironment and its blockage may enhance tumor sensitivity to checkpoint immunotherapy. The combination of an AngII signaling blocker and an immune-checkpoint blockage could be a promising strategy to improve tumors responses to current checkpoint immunotherapy. Electronic supplementary material The online version of this article (10.1186/s40425-018-0401-3) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Liang H, Huang J, Huang Q, Xie YC, Liu HZ, Wang HB. Pharmacological inhibition of Rac1 exerts a protective role in ischemia/reperfusion-induced renal fibrosis. Biochem Biophys Res Commun 2018; 503:2517-2523. [DOI: 10.1016/j.bbrc.2018.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 12/23/2022]
|
29
|
Liang H, Zhang Z, He L, Wang Y. CXCL16 regulates cisplatin-induced acute kidney injury. Oncotarget 2017; 7:31652-62. [PMID: 27191747 PMCID: PMC5077966 DOI: 10.18632/oncotarget.9386] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/04/2016] [Indexed: 01/11/2023] Open
Abstract
The pathogenesis of cisplatin-induced acute kidney injury (AKI) is characterized by tubular cell apoptosis and inflammation. However, the molecular mechanisms are not fully understood. We found that CXCL16 was induced in renal tubular epithelial cells in response to cisplatin-induced AKI. Therefore, we investigated whether CXCL16 played a role in cisplatin–induced tubular cell apoptosis and inflammation. Wild-type and CXCL16 knockout mice were administrated with vehicle or cisplatin at 20 mg/kg by intraperitoneal injection. CXCL16 knockout mice had lower blood urea nitrogen and less tubular damage following cisplatin-induced AKI as compared with wild-type mice. Genetic disruption of CXCL16 reduced tubular epithelial cell apoptosis and decreased caspase-3 activation. Furthermore, CXCL16 deficiency inhibited infiltration of macrophages and T cells into the kidneys following cisplatin treatment, which was associated with reduced expression of the proinflammatory cytokines in the kidneys. Taken together, our results indicate that CXCL16 plays a crucial role in the pathogenesis of cisplatin–induced AKI through regulation of apoptosis and inflammation and maybe a novel therapeutic target for cisplatin-induced AKI.
Collapse
Affiliation(s)
- Hua Liang
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Anesthesiology, Affiliated Foshan Hospital of Sun Yat-Sen University, Foshan, China
| | - Zhengmao Zhang
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Liqun He
- Section of Nephrology, Department of Medicine, Shuguang Hospital, Shanghai, China
| | - Yanlin Wang
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Center for Translational Research on Inflammatory Diseases and Renal Section, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, United States of America
| |
Collapse
|
30
|
Tang PMK, Zhou S, Li CJ, Liao J, Xiao J, Wang QM, Lian GY, Li J, Huang XR, To KF, Ng CF, Chong CCN, Ma RCW, Lee TL, Lan HY. The proto-oncogene tyrosine protein kinase Src is essential for macrophage-myofibroblast transition during renal scarring. Kidney Int 2017; 93:173-187. [PMID: 29042082 DOI: 10.1016/j.kint.2017.07.026] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/18/2017] [Accepted: 07/27/2017] [Indexed: 02/05/2023]
Abstract
Src activation has been associated with fibrogenesis after kidney injury. Macrophage-myofibroblast transition is a newly identified process to generate collagen-producing myofibroblasts locally in the kidney undergoing fibrosis in a TGF-β/Smad3-dependent manner. The potential role of the macrophage-myofibroblast transition in Src-mediated renal fibrosis is unknown. In studying this by RNA sequencing at single-cell resolution, we uncovered a unique Src-centric regulatory gene network as a key underlying mechanism of macrophage-myofibroblast transition. A total of 501 differentially expressed genes associated with macrophage-myofibroblast transition were identified. However, Smad3-knockout largely reduced the transcriptome diversity. More importantly, inhibition of Src largely suppresses ureteral obstruction-induced macrophage-myofibroblast transition in the injured kidney in vivo along with transforming growth factor-β1-induced elongated fibroblast-like morphology, α-smooth muscle actin expression and collagen production in bone marrow derived macrophages in vitro. Unexpectedly, we further uncovered that Src serves as a direct Smad3 target gene and also specifically up-regulated in macrophages during macrophage-myofibroblast transition. Thus, macrophage-myofibroblast transition contributes to Src-mediated tissue fibrosis. Hence, targeting Src may represent as a precision therapeutic strategy for macrophage-myofibroblast transition-driven fibrotic diseases.
Collapse
Affiliation(s)
- Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, and Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shuang Zhou
- Li Ka Shing Institute of Health Sciences, and Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China; Clinical Translational Research Center, Shanghai Pulmonary Hospital, and Department of Histology and Embryology, Tongji University School of Medicine, Tongji University Cancer Institute, Shanghai, China
| | - Chun-Jie Li
- Li Ka Shing Institute of Health Sciences, and Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Jinyue Liao
- Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Jun Xiao
- Li Ka Shing Institute of Health Sciences, and Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qing-Ming Wang
- Li Ka Shing Institute of Health Sciences, and Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Guang-Yu Lian
- Li Ka Shing Institute of Health Sciences, and Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jinhong Li
- Li Ka Shing Institute of Health Sciences, and Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiao-Ru Huang
- Li Ka Shing Institute of Health Sciences, and Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi-Fai Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Ronald Ching-Wa Ma
- Li Ka Shing Institute of Health Sciences, and Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tin-Lap Lee
- Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Hui-Yao Lan
- Li Ka Shing Institute of Health Sciences, and Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
31
|
Zhou J, Jia L, Hu Z, Wang Y. Pharmacological Inhibition of PTEN Aggravates Acute Kidney Injury. Sci Rep 2017; 7:9503. [PMID: 28842716 PMCID: PMC5572703 DOI: 10.1038/s41598-017-10336-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/08/2017] [Indexed: 12/13/2022] Open
Abstract
Renal ischemia/reperfusion is a major cause of acute kidney injury. However, the pathogenic mechanisms underlying renal ischemia/reperfusion injury (IRI) are not fully defined. Here, we investigated the role of PTEN, a dual protein/lipid phosphatase, in the development of ischemic AKI in mice. Pharmacological inhibition of PTEN with bpV(HOpic) exacerbated renal dysfunction and promoted tubular damage in mice with IRI compared with vehicle-treated mice with IRI. PTEN inhibition enhanced tubular cell apoptosis in kidneys with IRI, which was associated with excessive caspase-3 activation. Furthermore, PTEN inhibition expanded the infiltration of neutrophils and macrophages into kidneys with IRI, which was accompanied by increased expression of the proinflammatory molecules. These results have demonstrated that PTEN plays a crucial role in the pathogenesis of ischemic acute kidney injury through regulating tubular cell apoptosis and inflammation suggesting PTEN could be a potential therapeutic target for acute kidney injury.
Collapse
Affiliation(s)
- Jun Zhou
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA.,Department of Anesthesiology, Affiliated Foshan Hospital of Sun Yat-Sen University, Foshan, China
| | - Li Jia
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Zhaoyong Hu
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Yanlin Wang
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA. .,Center for Translational Research on Inflammatory Diseases (CTRID) and Renal Section, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA.
| |
Collapse
|
32
|
AMP-activated protein kinase/myocardin-related transcription factor-A signaling regulates fibroblast activation and renal fibrosis. Kidney Int 2017; 93:81-94. [PMID: 28739141 DOI: 10.1016/j.kint.2017.04.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 04/22/2017] [Accepted: 04/28/2017] [Indexed: 01/19/2023]
Abstract
Chronic kidney disease is a major cause of death, and renal fibrosis is a common pathway leading to the progression of this disease. Although activated fibroblasts are responsible for the production of the extracellular matrix and the development of renal fibrosis, the molecular mechanisms underlying fibroblast activation are not fully defined. Here we examined the functional role of AMP-activated protein kinase (AMPK) in the activation of fibroblasts and the development of renal fibrosis. AMPKα1 was induced in the kidney during the development of renal fibrosis. Mice with global or fibroblast-specific knockout of AMPKα1 exhibited fewer myofibroblasts, developed less fibrosis, and produced less extracellular matrix protein in the kidneys following unilateral ureteral obstruction or ischemia-reperfusion injury. Mechanistically, AMPKα1 directly phosphorylated cofilin leading to cytoskeleton remodeling and myocardin-related transcription factor-A nuclear translocation resulting in fibroblast activation and extracellular matrix protein production. Thus, AMPK may be a critical regulator of fibroblast activation through regulation of cytoskeleton dynamics and myocardin-related transcription factor-A nuclear translocation. Hence, AMPK signaling may represent a novel therapeutic target for fibrotic kidney disease.
Collapse
|
33
|
Liang H, Zhang Z, Yan J, Wang Y, Hu Z, Mitch WE, Wang Y. The IL-4 receptor α has a critical role in bone marrow-derived fibroblast activation and renal fibrosis. Kidney Int 2017; 92:1433-1443. [PMID: 28739140 DOI: 10.1016/j.kint.2017.04.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 04/12/2017] [Accepted: 04/18/2017] [Indexed: 12/15/2022]
Abstract
Renal fibrosis is a common pathway leading to the progression of chronic kidney disease, and bone marrow-derived fibroblasts contribute significantly to the development of renal fibrosis. However, the signaling mechanisms underlying the activation of these fibroblasts are not completely understood. Here, we examined the role of IL-4 receptor α (IL-4Rα) in the activation of myeloid fibroblasts in two experimental models of renal fibrosis. Compared with wild-type mice, IL-4Rα knockout mice accumulated fewer bone marrow-derived fibroblasts and myofibroblasts in their kidneys. IL-4Rα deficiency suppressed the expression of α-smooth muscle actin, extracellular matrix proteins and the development of renal fibrosis. Furthermore, IL-4Rα deficiency inhibited the activation of signal transducer and activator of transcription 6 (STAT6) in the kidney. Moreover, wild-type mice engrafted with bone marrow cells from IL-4Rα knockout mice exhibited fewer myeloid fibroblasts in the kidney and displayed less severe renal fibrosis following ureteral obstructive injury compared with wild-type mice engrafted with wild-type bone marrow cells. In vitro, IL-4 activated STAT6 and stimulated expression of α-smooth muscle actin and fibronectin in mouse bone marrow monocytes. This was abolished in the absence of IL-4Rα. Thus, IL-4Rα plays an important role in bone marrow-derived fibroblast activation, resulting in extracellular matrix protein production and fibrosis development. Hence, the IL-4Rα/STAT6 signaling pathway may serve as a novel therapeutic target for chronic kidney disease.
Collapse
Affiliation(s)
- Hua Liang
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA; Department of Anesthesiology, Affiliated Foshan Hospital of Sun Yat-Sen University, Foshan, China
| | - Zhengmao Zhang
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Jingyin Yan
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Yuguo Wang
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Zhaoyong Hu
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - William E Mitch
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Yanlin Wang
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA; Center for Translational Research on Inflammatory Diseases and Renal Section, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA.
| |
Collapse
|
34
|
Liang H, Xu F, Wen XJ, Liu HZ, Wang HB, Zhong JY, Yang CX, Zhang B. Interleukin-33 signaling contributes to renal fibrosis following ischemia reperfusion. Eur J Pharmacol 2017; 812:18-27. [PMID: 28668506 DOI: 10.1016/j.ejphar.2017.06.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 12/30/2022]
Abstract
Acute kidney injury caused by ischemia-reperfusion injury (IRI) is a major risk factor for chronic kidney disease, which is characterized by renal interstitial fibrosis. However, the molecular mechanisms underlying renal fibrosis induced by IRI are not fully understood. Our results showed that interleukin (IL)-33 was induced markedly after IRI insult, and the kidneys of mice following IRI plus IL-33 treatment presented more severe renal fibrosis compared with mice treated with IRI alone. Therefore, we investigated whether inhibition of IL-33 protects against IRI-induced renal fibrosis. Mice were administrated with soluble ST2 (sST2), a decoy receptor that neutralizes IL-33 activity, or vehicle by intraperitoneal injection for 14 days after IRI challenge. We revealed that mice treated with sST2 exhibited less severe renal dysfunction and fibrosis in response to IRI compared with vehicle-treated mice. Inhibition of IL-33 suppressed bone marrow-derived fibroblast accumulation and myofibroblast formation in the kidneys after IRI stress, which was associated with less expression of extracellular matrix proteins. Furthermore, inhibition of IL-33 also showed a significant reduction of F4/80+ macrophages and CD3+ T cells in the kidneys of mice after IRI treatment. Finally, Treatment with IL-33 inhibitor reduced proinflammatory cytokine and chemokine levels in the kidneys of mice following IRI insult. Taken together, our findings indicate that IL-33 signaling plays a critical role in the pathogenesis of IRI-induced renal fibrosis through regulating myeloid fibroblast accumulation, inflammation cell infiltration, and the expression of proinflammatory cytokines and chemokines.
Collapse
Affiliation(s)
- Hua Liang
- Department of Anesthesiology, Affiliated Foshan Hospital of SUN YAT-SEN University, Foshan 528000, China
| | - Feng Xu
- Department of Anesthesiology, Affiliated Foshan Hospital of SUN YAT-SEN University, Foshan 528000, China
| | - Xian-Jie Wen
- Department of Anesthesiology, Affiliated Foshan Hospital of SUN YAT-SEN University, Foshan 528000, China
| | - Hong-Zhen Liu
- Department of Anesthesiology, Affiliated Foshan Hospital of SUN YAT-SEN University, Foshan 528000, China
| | - Han-Bing Wang
- Department of Anesthesiology, Affiliated Foshan Hospital of SUN YAT-SEN University, Foshan 528000, China.
| | - Ji-Ying Zhong
- Department of Anesthesiology, Affiliated Foshan Hospital of SUN YAT-SEN University, Foshan 528000, China
| | - Cheng-Xiang Yang
- Department of Anesthesiology, Affiliated Foshan Hospital of SUN YAT-SEN University, Foshan 528000, China
| | - Bin Zhang
- Department of Anesthesiology, Affiliated Foshan Hospital of SUN YAT-SEN University, Foshan 528000, China.
| |
Collapse
|
35
|
Park H, Park H, Chung TW, Choi HJ, Jung YS, Lee SO, Ha KT. Effect of Sorbus commixta on the invasion and migration of human hepatocellular carcinoma Hep3B cells. Int J Mol Med 2017; 40:483-490. [PMID: 28586002 DOI: 10.3892/ijmm.2017.3010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 05/18/2017] [Indexed: 11/06/2022] Open
Abstract
Tumor metastasis is a main cause of cancer-related morbidity and mortality. Thus, a number of medicinal herbs and phytochemicals have been investigated as possible candidates for the inhibition of cancer metastasis. Sorbus commixta Hedl. (SC) is a traditional medicinal plant used in the treatment of inflammatory diseases, as it has antioxidant, anti-inflammatory, anti-atherosclerotic and anti-hepatotoxic activities. In this study, we demonstrate that the water extract of SC exerts inhibitory effect on the invasion and migration of hepatocellular carcinoma Hep3B cells. The activity and expression of matrix metalloproteinase (MMP)-9, which is responsible for the invasion of cancer cells, was decreased by SC treatment. The invasive and migratory potentials of the Hep3B cells were also decreased, as evidence by in vitro assay using the Boyden chamber system. In addition, the expression of the chemokine receptors, C-X-C chemokine receptor type 4 (CXCR)4 and C-X-C chemokine receptor type 6 (CXCR6), were inhibited by SC in Hep3B cells. Furthermore, actin fiber organization was markedly suppressed by SC treatment. Taken together, the findings of this study suggest for the first time, to the best of our knowledge, that SC suppresses the invasion and migration of highly metastatic Hep3B cells.
Collapse
Affiliation(s)
- Hyerin Park
- School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam-do 626-870, Republic of Korea
| | - Hyunwook Park
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
| | - Tae-Wook Chung
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongnam-do 626-870, Republic of Korea
| | - Hee-Jung Choi
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongnam-do 626-870, Republic of Korea
| | - Yeon-Seop Jung
- Department of Food Science and Technology, Keimyung University, Daegu 42601, Republic of Korea
| | - Syng-Ook Lee
- Department of Food Science and Technology, Keimyung University, Daegu 42601, Republic of Korea
| | - Ki-Tae Ha
- School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam-do 626-870, Republic of Korea
| |
Collapse
|
36
|
Li J, An C, Kang L, Mitch WE, Wang Y. Recent Advances in Magnetic Resonance Imaging Assessment of Renal Fibrosis. Adv Chronic Kidney Dis 2017; 24:150-153. [PMID: 28501077 PMCID: PMC5433256 DOI: 10.1053/j.ackd.2017.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CKD is a global public health problem. Renal fibrosis is a final common pathway leading to progressive loss of function in CKD. The degree of renal fibrosis predicts the prognosis of CKD. Recent studies have shown that bone marrow-derived fibroblasts contribute significantly to the development of renal fibrosis, which may yield novel therapeutic strategy for fibrotic kidney disease. Therefore, it is imperative to accurately assess the degree of renal fibrosis noninvasively to identify those patients who can benefit from antifibrotic therapy. In this review, we summarize recent advances in the assessment of renal fibrosis by magnetic resonance imaging.
Collapse
Affiliation(s)
- Jia Li
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, TX; and Center for Translational Research on Inflammatory Diseases (CTRID) and Renal Section, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX
| | - Changlong An
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, TX; and Center for Translational Research on Inflammatory Diseases (CTRID) and Renal Section, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX
| | - Lei Kang
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, TX; and Center for Translational Research on Inflammatory Diseases (CTRID) and Renal Section, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX
| | - William E Mitch
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, TX; and Center for Translational Research on Inflammatory Diseases (CTRID) and Renal Section, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX
| | - Yanlin Wang
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, TX; and Center for Translational Research on Inflammatory Diseases (CTRID) and Renal Section, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX.
| |
Collapse
|
37
|
Koenen A, Babendreyer A, Schumacher J, Pasqualon T, Schwarz N, Seifert A, Deupi X, Ludwig A, Dreymueller D. The DRF motif of CXCR6 as chemokine receptor adaptation to adhesion. PLoS One 2017; 12:e0173486. [PMID: 28267793 PMCID: PMC5340378 DOI: 10.1371/journal.pone.0173486] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/21/2017] [Indexed: 12/23/2022] Open
Abstract
The CXC-chemokine receptor 6 (CXCR6) is a class A GTP-binding protein-coupled receptor (GPCRs) that mediates adhesion of leukocytes by interacting with the transmembrane cell surface-expressed chemokine ligand 16 (CXCL16), and also regulates leukocyte migration by interacting with the soluble shed variant of CXCL16. In contrast to virtually all other chemokine receptors with chemotactic activity, CXCR6 carries a DRF motif instead of the typical DRY motif as a key element in receptor activation and G protein coupling. In this work, modeling analyses revealed that the phenylalanine F3.51 in CXCR6 might have impact on intramolecular interactions including hydrogen bonds by this possibly changing receptor function. Initial investigations with embryonic kidney HEK293 cells and further studies with monocytic THP-1 cells showed that mutation of DRF into DRY does not influence ligand binding, receptor internalization, receptor recycling, and protein kinase B (AKT) signaling. Adhesion was slightly decreased in a time-dependent manner. However, CXCL16-induced calcium signaling and migration were increased. Vice versa, when the DRY motif of the related receptor CX3CR1 was mutated into DRF the migratory response towards CX3CL1 was diminished, indicating that the presence of a DRF motif generally impairs chemotaxis in chemokine receptors. Transmembrane and soluble CXCL16 play divergent roles in homeostasis, inflammation, and cancer, which can be beneficial or detrimental. Therefore, the DRF motif of CXCR6 may display a receptor adaptation allowing adhesion and cell retention by transmembrane CXCL16 but reducing the chemotactic response to soluble CXCL16. This adaptation may avoid permanent or uncontrolled recruitment of inflammatory cells as well as cancer metastasis.
Collapse
Affiliation(s)
- Andrea Koenen
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Aaron Babendreyer
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Julian Schumacher
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Tobias Pasqualon
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Anke Seifert
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Xavier Deupi
- Laboratory of Biomolecular Research and Condensed Matter Theory Group, Paul Scherrer Institute, Villigen, Switzerland
| | - Andreas Ludwig
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Daniela Dreymueller
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
38
|
Wang S, Meng XM, Ng YY, Ma FY, Zhou S, Zhang Y, Yang C, Huang XR, Xiao J, Wang YY, Ka SM, Tang YJ, Chung ACK, To KF, Nikolic-Paterson DJ, Lan HY. TGF-β/Smad3 signalling regulates the transition of bone marrow-derived macrophages into myofibroblasts during tissue fibrosis. Oncotarget 2017; 7:8809-22. [PMID: 26684242 PMCID: PMC4891006 DOI: 10.18632/oncotarget.6604] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/25/2015] [Indexed: 11/25/2022] Open
Abstract
Myofibroblasts are a main cell-type of collagen-producing cells during tissue fibrosis, but their origins remains controversial. While bone marrow-derived myofibroblasts in renal fibrosis has been reported, the cell origin and mechanisms regulating their transition into myofibroblasts remain undefined. In the present study, cell lineage tracing studies by adoptive transfer of GFP+ or dye-labelled macrophages identified that monocyte/macrophages from bone marrow can give rise to myofibroblasts via the process of macrophage-myofibroblast transition (MMT) in a mouse model of unilateral ureteric obstruction. The MMT cells were a major source of collagen-producing fibroblasts in the fibrosing kidney, accounting for more than 60% of α-SMA+ myofibroblasts. The MMT process occurred predominantly within M2-type macrophages and was regulated by TGF-β/Smad3 signalling as deletion of Smad3 in the bone marrow compartment of GFP+ chimeric mice prevented the M2 macrophage transition into the MMT cells and progressive renal fibrosis. In vitro studies in Smad3 null bone marrow macrophages also showed that Smad3 was required for TGF-β1-induced MMT and collagen production. In conclusion, we have demonstrated that bone marrow-derived fibroblasts originate from the monocyte/macrophage population via a process of MMT. This process contributes to progressive renal tissue fibrosis and is regulated by TGF-β/Smad3 signalling.
Collapse
Affiliation(s)
- Shuang Wang
- Li Ka Shing Institute of Health Sciences, Departments of Medicine and Therapeutics, Chemical Pathology, and Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiao-Ming Meng
- Li Ka Shing Institute of Health Sciences, Departments of Medicine and Therapeutics, Chemical Pathology, and Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yee-Yung Ng
- Division of Nephrology, Department of Medicine, Institute of Clinical Medicine, Taipei Veterans General Hospital, National Yang Ming University, Taipei, Taiwan
| | - Frank Y Ma
- Department of Nephrology and Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - Shuang Zhou
- Li Ka Shing Institute of Health Sciences, Departments of Medicine and Therapeutics, Chemical Pathology, and Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yang Zhang
- Li Ka Shing Institute of Health Sciences, Departments of Medicine and Therapeutics, Chemical Pathology, and Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chen Yang
- Li Ka Shing Institute of Health Sciences, Departments of Medicine and Therapeutics, Chemical Pathology, and Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiao-Ru Huang
- Li Ka Shing Institute of Health Sciences, Departments of Medicine and Therapeutics, Chemical Pathology, and Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Xiao
- Li Ka Shing Institute of Health Sciences, Departments of Medicine and Therapeutics, Chemical Pathology, and Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ying-Ying Wang
- Li Ka Shing Institute of Health Sciences, Departments of Medicine and Therapeutics, Chemical Pathology, and Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shuk-Man Ka
- Li Ka Shing Institute of Health Sciences, Departments of Medicine and Therapeutics, Chemical Pathology, and Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yong-Jiang Tang
- Li Ka Shing Institute of Health Sciences, Departments of Medicine and Therapeutics, Chemical Pathology, and Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Arthur C K Chung
- Li Ka Shing Institute of Health Sciences, Departments of Medicine and Therapeutics, Chemical Pathology, and Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka-Fai To
- Li Ka Shing Institute of Health Sciences, Departments of Medicine and Therapeutics, Chemical Pathology, and Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - David J Nikolic-Paterson
- Department of Nephrology and Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - Hui-Yao Lan
- Li Ka Shing Institute of Health Sciences, Departments of Medicine and Therapeutics, Chemical Pathology, and Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
39
|
Allaoui R, Bergenfelz C, Mohlin S, Hagerling C, Salari K, Werb Z, Anderson RL, Ethier SP, Jirström K, Påhlman S, Bexell D, Tahin B, Johansson ME, Larsson C, Leandersson K. Cancer-associated fibroblast-secreted CXCL16 attracts monocytes to promote stroma activation in triple-negative breast cancers. Nat Commun 2016; 7:13050. [PMID: 27725631 PMCID: PMC5062608 DOI: 10.1038/ncomms13050] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/22/2016] [Indexed: 02/06/2023] Open
Abstract
Triple-negative (TN) breast cancers (ER−PR−HER2−) are highly metastatic and associated with poor prognosis. Within this subtype, invasive, stroma-rich tumours with infiltration of inflammatory cells are even more aggressive. The effect of myeloid cells on reactive stroma formation in TN breast cancer is largely unknown. Here, we show that primary human monocytes have a survival advantage, proliferate in vivo and develop into immunosuppressive myeloid cells expressing the myeloid-derived suppressor cell marker S100A9 only in a TN breast cancer environment. This results in activation of cancer-associated fibroblasts and expression of CXCL16, which we show to be a monocyte chemoattractant. We propose that this migratory feedback loop amplifies the formation of a reactive stroma, contributing to the aggressive phenotype of TN breast tumours. These insights could help select more suitable therapies targeting the stromal component of these tumours, and could aid prediction of drug resistance. A reactive tumour stroma is associated with poor prognosis. Here, the authors show that in patients with triple negative breast cancer resident monocytes activate cancer-associated fibroblasts and induce production of CXCL16, which acts as a monocyte chemoattractant, resulting in an amplificatory feedback loop.
Collapse
Affiliation(s)
- Roni Allaoui
- Department of Translational Medicine, Cancer Immunology, Lund University, Malmö 205 02, Sweden
| | - Caroline Bergenfelz
- Department of Translational Medicine, Cancer Immunology, Lund University, Malmö 205 02, Sweden
| | - Sofie Mohlin
- Department of Laboratory Medicine, Translational Cancer Research, Lund University, Lund 223 63, Sweden
| | - Catharina Hagerling
- Department of Translational Medicine, Cancer Immunology, Lund University, Malmö 205 02, Sweden.,Department of Anatomy and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94143-0452, USA
| | - Kiarash Salari
- Department of Anatomy and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94143-0452, USA
| | - Zena Werb
- Department of Anatomy and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94143-0452, USA
| | - Robin L Anderson
- Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne 8006, Australia
| | - Stephen P Ethier
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Karin Jirström
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, Lund 221 85, Sweden
| | - Sven Påhlman
- Department of Laboratory Medicine, Translational Cancer Research, Lund University, Lund 223 63, Sweden
| | - Daniel Bexell
- Department of Laboratory Medicine, Translational Cancer Research, Lund University, Lund 223 63, Sweden
| | - Balázs Tahin
- Department of Translational Medicine, Clinical Pathology, Skånes Universitetssjukhus, Malmö 205 02, Sweden
| | - Martin E Johansson
- Department of Translational Medicine, Cancer Immunology, Lund University, Malmö 205 02, Sweden.,Department of Translational Medicine, Clinical Pathology, Skånes Universitetssjukhus, Malmö 205 02, Sweden
| | - Christer Larsson
- Department of Laboratory Medicine, Translational Cancer Research, Lund University, Lund 223 63, Sweden
| | - Karin Leandersson
- Department of Translational Medicine, Cancer Immunology, Lund University, Malmö 205 02, Sweden
| |
Collapse
|
40
|
Ma Z, Jin X, He L, Wang Y. CXCL16 regulates renal injury and fibrosis in experimental renal artery stenosis. Am J Physiol Heart Circ Physiol 2016; 311:H815-21. [PMID: 27496882 PMCID: PMC5142186 DOI: 10.1152/ajpheart.00948.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 07/27/2016] [Indexed: 12/27/2022]
Abstract
Recent studies have shown that inflammation plays a critical role in the initiation and progression of hypertensive kidney disease, including renal artery stenosis. However, the signaling mechanisms underlying the induction of inflammation are poorly understood. We found that CXCL16 was induced in the kidney in a murine model of renal artery stenosis. To determine whether CXCL16 is involved in renal injury and fibrosis, wild-type and CXCL16 knockout mice were subjected to renal artery stenosis induced by placing a cuff on the left renal artery. Wild-type and CXCL16 knockout mice had comparable blood pressure at baseline. Renal artery stenosis caused an increase in blood pressure that was similar between wild-type and CXCL16 knockout mice. CXCL16 knockout mice were protected from RAS-induced renal injury and fibrosis. CXCL16 deficiency suppressed bone marrow-derived fibroblast accumulation and myofibroblast formation in the stenotic kidneys, which was associated with less expression of extracellular matrix proteins. Furthermore, CXCL16 deficiency inhibited infiltration of F4/80(+) macrophages and CD3(+) T cells in the stenotic kidneys compared with those of wild-type mice. Taken together, our results indicate that CXCL16 plays a pivotal role in the pathogenesis of renal artery stenosis-induced renal injury and fibrosis through regulation of bone marrow-derived fibroblast accumulation and macrophage and T-cell infiltration.
Collapse
Affiliation(s)
- Zhiheng Ma
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas; Section of Nephrology, Department of Medicine, Shuguang Hospital, Shanghai, China; and
| | - Xiaogao Jin
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Liqun He
- Section of Nephrology, Department of Medicine, Shuguang Hospital, Shanghai, China; and
| | - Yanlin Wang
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas; Center for Translational Research on Inflammatory Diseases and Renal Section, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| |
Collapse
|
41
|
Liang H, Ma Z, Peng H, He L, Hu Z, Wang Y. CXCL16 Deficiency Attenuates Renal Injury and Fibrosis in Salt-Sensitive Hypertension. Sci Rep 2016; 6:28715. [PMID: 27353044 PMCID: PMC4926114 DOI: 10.1038/srep28715] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/08/2016] [Indexed: 12/20/2022] Open
Abstract
Inflammation plays an important role in the pathogenesis of hypertensive kidney disease. However, the molecular mechanisms underlying the induction of inflammation are not completely understood. We have found that CXCL16 is induced in the kidney in deoxycorticosterone acetate (DOCA)-salt hypertension. Here we examined whether CXCL16 is involved in DOCA-salt-induced renal inflammation and fibrosis. Wild-type and CXCL16 knockout mice were subjected to uninephrectomy and DOCA-salt treatment for 3 weeks. There was no difference in blood pressure at baseline between wild-type and CXCL16 knockout mice. DOCA-salt treatment resulted in significant elevation in blood pressure that was comparable between wild-type and CXCL16 knockout mice. CXCL16 knockout mice exhibited less severe renal dysfunction, proteinuria, and fibrosis after DOCA-salt treatment compared with wild-type mice. CXCL16 deficiency attenuated extracellular matrix protein production and suppressed bone marrow–derived fibroblast accumulation and myofibroblast formation in the kidneys following DOCA-salt treatment. Furthermore, CXCL16 deficiency reduced macrophage and T cell infiltration into the kidneys in response to DOCA-salt hypertension. Taken together, our results indicate that CXCL16 plays a key role in the pathogenesis of renal injury and fibrosis in salt-sensitive hypertension through regulation of bone marrow–derived fibroblast accumulation and macrophage and T cell infiltration.
Collapse
Affiliation(s)
- Hua Liang
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA.,Department of Anesthesiology, Affiliated Foshan Hospital of Sun Yat-sen University, Foshan, China
| | - Zhiheng Ma
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA.,Section of Nephrology, Department of Medicine, Shuguang Hospital, Shanghai, China
| | - Hui Peng
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA.,Section of Nephrology, Department of Internal Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liqun He
- Section of Nephrology, Department of Medicine, Shuguang Hospital, Shanghai, China
| | - Zhaoyong Hu
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Yanlin Wang
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA.,Center for Translational Research on Inflammatory Diseases (CTRID) and Renal Section, Michael E. DeBakey VA Medical Center, Houston, Texas, USA
| |
Collapse
|
42
|
Mayr M, Duerrschmid C, Medrano G, Taffet GE, Wang Y, Entman ML, Haudek SB. TNF/Ang-II synergy is obligate for fibroinflammatory pathology, but not for changes in cardiorenal function. Physiol Rep 2016; 4:4/8/e12765. [PMID: 27125666 PMCID: PMC4848723 DOI: 10.14814/phy2.12765] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 03/20/2016] [Indexed: 11/24/2022] Open
Abstract
Angiotensin‐II (Ang‐II) infusion is associated with the development of interstitial fibrosis in both heart and kidney as a result of chemokine‐dependent uptake of monocytes and subsequent development of myeloid fibroblasts. This study emphasizes on the synergistic role of tumor necrosis factor (TNF) on the time course of Ang‐II‐induced fibrosis and inflammation in heart and kidney. In wild‐type (WT) hearts, Ang‐II‐induced fibrosis peaked within 1 week of infusion and remained stable over a 6‐week period, while the myeloid fibroblasts disappeared; TNF receptor‐1‐knockout (TNFR1‐KO) hearts did not develop a myeloid response or cardiac fibrosis during this time. WT hearts developed more accelerated cardiac hypertrophy and remodeling than TNFR1‐KO. In the kidney, 1‐week Ang‐II infusion did not evoke a fibrotic response; however, after 6 weeks, WT kidneys displayed modest but significant tubulointerstitial collagen deposition associated with the appearance of myeloid cells and profibrotic gene activation. Renal fibrosis was not seen in Ang‐II‐infused TNFR1‐KO. By contrast, while hypertension increased and cardiac function decreased more slowly in TNFR1‐KO than WT, they were equivalently abnormal at 6 weeks. Similarly, serum markers for renal dysfunction were not different after 6 weeks. In conclusion, Ang‐II infusion initiated fibroinflammatory responses with different time courses in heart and kidney, both requiring TNFR1 signaling, and both associated with monocyte‐derived myeloid fibroblasts. TNFR1 deletion obviated the fibroinflammatory effects of Ang‐II, but did not alter changes in blood pressure and cardiorenal function after 6 weeks. Thus, the synergy of TNF with Ang‐II targets the fibroinflammatory component of Ang‐II signaling.
Collapse
Affiliation(s)
- Magdalena Mayr
- Division of Cardiovascular Sciences, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Clemens Duerrschmid
- Division of Cardiovascular Sciences, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Guillermo Medrano
- Division of Cardiovascular Sciences, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - George E Taffet
- Division of Cardiovascular Sciences, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Yanlin Wang
- Division of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Mark L Entman
- Division of Cardiovascular Sciences, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Sandra B Haudek
- Division of Cardiovascular Sciences, Department of Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
43
|
Abstract
Transforming growth factor-β (TGF-β) is the primary factor that drives fibrosis in most, if not all, forms of chronic kidney disease (CKD). Inhibition of the TGF-β isoform, TGF-β1, or its downstream signalling pathways substantially limits renal fibrosis in a wide range of disease models whereas overexpression of TGF-β1 induces renal fibrosis. TGF-β1 can induce renal fibrosis via activation of both canonical (Smad-based) and non-canonical (non-Smad-based) signalling pathways, which result in activation of myofibroblasts, excessive production of extracellular matrix (ECM) and inhibition of ECM degradation. The role of Smad proteins in the regulation of fibrosis is complex, with competing profibrotic and antifibrotic actions (including in the regulation of mesenchymal transitioning), and with complex interplay between TGF-β/Smads and other signalling pathways. Studies over the past 5 years have identified additional mechanisms that regulate the action of TGF-β1/Smad signalling in fibrosis, including short and long noncoding RNA molecules and epigenetic modifications of DNA and histone proteins. Although direct targeting of TGF-β1 is unlikely to yield a viable antifibrotic therapy due to the involvement of TGF-β1 in other processes, greater understanding of the various pathways by which TGF-β1 controls fibrosis has identified alternative targets for the development of novel therapeutics to halt this most damaging process in CKD.
Collapse
|
44
|
Links between coagulation, inflammation, regeneration, and fibrosis in kidney pathology. J Transl Med 2016; 96:378-90. [PMID: 26752746 DOI: 10.1038/labinvest.2015.164] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/22/2015] [Indexed: 12/14/2022] Open
Abstract
Acute kidney injury (AKI) involves nephron injury leading to irreversible nephron loss, ie, chronic kidney disease (CKD). Both AKI and CKD are associated with distinct histological patterns of tissue injury, but kidney atrophy in CKD involves tissue remodeling with interstitial inflammation and scarring. No doubt, nephron atrophy, inflammation, fibrosis, and renal dysfunction are associated with each other, but their hierarchical relationships remain speculative. To better understand the pathophysiology, we provide an overview of the fundamental danger response programs that assure host survival upon traumatic injury from as early as the first multicellular organisms, ie, bleeding control by coagulation, infection control by inflammation, epithelial barrier restoration by re-epithelialization, and tissue stabilization by mesenchymal repair. Although these processes assure survival in the majority of the populations, their dysregulation causes kidney disease in a minority. We discuss how, in genetically heterogeneous population, genetic variants shift balances and modulate danger responses toward kidney disease. We further discuss how classic kidney disease entities develop from an insufficient or overshooting activation of these danger response programs. Finally, we discuss molecular pathways linking, for example, inflammation and regeneration or inflammation and fibrosis. Understanding the causative and hierarchical relationships and the molecular links between the danger response programs should help to identify molecular targets to modulate kidney injury and to improve outcomes for kidney disease patients.
Collapse
|
45
|
Yan J, Zhang Z, Jia L, Wang Y. Role of Bone Marrow-Derived Fibroblasts in Renal Fibrosis. Front Physiol 2016; 7:61. [PMID: 26941655 PMCID: PMC4766307 DOI: 10.3389/fphys.2016.00061] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/09/2016] [Indexed: 01/13/2023] Open
Abstract
Renal fibrosis represents a common pathway leading to progression of chronic kidney disease. Renal interstitial fibrosis is characterized by extensive fibroblast activation and excessive production and deposition of extracellular matrix (ECM), which leads to progressive loss of kidney function. There is no effective therapy available clinically to halt or even reverse renal fibrosis. Although activated fibroblasts/myofibroblasts are responsible for the excessive production and deposition of ECM, their origin remains controversial. Recent evidence suggests that bone marrow-derived fibroblast precursors contribute significantly to the pathogenesis of renal fibrosis. Understanding the molecular signaling mechanisms underlying the recruitment and activation of the bone marrow-derived fibroblast precursors will lead to novel therapy for the treatment of chronic kidney disease. In this review, we summarize recent advances in our understanding of the recruitment and activation of bone marrow-derived fibroblast precursors in the kidney and the development of renal fibrosis and highlights new insights that may lead to novel therapies to prevent or reverse the development of renal fibrosis.
Collapse
Affiliation(s)
- Jingyin Yan
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine Houston, TX, USA
| | - Zhengmao Zhang
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine Houston, TX, USA
| | - Li Jia
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine Houston, TX, USA
| | - Yanlin Wang
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of MedicineHouston, TX, USA; Renal Section, Michael E. DeBakey Veterans Affairs Medical CenterHouston, TX, USA
| |
Collapse
|
46
|
Ohnishi H, Mizuno S, Mizuno-Horikawa Y, Kato T. Stromal cell-derived factor-1 (SDF1)-dependent recruitment of bone marrow-derived renal endothelium-like cells in a mouse model of acute kidney injury. J Vet Med Sci 2015; 77:313-9. [PMID: 25833353 PMCID: PMC4383777 DOI: 10.1292/jvms.14-0562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ischemic acute kidney injury (AKI) is the most key pathological event for accelerating
progression to chronic kidney disease through vascular endothelial injury or dysfunction.
Thus, it is critical to elucidate the molecular mechanism of endothelial protection and
regeneration. Emerging evidence indicates that bone marrow-derived cells (BMCs) contribute
to tissue reconstitution in several types of organs post-injury, but little is known
whether and how BMCs contribute to renal endothelial reconstitution, especially in an
early-stage of AKI. Using a mouse model of ischemic AKI, we provide evidence that
incorporation of BMCs in vascular components (such as endothelial and smooth muscle cells)
becomes evident within four days after renal ischemia and reperfusion, associated with an
increase in stromal cell-derived factor-1 (SDF1) in endothelium and that in
CXCR4/SDF1-receptor in BMCs. Notably, anti-CXCR4 antibody decreased the numbers of
infiltrated BMCs and BMC-derived endothelium-like cells, but not of BMC-derived smooth
muscle cell-like cells. These results suggest that reconstitution of renal endothelium
post-ischemia partially depends on a paracrine loop of SDF1-CXCR4 between resident
endothelium and BMCs. Such a chemokine ligand-receptor system may be attributable for
selecting a cellular lineage (s), required for renal vascular protection, repair and
homeostasis, even in an earlier phase of AKI.
Collapse
Affiliation(s)
- Hiroyuki Ohnishi
- Department of Biochemistry, Osaka University Graduate School of Medicine, 2–2 Yamadaoka, Suita 565–0871; 2. Kinjo Gakuin University College of Pharmacy, 2-1723 Oomori, Moriyama-ku, Nagoya 463-8521, Japan
| | | | | | | |
Collapse
|
47
|
Sakai N, Wada T. T Helper 2 Cytokine Signaling in Bone Marrow-Derived Fibroblasts: A Target for Renal Fibrosis. J Am Soc Nephrol 2015; 26:2896-8. [PMID: 26032812 DOI: 10.1681/asn.2015040469] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Norihiko Sakai
- Divisions of Blood Purification and Nephrology, Kanazawa University Hospital, Kanazawa, Japan; and
| | - Takashi Wada
- Nephrology, Kanazawa University Hospital, Kanazawa, Japan; and Department of Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Faculty of Medicine, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
48
|
Yan J, Zhang Z, Yang J, Mitch WE, Wang Y. JAK3/STAT6 Stimulates Bone Marrow-Derived Fibroblast Activation in Renal Fibrosis. J Am Soc Nephrol 2015; 26:3060-71. [PMID: 26032813 DOI: 10.1681/asn.2014070717] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 02/17/2015] [Indexed: 12/30/2022] Open
Abstract
Renal fibrosis is a final common manifestation of CKD resulting in progressive loss of kidney function. Bone marrow-derived fibroblast precursors contribute significantly to the pathogenesis of renal fibrosis. However, the signaling mechanisms underlying the activation of bone marrow-derived fibroblast precursors in the kidney are not fully understood. In this study, we investigated the role of the Janus kinase 3 (JAK3)/signal transducer and activator of transcription (STAT6) signaling pathway in the activation of bone marrow-derived fibroblasts. In cultured mouse monocytes, IL-4 or IL-13 activated STAT6 and induced expression of α-smooth muscle actin and extracellular matrix proteins (fibronectin and collagen I), which was abolished by a JAK3 inhibitor (CP690,550) in a dose-dependent manner or blocked in the absence of STAT6. In vivo, STAT6 was activated in interstitial cells of the obstructed kidney, an effect that was abolished by CP690,550. Mice treated with CP690,550 accumulated fewer bone marrow-derived fibroblasts in the obstructed kidneys compared with vehicle-treated mice. Treatment with CP690,550 also significantly reduced myofibroblast transformation, matrix protein expression, fibrosis development, and apoptosis in obstructed kidneys. Furthermore, STAT6-deficient mice accumulated fewer bone marrow-derived fibroblasts in the obstructed kidneys, produced less extracellular matrix protein, and developed much less fibrosis. Finally, wild-type mice engrafted with STAT6(-/-) bone marrow cells displayed fewer bone marrow-derived fibroblasts in the obstructed kidneys and showed less severe renal fibrosis compared with wild-type mice engrafted with STAT6(+/+) bone marrow cells. Our results demonstrate that JAK3/STAT6 has an important role in bone marrow-derived fibroblast activation, extracellular matrix production, and interstitial fibrosis development.
Collapse
Affiliation(s)
- Jingyin Yan
- Division of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Zhengmao Zhang
- Division of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Jun Yang
- Division of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas; Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; and
| | - William E Mitch
- Division of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Yanlin Wang
- Division of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas; Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| |
Collapse
|
49
|
Wang JH, Su F, Wang S, Lu XC, Zhang SH, Chen D, Chen NN, Zhong JQ. CXCR6 deficiency attenuates pressure overload-induced monocytes migration and cardiac fibrosis through downregulating TNF-α-dependent MMP9 pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:6514-6523. [PMID: 25400729 PMCID: PMC4230124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 09/13/2014] [Indexed: 06/04/2023]
Abstract
An immerging role of TNF-α in collagen synthesis and cardiac fibrosis implies the significance of TNF-α production in the development of myocardial remodeling. Our previous study showed a reduction of TNF-α and attenuated cardiac remodeling in CXCR6 knockout (KO) mice after ischemia/reperfusion injury. However, the potential mechanism of TNF-α-mediated cardiac fibrosis with pressure overload has not been well elucidated. In the present study, we aim to investigate the role of CXCR6 in TNF-α release and myocardial remodeling in response to pressure overload. Pressure overload was performed by constriction of transverse aorta (TAC) surgery on CXCR6 KO mice and C57 wild-type (WT) counterparts. At 6 weeks after TAC, cardiac remodeling was assessed by echocardiography, cardiac TNF-α release and its type I receptor (TNFRI), were detected by ELISA and western blot, collagen genes Col1a1 (type I) and Col3a1 (type III) were examined by real-time PCR. Compared with CXCR6 WT mice, CXCR6 KO mice exhibited less cardiac dysfunction, reduced expression of TNFRI, Col1a1 and Col3a. In vitro, we confirmed that CXCR6 deficiency led to reduced homing and infiltration of CD11b(+) monocytes, which contributed to attenuated TNF-α release in myocardium. Furthermore, TNFRI antagonist pretreatment blocked AT1 receptor signaling and NOX4 expression, reduced collagen synthesis, and blunted the activity of MMP9 in CXCR6 WT mice after TAC, but these were not observed in CXCR6 KO mice. In the present work, we propose a mechanism that CXCR6 is essential for pressure overload-mediated myocardial recruitment of monocytes, which contributes to cardiac fibrosis through TNF-α-dependent MMP9 activation and collagen synthesis.
Collapse
MESH Headings
- Animals
- CD11b Antigen/metabolism
- Cells, Cultured
- Chemotaxis, Leukocyte
- Collagen Type I/genetics
- Collagen Type I/metabolism
- Collagen Type I, alpha 1 Chain
- Collagen Type III/genetics
- Collagen Type III/metabolism
- Disease Models, Animal
- Down-Regulation
- Enzyme Activation
- Fibrosis
- Heart Diseases/genetics
- Heart Diseases/immunology
- Heart Diseases/metabolism
- Heart Diseases/pathology
- Male
- Matrix Metalloproteinase 9/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Monocytes/immunology
- Monocytes/metabolism
- Myocardium/immunology
- Myocardium/metabolism
- Myocardium/pathology
- NADPH Oxidase 4
- NADPH Oxidases/metabolism
- Receptors, CXCR/deficiency
- Receptors, CXCR/genetics
- Receptors, CXCR6
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Signal Transduction
- Tumor Necrosis Factor-alpha/metabolism
- Ventricular Remodeling
Collapse
Affiliation(s)
- Jia-Hong Wang
- Department of Cardiology, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University250012, China
- Department of Cardiology, Yangpu Hospital Affiliated to Tongji UniversityShanghai 200090, China
| | - Feng Su
- Department of Cardiology, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University250012, China
- Department of Cardiology, Yangpu Hospital Affiliated to Tongji UniversityShanghai 200090, China
| | - Shijun Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan UniversityShanghai 200032, China
| | - Xian-Cheng Lu
- Department of Cardiology, Gongli HospitalShanghai 200135, China
| | - Shao-Heng Zhang
- Department of Cardiology, Yangpu Hospital Affiliated to Tongji UniversityShanghai 200090, China
| | - De Chen
- Department of Cardiology, Yangpu Hospital Affiliated to Tongji UniversityShanghai 200090, China
| | - Nan-Nan Chen
- Department of Cardiology, Yangpu Hospital Affiliated to Tongji UniversityShanghai 200090, China
| | - Jing-Quan Zhong
- Department of Cardiology, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University250012, China
| |
Collapse
|