1
|
Smukowski SN, Danyko C, Somberg J, Kaufman EJ, Course MM, Postupna N, Barker-Haliski M, Keene CD, Valdmanis PN. mRNA and circRNA mislocalization to synapses are key features of Alzheimer's disease. PLoS Genet 2024; 20:e1011359. [PMID: 39074152 PMCID: PMC11309398 DOI: 10.1371/journal.pgen.1011359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/08/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Proper transport of RNAs to synapses is essential for localized translation of proteins in response to synaptic signals and synaptic plasticity. Alzheimer's disease (AD) is a neurodegenerative disease characterized by accumulation of amyloid aggregates and hyperphosphorylated tau neurofibrillary tangles followed by widespread synapse loss. To understand whether RNA synaptic localization is impacted in AD, we performed RNA sequencing on synaptosomes and brain homogenates from AD patients and cognitively healthy controls. This resulted in the discovery of hundreds of mislocalized mRNAs in AD among frontal and temporal brain regions. Similar observations were found in an APPswe/PSEN1dE9 mouse model. Furthermore, major differences were observed among circular RNAs (circRNAs) localized to synapses in AD including two overlapping isoforms of circGSK3β, one upregulated, and one downregulated. Expression of these distinct isoforms affected tau phosphorylation in neuronal cells substantiating the importance of circRNAs in the brain and pointing to a new class of therapeutic targets.
Collapse
Affiliation(s)
- Samuel N. Smukowski
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Cassidy Danyko
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, United States of America
- Fred Hutch Cancer Center, Basic Sciences Division, University of Washington, Seattle, Washington, United States of America
| | - Jenna Somberg
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Eli J. Kaufman
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Meredith M. Course
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, United States of America
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado, United States of America
| | - Nadia Postupna
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Melissa Barker-Haliski
- Department of Pharmacy, University of Washington School of Pharmacy, Seattle, Washington, United States of America
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Paul N. Valdmanis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
2
|
Berson E, Gajera CR, Phongpreecha T, Perna A, Bukhari SA, Becker M, Chang AL, De Francesco D, Espinosa C, Ravindra NG, Postupna N, Latimer CS, Shively CA, Register TC, Craft S, Montine KS, Fox EJ, Keene CD, Bendall SC, Aghaeepour N, Montine TJ. Cross-species comparative analysis of single presynapses. Sci Rep 2023; 13:13849. [PMID: 37620363 PMCID: PMC10449792 DOI: 10.1038/s41598-023-40683-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Comparing brain structure across species and regions enables key functional insights. Leveraging publicly available data from a novel mass cytometry-based method, synaptometry by time of flight (SynTOF), we applied an unsupervised machine learning approach to conduct a comparative study of presynapse molecular abundance across three species and three brain regions. We used neural networks and their attractive properties to model complex relationships among high dimensional data to develop a unified, unsupervised framework for comparing the profile of more than 4.5 million single presynapses among normal human, macaque, and mouse samples. An extensive validation showed the feasibility of performing cross-species comparison using SynTOF profiling. Integrative analysis of the abundance of 20 presynaptic proteins revealed near-complete separation between primates and mice involving synaptic pruning, cellular energy, lipid metabolism, and neurotransmission. In addition, our analysis revealed a strong overlap between the presynaptic composition of human and macaque in the cerebral cortex and neostriatum. Our unique approach illuminates species- and region-specific variation in presynapse molecular composition.
Collapse
Affiliation(s)
- Eloïse Berson
- Department of Pathology, Stanford University, 300 Pasteur Dr., Stanford, CA, 94304, USA
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Chandresh R Gajera
- Department of Pathology, Stanford University, 300 Pasteur Dr., Stanford, CA, 94304, USA
| | - Thanaphong Phongpreecha
- Department of Pathology, Stanford University, 300 Pasteur Dr., Stanford, CA, 94304, USA
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Amalia Perna
- Department of Pathology, Stanford University, 300 Pasteur Dr., Stanford, CA, 94304, USA
| | - Syed A Bukhari
- Department of Pathology, Stanford University, 300 Pasteur Dr., Stanford, CA, 94304, USA
| | - Martin Becker
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Alan L Chang
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Davide De Francesco
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Camilo Espinosa
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Neal G Ravindra
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Nadia Postupna
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
| | - Caitlin S Latimer
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
| | - Carol A Shively
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Thomas C Register
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Suzanne Craft
- Department of Internal Medicine-Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Kathleen S Montine
- Department of Pathology, Stanford University, 300 Pasteur Dr., Stanford, CA, 94304, USA
| | - Edward J Fox
- Department of Pathology, Stanford University, 300 Pasteur Dr., Stanford, CA, 94304, USA
| | - C Dirk Keene
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
| | - Sean C Bendall
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Thomas J Montine
- Department of Pathology, Stanford University, 300 Pasteur Dr., Stanford, CA, 94304, USA.
| |
Collapse
|
3
|
Wang Y, Xu B, Xue L. Applications of CyTOF in Brain Immune Component Studies. ENGINEERING 2022; 16:187-197. [DOI: 10.1016/j.eng.2021.06.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Kumar S, Orlov E, Gowda P, Bose C, Swerdlow RH, Lahiri DK, Reddy PH. Synaptosome microRNAs regulate synapse functions in Alzheimer's disease. NPJ Genom Med 2022; 7:47. [PMID: 35941185 PMCID: PMC9359989 DOI: 10.1038/s41525-022-00319-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/15/2022] [Indexed: 01/05/2023] Open
Abstract
MicroRNAs (miRNAs) are found in nerve terminals, synaptic vesicles, and synaptosomes, but it is unclear whether synaptic and cytosolic miRNA populations differ in Alzheimer's disease (AD) or if synaptosomal miRNAs affect AD synapse activity. To address these questions, we generated synaptosomes and cytosolic fractions from postmortem brains of AD and unaffected control (UC) samples and analyzed them using a global Affymetrix miRNAs microarray platform. A group of miRNAs significantly differed (P < 0.0001) with high fold changes variance (+/- >200-fold) in their expressions in different comparisons: (1) UC synaptosome vs UC cytosol, (2) AD synaptosomes vs AD cytosol, (3) AD cytosol vs UC cytosol, and (4) AD synaptosomes vs UC synaptosomes. MiRNAs data analysis revealed that some potential miRNAs were consistently different across sample groups. These differentially expressed miRNAs were further validated using AD postmortem brains, brains of APP transgenic (Tg2576), Tau transgenic (P301L), and wild-type mice. The miR-501-3p, miR-502-3p, and miR-877-5p were identified as potential synaptosomal miRNAs upregulated with disease progression based on AD Braak stages. Gene Ontology Enrichment and Ingenuity Pathway Analysis of synaptosomal miRNAs showed the involvement of miRNAs in nervous system development, cell junction organization, synapse assembly formation, and function of GABAergic synapse. This is the first description of synaptic versus cytosolic miRNAs in AD and their significance in synapse function.
Collapse
Affiliation(s)
- Subodh Kumar
- grid.416992.10000 0001 2179 3554Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX 79905 USA ,grid.416992.10000 0001 2179 3554Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA ,grid.416992.10000 0001 2179 3554Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Erika Orlov
- grid.416992.10000 0001 2179 3554Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA
| | - Prashanth Gowda
- grid.416992.10000 0001 2179 3554Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA
| | - Chhanda Bose
- grid.416992.10000 0001 2179 3554Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA
| | - Russell H. Swerdlow
- grid.266515.30000 0001 2106 0692Department of Neurology, the University of Kansas Medical Center, University of Kansas Alzheimer’s Disease Research Center, Fairway, KS 66205 USA
| | - Debomoy K. Lahiri
- grid.257413.60000 0001 2287 3919Laboratory of Molecular Neurogenetics’ Departments of Psychiatry and Medical & Molecular Genetics, Indiana University School of Medicine’ Indiana Alzheimer’s Disease Research Center, Stark Neuroscience Research Institute, Indianapolis, IN 46202 USA
| | - P. Hemachandra Reddy
- grid.416992.10000 0001 2179 3554Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA ,grid.416992.10000 0001 2179 3554Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA ,grid.416992.10000 0001 2179 3554Department of Neurology, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA ,grid.416992.10000 0001 2179 3554Department of Public Health, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA
| |
Collapse
|
5
|
Gajera CR, Fernandez R, Postupna N, Montine KS, Keene CD, Bendall SC, Montine TJ. Mass Synaptometry: Applying Mass Cytometry to Single Synapse Analysis. Methods Mol Biol 2022; 2417:69-88. [PMID: 35099792 PMCID: PMC8820390 DOI: 10.1007/978-1-0716-1916-2_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Synaptic degeneration is one of the earliest and phenotypically most significant features associated with numerous neurodegenerative conditions, including Alzheimer's and Parkinson's diseases. Synaptic changes are also known to be important in neurocognitive disorders such as schizophrenia and autism spectrum disorders. Several labs, including ours, have demonstrated that conventional (fluorescence-based) flow cytometry of individual synaptosomes is a robust and reproducible method. However, the repertoire of probes needed to assess comprehensively the type of synapse, pathologic proteins (including protein products of risk genes discovered in GWAS), and markers of stress and injury far exceeds what is achievable with conventional flow cytometry. We recently developed a method that applies CyTOF (Cytometry by Time-Of-Flight mass spectrometry) to high-dimensional analysis of individual human synaptosomes, overcoming many of the multiplexing limitations of conventional flow cytometry. We call this new method Mass Synaptometry. Here we describe the preparation of synaptosomes from human and mouse brain, the generation and quality control of the "SynTOF" (Synapse by Time-Of-Flight mass spectrometry) antibody panel, the staining protocol, and CyTOF parameter setup for acquisition, post-acquisition processing, and analysis.
Collapse
Affiliation(s)
- Chandresh R. Gajera
- Department of Pathology, Stanford University Medical Center, Stanford, CA, United States
| | - Rosemary Fernandez
- Department of Pathology, Stanford University Medical Center, Stanford, CA, United States
| | - Nadia Postupna
- Department of Pathology, University of Washington, Seattle, WA, United States
| | - Kathleen S. Montine
- Department of Pathology, Stanford University Medical Center, Stanford, CA, United States
| | - C. Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA, United States
| | - Sean C. Bendall
- Department of Pathology, Stanford University Medical Center, Stanford, CA, United States
| | - Thomas J. Montine
- Department of Pathology, Stanford University Medical Center, Stanford, CA, United States
| |
Collapse
|
6
|
Phongpreecha T, Gajera CR, Liu CC, Vijayaragavan K, Chang AL, Becker M, Fallahzadeh R, Fernandez R, Postupna N, Sherfield E, Tebaykin D, Latimer C, Shively CA, Register TC, Craft S, Montine KS, Fox EJ, Poston KL, Keene CD, Angelo M, Bendall SC, Aghaeepour N, Montine TJ. Single-synapse analyses of Alzheimer's disease implicate pathologic tau, DJ1, CD47, and ApoE. SCIENCE ADVANCES 2021; 7:eabk0473. [PMID: 34910503 PMCID: PMC8673771 DOI: 10.1126/sciadv.abk0473] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Synaptic molecular characterization is limited for Alzheimer’s disease (AD). Our newly invented mass cytometry–based method, synaptometry by time of flight (SynTOF), was used to measure 38 antibody probes in approximately 17 million single-synapse events from human brains without pathologic change or with pure AD or Lewy body disease (LBD), nonhuman primates (NHPs), and PS/APP mice. Synaptic molecular integrity in humans and NHP was similar. Although not detected in human synapses, Aβ was in PS/APP mice single-synapse events. Clustering and pattern identification of human synapses showed expected disease-specific differences, like increased hippocampal pathologic tau in AD and reduced caudate dopamine transporter in LBD, and revealed previously unidentified findings including increased hippocampal CD47 and lowered DJ1 in AD and higher ApoE in AD with dementia. Our results were independently supported by multiplex ion beam imaging of intact tissue. This highlights the higher depth and breadth of insight on neurodegenerative diseases obtainable through SynTOF.
Collapse
Affiliation(s)
- Thanaphong Phongpreecha
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | | | - Candace C. Liu
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | - Alan L. Chang
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Martin Becker
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Ramin Fallahzadeh
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | | | - Nadia Postupna
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Emily Sherfield
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Dmitry Tebaykin
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Caitlin Latimer
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Carol A. Shively
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Thomas C. Register
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Suzanne Craft
- Department of Internal Medicine–Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Edward J. Fox
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Kathleen L. Poston
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - C. Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Michael Angelo
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Sean C. Bendall
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Thomas J. Montine
- Department of Pathology, Stanford University, Stanford, CA, USA
- Corresponding author.
| |
Collapse
|
7
|
Influenza A Virus (H1N1) Infection Induces Microglial Activation and Temporal Dysbalance in Glutamatergic Synaptic Transmission. mBio 2021; 12:e0177621. [PMID: 34700379 PMCID: PMC8546584 DOI: 10.1128/mbio.01776-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Influenza A virus (IAV) causes respiratory tract disease and is responsible for seasonal and reoccurring epidemics affecting all age groups. Next to typical disease symptoms, such as fever and fatigue, IAV infection has been associated with behavioral alterations presumably contributing to the development of major depression. Previous experiments using IAV/H1N1 infection models have shown impaired hippocampal neuronal morphology and cognitive abilities, but the underlying pathways have not been fully described. In this study, we demonstrate that infection with a low-dose non-neurotrophic H1N1 strain of IAV causes ample peripheral immune response followed by a temporary blood-brain barrier disturbance. Although histological examination did not reveal obvious pathological processes in the brains of IAV-infected mice, detailed multidimensional flow cytometric characterization of immune cells uncovered subtle alterations in the activation status of microglial cells. More specifically, we detected an altered expression pattern of major histocompatibility complex classes I and II, CD80, and F4/80 accompanied by elevated mRNA levels of CD36, CD68, C1QA, and C3, suggesting evolved synaptic pruning. To closer evaluate how these profound changes affect synaptic balance, we established a highly sensitive multiplex flow cytometry-based approach called flow synaptometry. The introduction of this novel technique enabled us to simultaneously quantify the abundance of pre- and postsynapses from distinct brain regions. Our data reveal a significant reduction of VGLUT1 in excitatory presynaptic terminals in the cortex and hippocampus, identifying a subtle dysbalance in glutamatergic synapse transmission upon H1N1 infection in mice. In conclusion, our results highlight the consequences of systemic IAV-triggered inflammation on the central nervous system and the induction and progression of neuronal alterations. IMPORTANCE Influenza A virus (IAV) causes mainly respiratory tract disease with fever and fatigue but is also associated with behavioral alterations in humans. Here, we demonstrate that infection with a low-dose non-neurotrophic H1N1 strain of IAV causes peripheral immune response followed by a temporary blood-brain barrier disturbance. Characterization of immune cells uncovered subtle alterations in the activation status of microglia cells that might reshape neuronal synapses. We established a highly sensitive multiplex flow cytometry-based approach called flow synaptometry to more closely study the synapses. Thus, we detected a specific dysbalance in glutamatergic synapse transmission upon H1N1 infection in mice. In conclusion, our results highlight the consequences of systemic IAV-triggered inflammation on the central nervous system and the induction and progression of neuronal alterations.
Collapse
|
8
|
Gajera CR, Fernandez R, Montine KS, Fox EJ, Mrdjen D, Postupna NO, Keene CD, Bendall SC, Montine TJ. Mass-tag barcoding for multiplexed analysis of human synaptosomes and other anuclear events. Cytometry A 2021; 99:939-945. [PMID: 33818911 PMCID: PMC8590852 DOI: 10.1002/cyto.a.24340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/27/2021] [Accepted: 03/17/2021] [Indexed: 12/17/2022]
Abstract
Mass-tag cell barcoding has increased the throughput, multiplexing, and robustness of multiple cytometry approaches. Previously, we adapted mass cytometry for cells to analyze synaptosome preparations (mass synaptometry or SynTOF), extending mass cytometry to these smaller, anuclear particles. To improve throughput and individual event resolution, we report here the application of palladium-based barcoding in human synaptosomes. Up to 20 individual samples, each with a unique combinatorial barcode, were pooled for labeling with an antibody cocktail. Our synaptosome protocol used six palladium-based barcoding reagents, and in combination with sequential gating increased the identification of presynaptic events approximately fourfold. These same parameters also efficiently resolved two other anuclear particles: human red blood cells and platelets. The addition of palladium-based mass-tag barcoding to our approach improves mass cytometry of synaptic particles.
Collapse
Affiliation(s)
| | - Rosemary Fernandez
- Department of Pathology, Stanford University, Stanford, CA, United States
| | | | - Edward J. Fox
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Dunja Mrdjen
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Nadia O. Postupna
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Sean C. Bendall
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Thomas J. Montine
- Department of Pathology, Stanford University, Stanford, CA, United States
| |
Collapse
|
9
|
Picone P, Porcelli G, Bavisotto CC, Nuzzo D, Galizzi G, Biagio PLS, Bulone D, Di Carlo M. Synaptosomes: new vesicles for neuronal mitochondrial transplantation. J Nanobiotechnology 2021; 19:6. [PMID: 33407593 PMCID: PMC7789323 DOI: 10.1186/s12951-020-00748-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/05/2020] [Indexed: 12/19/2022] Open
Abstract
Background Mitochondrial dysfunction is a critical factor in the onset and progression of neurodegenerative diseases. Recently, mitochondrial transplantation has been advised as an innovative and attractive strategy to transfer and replace damaged mitochondria. Here we propose, for the first time, to use rat brain extracted synaptosomes, a subcellular fraction of isolated synaptic terminal that contains mitochondria, as mitochondrial delivery systems. Results Synaptosome preparation was validated by the presence of Synaptophysin and PSD95. Synaptosomes were characterized in terms of dimension, zeta potential, polydispersity index and number of particles/ml. Nile Red or CTX-FITCH labeled synaptosomes were internalized in LAN5 recipient cells by a mechanism involving specific protein–protein interaction, as demonstrated by loss of fusion ability after trypsin treatment and using different cell lines. The loading and release ability of the synaptosomes was proved by the presence of curcumin both into synaptosomes and LAN5 cells. The vitality of mitochondria transferred by Synaptosomes was demonstrated by the presence of Opa1, Fis1 and TOM40 mitochondrial proteins and JC-1 measurements. Further, synaptosomes deliver vital mitochondria into the cytoplasm of neuronal cells as demonstrated by microscopic images, increase of TOM 40, cytochrome c, Hexokinase II mitochondrial proteins, and presence of rat mitochondrial DNA. Finally, by using synaptosomes as a vehicle, healthy mitochondria restored mitochondrial function in cells containing rotenone or CCCp damaged mitochondria. Conclusions Taken together these results suggest that synaptosomes can be a natural vehicle for the delivery of molecules and organelles to neuronal cells. Further, the replacement of affected mitochondria with healthy ones could be a potential therapy for treating neuronal mitochondrial dysfunction-related diseases.![]()
Collapse
Affiliation(s)
- Pasquale Picone
- Istituto per la Ricerca e l' Innovazione Biomedica (IRIB) CNR, via U. La Malfa 153, 90146, Palermo, Italy
| | - Gaetana Porcelli
- Istituto per la Ricerca e l' Innovazione Biomedica (IRIB) CNR, via U. La Malfa 153, 90146, Palermo, Italy
| | - Celeste Caruso Bavisotto
- Istituto di Biofisica (IBF) (sez. Palermo) CNR, via U. La Malfa, 153, 90146, Palermo, Italy.,Dipartimento di Biomedicina, Neuroscienze, e Diagnostica Avanzata (BIND) (Sez. Anatomia Umana), Università di Palermo, via del Vespro 129, 90127, Palermo, Italy.,Istituto Euro-Mediterraneo di Scienze e Tecnologie (IEMEST), via M. Miraglia, 20, 90139, Palermo, Italy
| | - Domenico Nuzzo
- Istituto per la Ricerca e l' Innovazione Biomedica (IRIB) CNR, via U. La Malfa 153, 90146, Palermo, Italy
| | - Giacoma Galizzi
- Istituto per la Ricerca e l' Innovazione Biomedica (IRIB) CNR, via U. La Malfa 153, 90146, Palermo, Italy
| | - Pier Luigi San Biagio
- Istituto di Biofisica (IBF) (sez. Palermo) CNR, via U. La Malfa, 153, 90146, Palermo, Italy
| | - Donatella Bulone
- Istituto di Biofisica (IBF) (sez. Palermo) CNR, via U. La Malfa, 153, 90146, Palermo, Italy
| | - Marta Di Carlo
- Istituto per la Ricerca e l' Innovazione Biomedica (IRIB) CNR, via U. La Malfa 153, 90146, Palermo, Italy.
| |
Collapse
|
10
|
Kumar S, Reddy PH. The role of synaptic microRNAs in Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165937. [PMID: 32827646 PMCID: PMC7680400 DOI: 10.1016/j.bbadis.2020.165937] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/04/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022]
Abstract
Structurally and functionally active synapses are essential for neurotransmission and for maintaining normal synaptic and cognitive functions. Researchers have found that synaptic dysfunction is associated with the onset and progression of neurodegenerative diseases, such as Alzheimer's disease (AD), and synaptic dysfunction is even one of the main physiological hallmarks of AD. MiRNAs are present in small, subcellular compartments of the neuron such as neural dendrites, synaptic vesicles, and synaptosomes are known as synaptic miRNAs. Synaptic miRNAs involved in governing multiple synaptic functions that lead to healthy brain functioning and synaptic activity. However, the precise role of synaptic miRNAs has not been determined in AD progression. This review emphasizes the presence of miRNAs at the synapse, synaptic compartments and roles of miRNAs in multiple synaptic functions. We focused on synaptic miRNAs alteration in AD, and how the modulation of miRNAs effect the synaptic functions in AD. We also discussed the impact of synaptic miRNAs in AD progression concerning the synaptic ATP production, mitochondrial function, and synaptic activity.
Collapse
Affiliation(s)
- Subodh Kumar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
11
|
Liu C, Huang Z, Jiang W, Liu X, Li J, Han X, Tu H, Qiu L, Tan W. Programmable pH-Responsive DNA Nanosensors for Imaging Exocytosis and Retrieval of Synaptic Vesicles. Anal Chem 2020; 92:3620-3626. [DOI: 10.1021/acs.analchem.9b04493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chao Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Zike Huang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Wei Jiang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Xiaojing Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Jin Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Xiaoyan Han
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Haijun Tu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Foundation for Applied Molecular Evolution, 13709 Progress Boulevard, Alachua, Florida 32615, United States
| |
Collapse
|
12
|
Critical Analysis of Particle Detection Artifacts in Synaptosome Flow Cytometry. eNeuro 2019; 6:ENEURO.0009-19.2019. [PMID: 31118205 PMCID: PMC6565374 DOI: 10.1523/eneuro.0009-19.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/01/2019] [Accepted: 04/27/2019] [Indexed: 11/21/2022] Open
Abstract
Flow cytometry and fluorescence-activated sorting are powerful techniques that hold great promise for studying heterogeneous populations of submicron particles such as synaptosomes, but many technical challenges arise in these experiments. To date, most flow cytometry studies of synaptosomes have relied on particle detection using forward scatter (FSC) measurements and size estimation with polystyrene (PS) bead standards. However, these practices have serious limitations, and special care must be taken to overcome the poor sensitivity of conventional flow cytometers in the analysis of submicron particles. Technical artifacts can confound these experiments, especially the detection of multiple particles as a single event. Here, we compared analysis of P2 crude synaptosomal preparations from murine forebrain on multiple flow cytometers using both FSC-triggered and fluorescence-triggered detection. We implemented multicolor fluorescent dye-based assays to quantify coincident particle detection and aggregation, and we assessed the false colocalization of antigens in immunostaining analyses. Our results demonstrate that fluorescence triggering and proper dilution can control for coincident particle detection, but not particle aggregation. We confirmed previous studies showing that FSC-based size estimation with PS beads underestimates biological particle size, and we identified pervasive aggregation in the FSC range analyzed in most synaptosome flow cytometry studies. We found that analyzing P2 samples in sucrose/EDTA/tris (SET) buffer reduces aggregation compared to PBS, but does not completely eliminate the presence of aggregates, especially in immunostaining experiments. Our study highlights challenges and pitfalls in synaptosome flow cytometry and provides a methodological framework for future studies.
Collapse
|
13
|
Peterson AR, Binder DK. Regulation of Synaptosomal GLT-1 and GLAST during Epileptogenesis. Neuroscience 2019; 411:185-201. [PMID: 31158434 DOI: 10.1016/j.neuroscience.2019.05.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 10/26/2022]
Abstract
Astrocytes regulate extracellular glutamate homeostasis in the central nervous system through the Na+-dependent glutamate transporters glutamate transporter-1 (GLT-1) and glutamate aspartate transporter (GLAST). Impaired astrocyte glutamate uptake could contribute to the development of epilepsy but the regulation of glutamate transporters in epilepsy is not well understood. In this study, we investigate the expression of GLT-1 and GLAST in the mouse intrahippocampal kainic acid (IHKA) model of temporal lobe epilepsy (TLE). We used immunohistochemistry, synaptosomal fractionation and Western blot analysis at 1, 3, 7 and 30 days post-IHKA induced status epilepticus (SE) to examine changes in GLT-1 and GLAST immunoreactivity and synaptosomal expression during the development of epilepsy. We found a significant upregulation in GLT-1 immunoreactivity at 1 and 3 days post-IHKA in the ipsilateral dorsal hippocampus. However, GLT-1 immunoreactivity and synaptosomal protein levels were significantly downregulated at 7 days post-IHKA in the ipsilateral hippocampus, a time point corresponding to the onset of spontaneous seizures in this model. GLAST immunoreactivity was increased in specific layers at 1 and 3 days post-IHKA in the ipsilateral hippocampus. GLAST synaptosomal protein levels were significantly elevated at 30 days compared to 7 days post-IHKA in the ipsilateral hippocampus. Our findings suggest that astrocytic glutamate transporter dysregulation could contribute to the development of epilepsy.
Collapse
Affiliation(s)
- Allison R Peterson
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Devin K Binder
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA.
| |
Collapse
|
14
|
Gajera CR, Fernandez R, Postupna N, Montine KS, Fox EJ, Tebaykin D, Angelo M, Bendall SC, Keene CD, Montine TJ. Mass synaptometry: High-dimensional multi parametric assay for single synapses. J Neurosci Methods 2018; 312:73-83. [PMID: 30465796 DOI: 10.1016/j.jneumeth.2018.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/09/2018] [Accepted: 11/10/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND Synaptic alterations, especially presynaptic changes, are cardinal features of neurodegenerative diseases and strongly correlate with cognitive decline. NEW METHOD We report "Mass Synaptometry" for the high-dimensional analysis of individual human synaptosomes, enriched nerve terminals from brain. This method was adapted from cytometry by time-of-flight mass spectrometry (CyTOF), which is commonly used for single-cell analysis of immune and blood cells. RESULT Here we overcome challenges for single synapse analysis by optimizing synaptosome preparations, generating a 'SynTOF panel,' recalibrating acquisition settings, and applying computational analyses. Through the analysis of 390,000 individual synaptosomes, we also provide proof-of principle validation by characterizing changes in synaptic diversity in Lewy Body Disease (LBD), Alzheimer's disease and normal brain. COMPARISON WITH EXISTING METHOD(S) Current imaging methods to study synapses in humans are capable of analyzing a limited number of synapses, and conventional flow cytometric techniques are typically restricted to fewer than 6 parameters. Our method allows for the simultaneous detection of 34 parameters from tens of thousands of individual synapses. CONCLUSION We applied Mass Synaptometry to analyze 34 parameters simultaneously on more than 390,000 synaptosomes from 13 human brain samples. This new approach revealed regional and disease-specific changes in synaptic phenotypes, including validation of this method with the expected changes in the molecular composition of striatal dopaminergic synapses in Lewy body disease and Alzheimer's disease. Mass synaptometry enables highly parallel molecular profiling of individual synaptic terminals.
Collapse
Affiliation(s)
- Chandresh R Gajera
- Department of Pathology, Stanford University Medical Center, Stanford, CA, United States
| | - Rosemary Fernandez
- Department of Pathology, Stanford University Medical Center, Stanford, CA, United States
| | - Nadia Postupna
- Department of Pathology, University of Washington, Seattle, WA, United States
| | - Kathleen S Montine
- Department of Pathology, Stanford University Medical Center, Stanford, CA, United States
| | - Edward J Fox
- Department of Pathology, Stanford University Medical Center, Stanford, CA, United States
| | - Dmitry Tebaykin
- Department of Pathology, Stanford University Medical Center, Stanford, CA, United States
| | - Michael Angelo
- Department of Pathology, Stanford University Medical Center, Stanford, CA, United States
| | - Sean C Bendall
- Department of Pathology, Stanford University Medical Center, Stanford, CA, United States
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA, United States
| | - Thomas J Montine
- Department of Pathology, Stanford University Medical Center, Stanford, CA, United States.
| |
Collapse
|
15
|
|
16
|
The Study of Postmortem Human Synaptosomes for Understanding Alzheimer's Disease and Other Neurological Disorders: A Review. Neurol Ther 2017; 6:57-68. [PMID: 28733958 PMCID: PMC5520816 DOI: 10.1007/s40120-017-0070-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Indexed: 12/12/2022] Open
Abstract
Synaptic dysfunction is thought to play important roles in the pathophysiology of many neurological diseases, including Alzheimer’s disease, Parkinson’s disease, and schizophrenia. Over the past few decades, there have been systematic efforts to collect postmortem brain tissues via autopsies, leading to the establishment of dozens of human brain banks around the world. From cryopreserved human brain tissues, it is possible to isolate detached-and-resealed synaptic terminals termed synaptosomes, which remain metabolically and enzymatically active. Synaptosomes have become important model systems for studying human synaptic functions, being much more accessible than ex vivo brain slices or primary neuronal cultures. Here we review recent advances in the establishment of human brain banks, the isolation of synaptosomes, their biological activities, and various analytical techniques for investigating their biochemical and ultrastructural properties. There are unique insights to be gained by directly examining human synaptosomes, which cannot be substituted by animal models. We will also discuss how human synaptosome research has contributed to better understanding of neurological disorders, especially Alzheimer’s disease.
Collapse
|
17
|
Postupna N, Latimer CS, Larson EB, Sherfield E, Paladin J, Shively CA, Jorgensen MJ, Andrews RN, Kaplan JR, Crane PK, Montine KS, Craft S, Keene CD, Montine TJ. Human Striatal Dopaminergic and Regional Serotonergic Synaptic Degeneration with Lewy Body Disease and Inheritance of APOE ε4. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:884-895. [PMID: 28212814 DOI: 10.1016/j.ajpath.2016.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 12/10/2016] [Accepted: 12/20/2016] [Indexed: 01/22/2023]
Abstract
Cognitive impairment in older individuals is a complex trait that in population-based studies most commonly derives from an individually varying mixture of Alzheimer disease, Lewy body disease, and vascular brain injury. We investigated the molecular composition of synaptic particles from three sources: consecutive rapid autopsy brains from the Adult Changes in Thought Study, a population-based cohort; four aged nonhuman primate brains optimally processed for molecular investigation; and targeted replacement transgenic mice homozygous for APOE ε4. Our major goal was to characterize the molecular composition of human synaptic particles in regions of striatum and prefrontal cortex. We performed flow cytometry to measure six markers of synaptic subtypes, as well as amyloid β 42 and paired helical filament tau. Our results showed selective degeneration of dopaminergic terminals throughout the striatum in individuals with Lewy body disease, and serotonergic degeneration in human ventromedial caudate nucleus from individuals with an APOE ε4 allele. Similar results were seen in mouse caudate nucleus homozygous for APOE ε4 via targeted replacement. Together, extension of these clinical, pathologic, and genetic associations from tissue to the synaptic compartment of cerebral cortex and striatum strongly supports our approach for accurately observing the molecular composition of human synapses by flow cytometry.
Collapse
Affiliation(s)
- Nadia Postupna
- Department of Pathology, University of Washington, Seattle, Washington
| | - Caitlin S Latimer
- Department of Pathology, University of Washington, Seattle, Washington
| | - Eric B Larson
- Group Health Research Institute, Seattle, Washington
| | - Emily Sherfield
- Department of Pathology, University of Washington, Seattle, Washington
| | - Julie Paladin
- Department of Pathology, University of Washington, Seattle, Washington
| | - Carol A Shively
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Matthew J Jorgensen
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Rachel N Andrews
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jay R Kaplan
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, Washington
| | | | - Suzanne Craft
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, Washington
| | - Thomas J Montine
- Department of Pathology, University of Washington, Seattle, Washington.
| |
Collapse
|
18
|
Pharmacological Rescue of Long-Term Potentiation in Alzheimer Diseased Synapses. J Neurosci 2016; 37:1197-1212. [PMID: 27986924 DOI: 10.1523/jneurosci.2774-16.2016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/05/2016] [Accepted: 12/09/2016] [Indexed: 01/05/2023] Open
Abstract
Long-term potentiation (LTP) is an activity-dependent and persistent increase in synaptic transmission. Currently available techniques to measure LTP are time-intensive and require highly specialized expertise and equipment, and thus are not well suited for screening of multiple candidate treatments, even in animal models. To expand and facilitate the analysis of LTP, here we use a flow cytometry-based method to track chemically induced LTP by detecting surface AMPA receptors in isolated synaptosomes: fluorescence analysis of single-synapse long-term potentiation (FASS-LTP). First, we demonstrate that FASS-LTP is simple, sensitive, and models electrically induced LTP recorded in intact circuitries. Second, we conducted FASS-LTP analysis in two well-characterized Alzheimer's disease (AD) mouse models (3xTg and Tg2576) and, importantly, in cryopreserved human AD brain samples. By profiling hundreds of synaptosomes, our data provide the first direct evidence to support the idea that synapses from AD brain are intrinsically defective in LTP. Third, we used FASS-LTP for drug evaluation in human synaptosomes. Testing a panel of modulators of cAMP and cGMP signaling pathways, FASS-LTP identified vardenafil and Bay-73-6691 (phosphodiesterase-5 and -9 inhibitors, respectively) as potent enhancers of LTP in synaptosomes from AD cases. These results indicate that our approach could provide the basis for protocols to study LTP in both healthy and diseased human brains, a previously unattainable goal. SIGNIFICANCE STATEMENT Learning and memory depend on the ability of synapses to strengthen in response to activity. Long-term potentiation (LTP) is a rapid and persistent increase in synaptic transmission that is thought to be affected in Alzheimer's disease (AD). However, direct evidence of LTP deficits in human AD brain has been elusive, primarily due to methodological limitations. Here, we analyze LTP in isolated synapses from AD brain using a novel approach that allows testing LTP in cryopreserved brain. Our analysis of hundreds of synapses supports the idea that AD-diseased synapses are intrinsically defective in LTP. Further, we identified pharmacological agents that rescue LTP in AD, thus opening up a new avenue for drug screening and evaluation of strategies for alleviating memory impairments.
Collapse
|
19
|
Wang S, Yu L, Yang H, Li C, Hui Z, Xu Y, Zhu X. Oridonin Attenuates Synaptic Loss and Cognitive Deficits in an Aβ1-42-Induced Mouse Model of Alzheimer's Disease. PLoS One 2016; 11:e0151397. [PMID: 26974541 PMCID: PMC4790895 DOI: 10.1371/journal.pone.0151397] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 02/26/2016] [Indexed: 12/31/2022] Open
Abstract
Synaptic loss induced by beta-amyloid (Aβ) plays a critical role in the pathophysiology of Alzheimer’s disease (AD), but the mechanisms underlying this process remain unknown. In this study, we found that oridonin (Ori) rescued synaptic loss induced by Aβ1–42in vivo and in vitro and attenuated the alterations in dendritic structure and spine density observed in the hippocampus of AD mice. In addition, Ori increased the expression of PSD-95 and synaptophysin and promoted mitochondrial activity in the synaptosomes of AD mice. Ori also activated the BDNF/TrkB/CREB signaling pathway in the hippocampus of AD mice. Furthermore, in the Morris water maze test, Ori reduced latency and searching distance and increased the number of platform crosses in AD mice. These data suggest that Ori might prevent synaptic loss and improve behavioral symptoms in Aβ1–42-induced AD mice.
Collapse
Affiliation(s)
- Sulei Wang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Linjie Yu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, PR China
| | - Hui Yang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Chaosheng Li
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Zhen Hui
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, PR China
- Jiangsu Stroke Research Collaborative Group, Nanjing, PR China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, PR China
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, PR China
- * E-mail: (YX); (XLZ)
| | - Xiaolei Zhu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, PR China
- * E-mail: (YX); (XLZ)
| |
Collapse
|
20
|
Emmanouilidou E, Minakaki G, Keramioti MV, Xylaki M, Balafas E, Chrysanthou-Piterou M, Kloukina I, Vekrellis K. GABA transmission via ATP-dependent K+channels regulates α-synuclein secretion in mouse striatum. Brain 2016; 139:871-90. [DOI: 10.1093/brain/awv403] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 11/28/2015] [Indexed: 12/13/2022] Open
|
21
|
Abstract
Human cerebrospinal fluid (CSF) contains diverse lipid particles, including lipoproteins that are distinct from their plasma counterparts and contain apolipoprotein (apo) E isoforms, apoJ, and apoAI, and extracellular vesicles, which can be detected by annexin V binding. The aim of this study was to develop a method to quantify CSF particles and evaluate their relationship to aging and neurodegenerative diseases. We used a flow cytometric assay to detect annexin V-, apoE-, apoAI-, apoJ-, and amyloid (A) β42-positive particles in CSF from 131 research volunteers who were neurologically normal or had mild cognitive impairment (MCI), Alzheimer disease (AD) dementia, or Parkinson disease. APOE ε4/ε4 participants had CSF apoE-positive particles that were more frequently larger but at an 88% lower level versus those in APOE ε3/ε3 or APOE ε3/ε4 patients; this finding was reproduced in conditioned medium from mouse primary glial cell cultures with targeted replacement of apoE. Cerebrospinal fluid apoE-positive and β-amyloid (Aβ42)-positive particle concentrations were persistently reduced one-third to one-half in middle and older age subjects; apoAI-positive particle concentration progressively increased approximately 2-fold with age. Both apoAI-positive and annexin V-positive CSF particle levels were reduced one-third to one-half in CSF of MCI and/or AD dementia patients versus age-matched controls. Our approach provides new methods to investigate CNS lipid biology in relation to neurodegeneration and perhaps develop new biomarkers for diagnosis or treatment monitoring.
Collapse
|
22
|
Morgan RG, Gibbs JT, Melief EJ, Postupna NO, Sherfield EE, Wilson A, Keene CD, Montine TJ, Palmiter RD, Darvas M. Relative contributions of severe dopaminergic neuron ablation and dopamine depletion to cognitive impairment. Exp Neurol 2015; 271:205-14. [PMID: 26079646 DOI: 10.1016/j.expneurol.2015.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/22/2015] [Accepted: 06/12/2015] [Indexed: 10/23/2022]
Abstract
Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons and produces a movement disorder and cognitive impairment that becomes more extensive with the duration of the disease. To what extent cognitive impairment in advanced PD can be attributed to severe loss of dopamine (DA) signaling is not well understood. Furthermore, it is unclear if the loss of DA neurons contributes to the cognitive impairment caused by the reduction in DA signaling. We generated genetic mouse models with equally severe chronic loss of DA achieved by either extensive ablation of DA neurons or inactivation of DA synthesis from preserved neurons and compared their motor and cognitive performance. Motor behaviors were equally blunted in both models, but we observed that DA neuron ablation caused more severe cognitive deficits than DA depletion. Both models had marked deficits in cue-discrimination learning. Yet, deficits in cue-discrimination learning were more severe in mice with DA neuron ablation and only mice with DA neuron ablation had drastically impaired performance in spatial learning, spatial memory and object memory tests. These results indicate that while a severe reduction in DA signaling results in motor and cognitive impairments, the loss of DA neurons promotes more extensive cognitive deficits and suggest that a loss of additional factors that depend on DA neurons may participate in the progressive cognitive decline found in patients with PD.
Collapse
Affiliation(s)
- R Garrett Morgan
- Department of Pathology, University of Washington School of Medicine, University of Washington, Box 357470, Seattle, WA 98195, USA
| | - Jeffrey T Gibbs
- Department of Pathology, University of Washington School of Medicine, University of Washington, Box 357470, Seattle, WA 98195, USA
| | - Erica J Melief
- Department of Pathology, University of Washington School of Medicine, University of Washington, Box 357470, Seattle, WA 98195, USA
| | - Nadia O Postupna
- Department of Pathology, University of Washington School of Medicine, University of Washington, Box 357470, Seattle, WA 98195, USA
| | - Emily E Sherfield
- Department of Pathology, University of Washington School of Medicine, University of Washington, Box 357470, Seattle, WA 98195, USA
| | - Angela Wilson
- Department of Pathology, University of Washington School of Medicine, University of Washington, Box 357470, Seattle, WA 98195, USA
| | - C Dirk Keene
- Department of Pathology, University of Washington School of Medicine, University of Washington, Box 357470, Seattle, WA 98195, USA
| | - Thomas J Montine
- Department of Pathology, University of Washington School of Medicine, University of Washington, Box 357470, Seattle, WA 98195, USA
| | - Richard D Palmiter
- Department of Biochemistry, University of Washington School of Medicine, University of Washington, Box 357350, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington School of Medicine, University of Washington, Box 357350, Seattle, WA 98195, USA
| | - Martin Darvas
- Department of Pathology, University of Washington School of Medicine, University of Washington, Box 357470, Seattle, WA 98195, USA.
| |
Collapse
|