1
|
Rodimova S, Mozherov A, Elagin V, Karabut M, Shchechkin I, Kozlov D, Krylov D, Gavrina A, Bobrov N, Zagainov V, Zagaynova E, Kuznetsova D. Effect of Hepatic Pathology on Liver Regeneration: The Main Metabolic Mechanisms Causing Impaired Hepatic Regeneration. Int J Mol Sci 2023; 24:ijms24119112. [PMID: 37298064 DOI: 10.3390/ijms24119112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Liver regeneration has been studied for many decades, and the mechanisms underlying regeneration of normal liver following resection are well described. However, no less relevant is the study of mechanisms that disrupt the process of liver regeneration. First of all, a violation of liver regeneration can occur in the presence of concomitant hepatic pathology, which is a key factor reducing the liver's regenerative potential. Understanding these mechanisms could enable the rational targeting of specific therapies to either reduce the factors inhibiting regeneration or to directly stimulate liver regeneration. This review describes the known mechanisms of normal liver regeneration and factors that reduce its regenerative potential, primarily at the level of hepatocyte metabolism, in the presence of concomitant hepatic pathology. We also briefly discuss promising strategies for stimulating liver regeneration and those concerning methods for assessing the regenerative potential of the liver, especially intraoperatively.
Collapse
Affiliation(s)
- Svetlana Rodimova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
| | - Artem Mozherov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Vadim Elagin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
| | - Maria Karabut
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
| | - Ilya Shchechkin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Dmitry Kozlov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Dmitry Krylov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Alena Gavrina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Nikolai Bobrov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- The Volga District Medical Centre of Federal Medical and Biological Agency, 14 Ilinskaya St., 603000 Nizhny Novgorod, Russia
| | - Vladimir Zagainov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Nizhny Novgorod Regional Clinical Oncologic Dispensary, Delovaya St., 11/1, 603126 Nizhny Novgorod, Russia
| | - Elena Zagaynova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
| | - Daria Kuznetsova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| |
Collapse
|
2
|
Effects of tannic acid on liver function in a small hepatocyte–based detachable microfluidic platform. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2022.108757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Ma M, Hua S, Min X, Wang L, Li J, Wu P, Liang H, Zhang B, Chen X, Xiang S. p53 positively regulates the proliferation of hepatic progenitor cells promoted by laminin-521. Signal Transduct Target Ther 2022; 7:290. [PMID: 36042225 PMCID: PMC9427945 DOI: 10.1038/s41392-022-01107-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/16/2022] [Accepted: 07/04/2022] [Indexed: 01/20/2023] Open
Abstract
Hepatic progenitor cells (HPCs) hold tremendous potential for liver regeneration, but their well-known limitation of proliferation hampers their broader use. There is evidence that laminin is required for the proliferation of HPCs, but the laminin isoform that plays the dominant role and the key intracellular downstream targets that mediate the regulation of HPC proliferation have yet to be determined. Here we showed that p53 expression increased gradually and reached maximal levels around 8 days when laminin α4, α5, β2, β1, and γ1 subunit levels also reached a maximum during HPC activation and expansion. Laminin-521 (LN-521) promoted greater proliferation of HPCs than do laminin, matrigel or other laminin isoforms. Inactivation of p53 by PFT-α or Ad-p53V143A inhibited the promotion of proliferation by LN-521. Further complementary MRI and bioluminescence imaging analysis showed that p53 inactivation decreased the proliferation of transplanted HPCs in vivo. p53 was activated by LN-521 through the Integrin α6β1/FAK-Src-Paxillin/Akt axis. Activated p53 was involved in the nuclear translocation of CDK4 and inactivation of Rb by inducing p27Kip1. Taken together, this study identifies LN-521 as an ideal candidate substrate for HPC culture and uncovers an unexpected positive role for p53 in regulating proliferation of HPCs, which makes it a potential target for HPC-based regenerative medicine.
Collapse
Affiliation(s)
- Mingyang Ma
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuyao Hua
- Department of Clinical Nutrition, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiangde Min
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Li
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, China
| | - Ping Wu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Disease, Wuhan, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Disease, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Hubei Key Laboratory of Hepato-Pancreato-Biliary Disease, Wuhan, China. .,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China. .,Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China. .,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Shuai Xiang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Hubei Key Laboratory of Hepato-Pancreato-Biliary Disease, Wuhan, China.
| |
Collapse
|
4
|
Lee SK, Park MJ, Choi JW, Baek JA, Kim SY, Choi HJ, You YK, Jang JW, Sung PS, Bae SH, Yoon SK, Choi JY, Cho ML. Patient-Derived Avatar Mouse Model to Predict the Liver Immune Homeostasis of Long-Term Stable Liver Transplant Patients. Front Immunol 2022; 13:817006. [PMID: 35418987 PMCID: PMC8995467 DOI: 10.3389/fimmu.2022.817006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Although rejection or tolerance can occur in liver transplantation (LT) patients, there are no reliable non-invasive methods for predicting immune homeostasis. In this study, we developed a humanized mouse model to predict liver immune homeostasis in patients who underwent LT. The patient-derived avatar model was developed by injecting peripheral blood mononuclear cells from healthy controls (HCs) or LT patients with stable, rejection, or tolerance into NOD.Cg-PrkdcscidIL2rgtm1Wjl/SzJ (NSG) mice, followed by injection of human hepatic stellate cells and Carbone tetrachloride (CCl4). After 7 weeks, the patient's T-cell engraftment and liver inflammation in the avatar model were evaluated and compared with the liver histology of LT patients. Changes in liver inflammation following treatment with tacrolimus and/or biguanide derivatives were also examined. The C-X-C Motif Chemokine Receptor 3 (CXCR3)-dependently engrafted patient T cells led to differences in liver inflammation in our model according to the status of LT patients. The livers of avatar models from rejection patients had severe inflammation with more T helper 17 cells and fewer regulatory T cells compared to those of models from tolerance and HCs showing only mild inflammation. Moreover, our model classified stable post-LT patients into severe and mild inflammation groups, which correlated well with liver immunity in these patients. Our models revealed alleviation of inflammation after combination treatment with tacrolimus and biguanide derivatives or monotherapy. Consequently, using our new patient-derived avatar model, we predicted liver immune homeostasis in patients with stable LT without biopsy. Moreover, our avatar model may be useful for preclinical analysis to evaluate treatment responses while reducing risks to patients.
Collapse
Affiliation(s)
- Soon Kyu Lee
- Division of Hepatology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Min-Jung Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jeong Won Choi
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jin-Ah Baek
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Se-Young Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ho Joong Choi
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Young Kyoung You
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jeong Won Jang
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Pil Soo Sung
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Si Hyun Bae
- Division of Hepatology, Department of Internal Medicine, Eunpyeong Se. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung Kew Yoon
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jong Young Choi
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
5
|
GUNAY Y, KAYMAZ E. Cynara Scolymus (Artichoke) Improves Liver Regeneration after Partial Liver Resection in Rats. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2022. [DOI: 10.33808/clinexphealthsci.1008534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective: Liver regeneration is necessary to restore hepatic mass and functional capacity after partial hepatectomy (PH). Cynara scolymus (CS) is a pharmacologically important plant that contains phenolic acids and flavonoids, and experimental studies have indicated that it has antioxidant and hepatoprotective effects. The aim of this study was to investigate the role of CS in liver regeneration after PH in rats.
Methods: A total of 36 Wistar albino rats weighing 280.5 ± 18.6 g were used. CS leaf extract was administered after partial hepatectomy. The rats were sacrificed at postoperative day 14, and the histological changes were assessed. The mitotic index (MI), nucleus size, hepatocyte size, and binucleation rate (BR) of hepatocytes were assessed using hematoxylin-eosin (H&E) staining.
Results: The rats that received CS extract had significant differences in liver regeneration markers, including the hepatocyte size, mitotic index, and Ki-67 proliferation index (p
Collapse
Affiliation(s)
- Yusuf GUNAY
- ZONGULDAK BÜLENT ECEVİT ÜNİVERSİTESİ, TIP FAKÜLTESİ
| | | |
Collapse
|
6
|
Arwinda R, Liem IK, Fatril AE, Oktorina F, Husna FA, Kodariah R, Wuyung PE. CK19 and OV6 Expressions in the Liver of 2-AAF/CCl4 Rat Model. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.7923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Liver regeneration on a chronic liver injury with rat model research is urgent to study the pathology of human chronic diseases. 2-Acetylaminofluorene (2-AAF) and Carbon Tetrachloride (CCl4) can be applied to study about liver regeneration by liver stem cells, known as oval cells. The use of 2-AAF and CCl4 (2-AAF/CCl4) to induce chronic liver injury can lead severe hepatocyte damages and extensive fibrosis.
AIM: to observed the OV6 and CK19 expression in the liver of 2AAF/CCl4 rat model.
METHODS: In this research, a high dose of 2-AAF (10mg/kg) was applied and combined repeatedly with CCl4 (2ml/kg) for 12 weeks. An immunohistochemistry (IHC) procedure by using OV6 and CK19 antibodies was also applied to examine the regeneration of oval cells. Both antibodies expressions were then examined semi-quantitatively according to the expressions percentage of each sample based on the liver zone. We have observed the OV6 and CK19 expressions in every zone, including in portae hepatis area.
RESULTS: The results showed that OV6 and CK19 with the highest expression in the zone I. A significant difference between OV6 and CK19 expressions was revealed in healthy (control group) and 2-AAF/CCl4 groups (both indicating p=0.045). Moreover, a ductular reaction was also found in Zone I and II of the 2-AAF/CCl4.
CONCLUSIONS: We conclude that 2-AAF/CCl4 induced chronic rat liver injury model, could be utilized to investigate the oval cells with OV6 and CK19 expression.
Collapse
|
7
|
Zhang F, Wang F, Liang B, Li Z, Shao J, Zhang Z, Wang S, Zheng S. Liver regeneration in traditional Chinese medicine: advances and challenges. Regen Med Res 2020; 8:1. [PMID: 31939733 PMCID: PMC6961567 DOI: 10.1051/rmr/190003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/10/2019] [Indexed: 11/14/2022] Open
Abstract
Liver diseases pose a serious problem for national health care system all over the world. Liver regeneration has profound impacts on the occurrence and development of various liver diseases, and it remains an extensively studied topic. Although current knowledge has suggested two major mechanisms for liver regeneration, including compensatory hyperplasia of hepatocytes and stem or progenitor cell-mediated regeneration, the complexity of this physiopathological process determines that its effective regulation cannot be achieved by single-target or single-component approaches. Alternatively, using traditional Chinese medicine (TCM) to regulate liver regeneration is an important strategy for prevention and treatment of liver disorder and the related diseases. From the perspectives of TCM, liver regeneration can be caused by the disrupted balance between hepatic damage and regenerative capacity, and the "marrow"-based approaches have important therapeutic implications for liver regeneration. These two points have been massively supported by a number of basic studies and clinical observations during recent decades. TCM has the advantages of overall dynamic fine-tuning and early adjustment, and has exhibited enormous therapeutic benefits for various liver diseases. Here, we review the recent advances in the understanding of liver regeneration in TCM system in the hope of facilitating the application of TCM for liver diseases via regulation of liver regeneration.
Collapse
Affiliation(s)
- Feng Zhang
-
Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
-
Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
-
State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
| | - Feixia Wang
-
Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
| | - Baoyu Liang
-
Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
| | - Zhanghao Li
-
Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
| | - Jiangjuan Shao
-
Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
-
State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
| | - Zili Zhang
-
Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
-
Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
-
State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
| | - Shijun Wang
-
Shandong Co-innovation Center of TCM Formula, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine Jinan 250355 PR China
| | - Shizhong Zheng
-
Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
-
Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
-
State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
| |
Collapse
|
8
|
Nithyananthan S, Thirunavukkarasu C. Chemotherapeutic doses of arsenic trioxide delays hepatic regeneration by oxidative stress and hepatocyte apoptosis in partial hepatectomy rat. Toxicol Appl Pharmacol 2019; 382:114760. [DOI: 10.1016/j.taap.2019.114760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/30/2019] [Accepted: 09/12/2019] [Indexed: 12/17/2022]
|
9
|
Abstract
中医药调控肝再生是防治肝病及其相关病证的重要策略, 已形成的研究热点方兴未艾. 近些年来取得的主要进展至少包括以下几个方面: 调控肝损伤与肝再生失衡提高了中医/中西医结合防治肝病及其相关病证的临床疗效, "髓"为中心治疗靶点的研究进展揭示了中医/中西医结合防治肝病及其相关病证的疗效机制, 整体动态微调早调的作用方式满足了肝再生调控复杂多变的需要, 解决了单靶点调控肝再生疗效有限的关键科学问题, 平衡协调的疗效考核与结局指标的综合判断为中医药调控肝再生的临床推广应用提供了途径和方法.
Collapse
|
10
|
Abstract
Liver regeneration has been studied for many decades and the mechanisms underlying regeneration of the normal liver following resection or moderate damage are well described. A large number of factors extrinsic (such as bile acids and circulating growth factors) and intrinsic to the liver interact to initiate and regulate liver regeneration. Less well understood, and more clinically relevant, are the factors at play when the abnormal liver is required to regenerate. Fatty liver disease, chronic scarring, prior chemotherapy and massive liver injury can all inhibit the normal programme of regeneration and can lead to liver failure. Understanding these mechanisms could enable the rational targeting of specific therapies to either reduce the factors inhibiting regeneration or directly stimulate liver regeneration. Although animal models of liver regeneration have been highly instructive, the clinical relevance of some models could be improved to bridge the gap between our in vivo model systems and the clinical situation. Likewise, modern imaging techniques such as spectroscopy will probably improve our understanding of whole-organ metabolism and how this predicts the liver's regenerative capacity. This Review describes briefly the mechanisms underpinning liver regeneration, the models used to study this process, and discusses areas in which failed or compromised liver regeneration is clinically relevant.
Collapse
Affiliation(s)
- Stuart J Forbes
- MRC Centre for Regenerative Medicine, 5 Little France Drive, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Philip N Newsome
- Birmingham National Institute for Health Research (NIHR) Liver Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Vincent Drive Birmingham, B15 2TT, UK
| |
Collapse
|
11
|
Liu WH, Ren LN, Wang T, Navarro-Alvarez N, Tang LJ. The Involving Roles of Intrahepatic and Extrahepatic Stem/Progenitor Cells (SPCs) to Liver Regeneration. Int J Biol Sci 2016; 12:954-963. [PMID: 27489499 PMCID: PMC4971734 DOI: 10.7150/ijbs.15715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/09/2016] [Indexed: 12/17/2022] Open
Abstract
Liver regeneration is usually attributed to mature hepatocytes, which possess a remarkable potential to proliferate under mild to moderate injury. However, when the liver is severely damaged or hepatocyte proliferation is greatly inhibited, liver stem/progenitor cells (LSPCs) will contribute to the liver regeneration process. LSPCs in the developing liver have been extensively characterized, however, their contributing role to liver regeneration has not been completely understood. In addition to the restoration of the liver parenchymal tissue by hepatocytes or/and LSPCs, or in some cases bone marrow (BM) derived cells, such as hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs), the wound healing after injury in terms of angiopoiesis by liver sinusoidal endothelial cells (LSECs) or/and sinusoidal endothelial progenitor cells (SEPCs) is another important aspect taking place during regeneration. To conclude, liver regeneration can be mainly divided into three distinct restoring levels according to the cause and severity of injury: hepatocyte dominant regeneration, LSPCs mediated regeneration, extrahepatic stem cells participative regeneration. In this review, we focus on the recent findings of liver regeneration, especially on those related to stem/progenitor cells (SPCs)-mediated regeneration and their potential clinical applications and challenges.
Collapse
Affiliation(s)
- Wei-hui Liu
- 1. General Surgery Center, Chengdu Military General Hospital; Chengdu, Sichuan Province, 610083
| | - Li-na Ren
- 1. General Surgery Center, Chengdu Military General Hospital; Chengdu, Sichuan Province, 610083
| | - Tao Wang
- 1. General Surgery Center, Chengdu Military General Hospital; Chengdu, Sichuan Province, 610083
| | - Nalu Navarro-Alvarez
- 2. Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Li-jun Tang
- 1. General Surgery Center, Chengdu Military General Hospital; Chengdu, Sichuan Province, 610083
| |
Collapse
|
12
|
Kuttippurathu L, Juskeviciute E, Dippold RP, Hoek JB, Vadigepalli R. A novel comparative pattern analysis approach identifies chronic alcohol mediated dysregulation of transcriptomic dynamics during liver regeneration. BMC Genomics 2016; 17:260. [PMID: 27012785 PMCID: PMC4807561 DOI: 10.1186/s12864-016-2492-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/17/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Liver regeneration is inhibited by chronic ethanol consumption and this impaired repair response may contribute to the risk for alcoholic liver disease. We developed and applied a novel data analysis approach to assess the effect of chronic ethanol intake in the mechanisms responsible for liver regeneration. We performed a time series transcriptomic profiling study of the regeneration response after 2/3rd partial hepatectomy (PHx) in ethanol-fed and isocaloric control rats. RESULTS We developed a novel data analysis approach focusing on comparative pattern counts (COMPACT) to exhaustively identify the dominant and subtle differential expression patterns. Approximately 6500 genes were differentially regulated in Ethanol or Control groups within 24 h after PHx. Adaptation to chronic ethanol intake significantly altered the immediate early gene expression patterns and nearly completely abrogated the cell cycle induction in hepatocytes post PHx. The patterns highlighted by COMPACT analysis contained several non-parenchymal cell specific markers indicating their aberrant transcriptional response as a novel mechanism through which chronic ethanol intake deregulates the integrated liver tissue response. CONCLUSIONS Our novel comparative pattern analysis revealed new insights into ethanol-mediated molecular changes in non-parenchymal liver cells as a possible contribution to the defective liver regeneration phenotype. The results revealed for the first time an ethanol-induced shift of hepatic stellate cells from a pro-regenerative phenotype to that of an anti-regenerative state after PHx. Our results can form the basis for novel interventions targeting the non-parenchymal cells in normalizing the dysfunctional repair response process in alcoholic liver disease. Our approach is illustrated online at http://compact.jefferson.edu .
Collapse
Affiliation(s)
- Lakshmi Kuttippurathu
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Egle Juskeviciute
- MitoCare Center for Mitochondrial Research, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Rachael P Dippold
- MitoCare Center for Mitochondrial Research, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Jan B Hoek
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA.,MitoCare Center for Mitochondrial Research, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA. .,MitoCare Center for Mitochondrial Research, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
13
|
Liu T, Mu H, Shen Z, Song Z, Chen X, Wang Y. Autologous adipose tissue‑derived mesenchymal stem cells are involved in rat liver regeneration following repeat partial hepatectomy. Mol Med Rep 2016; 13:2053-9. [PMID: 26783183 PMCID: PMC4769001 DOI: 10.3892/mmr.2016.4768] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 10/26/2015] [Indexed: 12/16/2022] Open
Abstract
Adipose tissue-derived mesenchymal stem cells (ADSCs) have been considered to be attractive and readily available adult mesenchymal stem cells, and they are becoming increasingly popular for use in regenerative cell therapy, as they are readily accessible through minimally invasive techniques. The present study investigated whether autologous ADSC transplantation promoted liver regeneration following a repeat partial hepatectomy in rats. The rats were divided into three groups as follows: 70% partial hepatectomy (PH) group; repeat PH (R-PH) group and R-PH/ADSC group, subjected to R-PH and treated with autologous ADSCs via portal vein injection. In each group, the rats were sacrificed at different time points postoperatively in order to evaluate the changes in liver function and to estimate the liver regenerative response. The expression of proliferating cell nuclear antigen (PCNA) labeling index in the liver was measured using immunohistochemistry. The expression levels of hepatocyte growth factor (HGF) mRNA were measured using reverse transcription polymerase chain reaction. The results showed that regeneration of the remaining liver following R-PH was significantly promoted by ADSC transplantation, as shown by a significant increase in liver to body weight ratio and the PCNA labeling index at 24 h post-hepatectomy. Additionally, ADSC transplantation markedly inhibited the elevation of serum levels of alanine aminotransferase, aspartate aminotransferase and total bilirubin, increased HGF content and also attenuated hepatic vacuolar degeneration 24 h postoperatively. Furthermore, the liver was found to almost fully recover from hepatocellular damage due to hepatectomy among the three groups at 168 h postoperatively. These results indicated that autologous ADSC transplantation enhanced the regenerative capacity of the remnant liver tissues in the early phase following R-PH.
Collapse
Affiliation(s)
- Tao Liu
- Department of Clinical Laboratory Medicine, Tianjin First Central Hospital, Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin 300192, P.R. China
| | - Hong Mu
- Department of Clinical Laboratory Medicine, Tianjin First Central Hospital, Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin 300192, P.R. China
| | - Zhongyang Shen
- Department of Transplantation Surgery, Tianjin First Central Hospital, Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin 300192, P.R. China
| | - Zhuolun Song
- Department of Transplantation Surgery, Tianjin First Central Hospital, Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin 300192, P.R. China
| | - Xiaobo Chen
- Union Stem and Gene Engineering Co., Ltd., Tianjin 300384, P.R. China
| | - Yuliang Wang
- Department of Clinical Laboratory Medicine, Tianjin First Central Hospital, Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin 300192, P.R. China
| |
Collapse
|
14
|
The herbal compound "diwu yanggan" modulates liver regeneration by affecting the hepatic stem cell microenvironment in 2-acetylaminofluorene/partial hepatectomy rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:468303. [PMID: 25628749 PMCID: PMC4299675 DOI: 10.1155/2015/468303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/03/2014] [Accepted: 12/10/2014] [Indexed: 02/01/2023]
Abstract
Ethnopharmacological Relevance. “Diwu Yanggan” (DWYG) has been reported to regulate liver regeneration, modulate the immune response, ameliorate liver injury, kill virus, ameliorate liver fibrosis, and suppress hepatic cancer. However, its mechanisms are still unknown. Objectives. To investigate the effects of DWYG on oval cell proliferation in 2-AAF/PH rats and determine its mechanism. Methods. Wistar rats were randomly distributed into normal group, sham group, vehicle group, and DWYG group. Hepatic pathological changes were examined by H&E staining. The oval cell markers CD34, AFP, CK-19 and hematopoietic cell markers CD45, Thy1.1, and hepatocyte marker ALB were examined with immunohistochemistry. The percentage of CD34/CD45 double-positive cells in bone marrow was detected by flow cytometry. Cytokine levels were measured with the Bio-plex suspension array system. Results. DWYG significantly increased the survival rates of 2-AAF/PH rats and promoted liver regeneration. Furthermore, DWYG increased the ratio of CD34/CD45 double-positive cells on days 10 and 14. In addition, DWYG gradually restored IL-1, GRO/KC, and VEGF levels to those of the normal group. Conclusions. DWYG increases 2-AAF/PH rat survival rates, suppresses hepatic precarcinoma changes, and restores hepatic tissue structure and function. DWYG may act by modulating the hepatic microenvironment to support liver regeneration.
Collapse
|
15
|
Zhang WJ, Guo Y, Yin CJ, Li Y, Yao JF, Gong CJ. Role of NF-κB in hepatic oval cell proliferation: Implications for mechanism underlying protective effects of baicalin against liver injury. Shijie Huaren Xiaohua Zazhi 2014; 22:3736-3743. [DOI: 10.11569/wcjd.v22.i25.3736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the role of nuclear factor kappa B (NF-κB) in hepatic oval cell proliferation and the possible mechanism underlying the therapeutic effect of baicalin against liver injury.
METHODS: 64 SD rats were randomly divided into 4 groups: a sham operation group, a model group, a low-dose baicalin group and a high-dose baicalin group. 2-acetylaminofluorene plus 2/3 partial hepatectomy (2-AAF+2/3PH) was used to establish the hepatic oval cell (HOC) proliferation model. The two baicalin groups were given 50 and 100 mg/kg of baicalin daily by lavage when modeling, respectively. The rats were killed on 1, 7, 14 and 21 d after PH in each group, and serum and liver tissue samples were collected. Hepatic pathological changes were observed by hematoxylin and eosin (HE) staining. Immunofluorescence, immunohistochemical staining, reverse transcription-polymerase chain reaction (RT-PCR) and Western blot were used to evaluate the proliferation and differentiation of HOCs and the expression of NF-κB.
RESULTS: The HOC proliferation model was successfully established. HOC proliferation began to increase after PH, peaked on the 14th day and decreased on the 21st day. The expression pattern of NF-κB was consistent with the proliferation pattern of HOCs, and they were both reduced by baicalin intervention.
CONCLUSION: HOC proliferation is related to the activation of NF-κB. Baicalin could inhibit HOC proliferation possibly through the NF-κB signaling pathway, and this may be a possible mechanism for the therapeutic effect of baicalin against liver injury.
Collapse
|
16
|
Shin S, Kaestner KH. The origin, biology, and therapeutic potential of facultative adult hepatic progenitor cells. Curr Top Dev Biol 2014; 107:269-92. [PMID: 24439810 DOI: 10.1016/b978-0-12-416022-4.00010-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The liver plays an essential role in glucose and lipid metabolism, synthesis of plasma proteins, and detoxification of xenobiotics and other toxins. Chronic disease of this important organ is one of the leading causes of death in the United States. Following loss of tissue, liver mass can be restored by two mechanisms. Under normal conditions, or after massive loss of parenchyma by surgical resection, liver mass is maintained by division of hepatocytes. After chronic injury, or when proliferation of hepatocytes is impaired, facultative adult hepatic progenitor cells (HPCs) proliferate and differentiate into hepatocytes and cholangiocytes (biliary epithelial cells). HPCs are attractive candidates for cell transplantation because of their potential contribution to liver regeneration. However, until recently, the lack of highly specific markers has hampered efforts to better understand the origin and physiology of HPCs. Recent advances in cell isolation methods and genetic lineage tracing have enabled investigators to explore multiple aspects of HPC biology. In this review, we describe the potential origins of HPCs, the markers used to detect them, the contribution of HPCs to recovery, and the signaling pathways that regulate their biology. We end with an examination of the therapeutic potential of HPCs and their derivatives.
Collapse
Affiliation(s)
- Soona Shin
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|