1
|
Zeng L, Tang Y, Zhang Y, Yue L, Ma G, Ye X, Yang L, Chen K, Zhou Q. The molecular mechanism underlying dermatomyositis related interstitial lung disease: evidence from bioinformatic analysis and in vivo validation. Front Immunol 2023; 14:1288098. [PMID: 37928522 PMCID: PMC10622801 DOI: 10.3389/fimmu.2023.1288098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Background Dermatomyositis (DM) is an autoimmune and inflammatory disease that can affect the lungs, causing interstitial lung diseases (ILD). However, the exact pathophysiological mechanisms underlying DM-ILD are unknown. Idiopathic pulmonary fibrosis (IPF) belongs to the broader spectrum of ILD and evidence shows that common pathologic pathways might lie between IPF and DM-ILD. Methods We retrieved gene expression profiles of DM and IPF from the Gene Expression Omnibus (GEO) and utilized weighted gene co-expression network analysis (WGCNA) to reveal their co-expression modules. We then performed a differentially expressed gene (DEG) analysis to identify common DEGs. Enrichment analyses were employed to uncover the hidden biological pathways. Additionally, we conducted protein-protein interaction (PPI) networks analysis, cluster analysis, and successfully found the hub genes, whose levels were further validated in DM-ILD patients. We also examined the relationship between hub genes and immune cell abundance in DM and IPF. Finally, we conducted a common transcription factors (TFs)-genes network by NetworkAnalyst. Results WGCNA revealed 258 intersecting genes, while DEG analysis identified 66 shared genes in DM and IPF. All of these genes were closely related to extracellular matrix and structure, cell-substrate adhesion, and collagen metabolism. Four hub genes (POSTN, THBS2, COL6A1, and LOXL1) were derived through intersecting the top 30 genes of the WGCNA and DEG sets. They were validated as active transcripts and showed diagnostic values for DM and IPF. However, ssGSEA revealed distinct infiltration patterns in DM and IPF. These four genes all showed a positive correlation with immune cells abundance in DM, but not in IPF. Finally, we identified one possible key transcription factor, MYC, that interact with all four hub genes. Conclusion Through bioinformatics analysis, we identified common hub genes and shared molecular pathways underlying DM and IPF, which provides valuable insights into the intricate mechanisms of these diseases and offers potential targets for diagnostic and therapeutic interventions.
Collapse
Affiliation(s)
- Li Zeng
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yiping Tang
- Department of Internal Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yichen Zhang
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Li Yue
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gang Ma
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xumin Ye
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Southwest Medical University, Luzhou, China
| | - Lijing Yang
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Kai Chen
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiao Zhou
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
2
|
Huang BZ, Ling Q, Xu SH, Zou J, Zang MM, Liao XL, Wei H, Ying P, Pei CG, Shao Y. Retinal microvascular and microstructural alterations in the diagnosis of dermatomyositis: a new approach. Front Med (Lausanne) 2023; 10:1164351. [PMID: 37305140 PMCID: PMC10248420 DOI: 10.3389/fmed.2023.1164351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Purpose To study the relationship between fundus alterations, including retinal thickness and microvascular changes, and dermatomyositis (DM) using optical coherence tomography angiography (OCTA). Methods A total of 16 patients with DM (32 eyes) and 16 healthy controls (HCs; 32 eyes) participated in this study. Based on the Early Treatment Diabetic Retinopathy Study subzones, OCTA fundus data were divided into different layers and regions for comparison. Results The full retinal thickness (RT) in the inner nasal (IN), outer nasal (ON), inner inferior (II), and outer inferior (OI) regions of patients with DM was significantly lower than that of HCs (P < 0.001). The inner layer RT was also significantly lower in the IN, ON, II, and OI regions in patients with DM (P < 0.001). The outer layer RT was lower only in the II region in patients with DM compared to HCs (P < 0.001). The full RT of the II region was more sensitive to the pathological changes of disease since its ROC curve had an AUC of 0.9028, 95% CI: 0.8159-0.9898. Meanwhile, the superficial vessel density (SVD) of patients with DM was significantly lower in the IN, ON, II, and OI regions compared to HCs (P < 0.001). The AUC for region II was 0.9634 (95% CI: 0.9034-1.0), which indicated good diagnostic sensitivity. Conclusion Optical coherence tomography angiography can be used to evaluate relevant ocular lesions and monitor disease progression in patients with DM and interstitial lung disease.
Collapse
Affiliation(s)
- Bo-Zhi Huang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qian Ling
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - San-Hua Xu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jie Zou
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Miao-Miao Zang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xu-Lin Liao
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hong Wei
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ping Ying
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chong-Gang Pei
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Pirfenidone mitigates TGF-β1-mediated fibrosis in an idiopathic inflammatory myositis-associated interstitial lung disease model. Cytokine 2022; 154:155899. [DOI: 10.1016/j.cyto.2022.155899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/23/2022] [Indexed: 11/18/2022]
|
4
|
Yoon MC, Christy MP, Phan VV, Gerwick WH, Hook G, O'Donoghue AJ, Hook V. Molecular Features of CA-074 pH-Dependent Inhibition of Cathepsin B. Biochemistry 2022; 61:228-238. [PMID: 35119840 DOI: 10.1021/acs.biochem.1c00684] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CA-074 is a selective inhibitor of cathepsin B, a lysosomal cysteine protease. CA-074 has been utilized in numerous studies to demonstrate the role of this protease in cellular and physiological functions. Cathepsin B in numerous human disease mechanisms involves its translocation from acidic lysosomes of pH 4.6 to neutral pH 7.2 of cellular locations, including the cytosol and extracellular environment. To gain in-depth knowledge of CA-074 inhibition under these different pH conditions, this study evaluated the molecular features, potency, and selectivity of CA-074 for cathepsin B inhibition under acidic and neutral pH conditions. This study demonstrated that CA-074 is most effective at inhibiting cathepsin B at an acidic pH of 4.6 with nM potency, which was more than 100-fold more potent than its inhibition at a neutral pH of 7.2. The pH-dependent inhibition of CA-074 was abolished by methylation of its C-terminal proline, indicating the requirement for the free C-terminal carboxyl group for pH-dependent inhibition. Under these acidic and neutral pH conditions, CA-074 maintained its specificity for cathepsin B over other cysteine cathepsins, displayed irreversible inhibition, and inhibited diverse cleavages of peptide substrates of cathepsin B assessed by profiling mass spectrometry. Molecular docking suggested that pH-dependent ionic interactions of the C-terminal carboxylate of CA-074 occur with His110 and His111 residues in the S2' subsite of the enzyme at pH 4.6, but these interactions differ at pH 7.2. While high levels of CA-074 or CA-074Me (converted by cellular esterases to CA-074) are used in biological studies to inhibit cathepsin B at both acidic and neutral pH locations, it is possible that adjusted levels of CA-074 or CA-074Me may be explored to differentially affect cathepsin B activity at these different pH values. Overall, the results of this study demonstrate the molecular, kinetic, and protease specificity features of CA-074 pH-dependent inhibition of cathepsin B.
Collapse
Affiliation(s)
- Michael C Yoon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0021, United States.,Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093-0021, United States
| | - Mitchell P Christy
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0021, United States
| | - Von V Phan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0021, United States.,Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093-0021, United States
| | - William H Gerwick
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0021, United States
| | - Gregory Hook
- American Life Sciences Pharmaceuticals, Inc., La Jolla, California 92037-5149, United States
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0021, United States
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0021, United States.,Department of Neurosciences and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0021, United States
| |
Collapse
|
5
|
Ding X, Ye N, Qiu M, Guo H, Li J, Zhou X, Yang M, Xi J, Liang Y, Gong Y, Li J. Cathepsin B is a potential therapeutic target for coronavirus disease 2019 patients with lung adenocarcinoma. Chem Biol Interact 2022; 353:109796. [PMID: 35007526 PMCID: PMC8739361 DOI: 10.1016/j.cbi.2022.109796] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/16/2021] [Accepted: 01/03/2022] [Indexed: 02/09/2023]
Abstract
Coronavirus disease 2019 (COVID-19) was declared a serious global public health emergency. Hospitalization and mortality rates of lung cancer patients diagnosed with COVID-19 are higher than those of patients presenting with other cancers. However, the reasons for the outcomes being disproportionately severe in lung adenocarcinoma (LUAD) patients with COVID-19 remain elusive. The present study aimed to identify the possible causes for disproportionately severe COVID-19 outcomes in LUAD patients and determine a therapeutic target for COVID-19 patients with LUAD. We used publicly available data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and various bioinformatics tools to identify and analyze the genes implicated in SARS-CoV-2 infection in LUAD patients. Upregulation of the SARS-CoV-2 infection-related molecules dipeptidyl peptidase 4, basigin, cathepsin B (CTSB), methylenetetrahydrofolate dehydrogenase, and peptidylprolyl isomerase B rather than angiotensin-converting enzyme 2 may explain the relatively high susceptibility of LUAD patients to SARS-CoV-2 infection. CTSB was highly expressed in the LUAD tissues after SARS-CoV-2 infection, and its expression was positively correlated with immune cell infiltration and proinflammatory cytokine expression. These findings suggest that CTSB plays a vital role in the hyperinflammatory response in COVID-19 patients with LUAD and is a promising target for the development of a novel drug therapy for COVID-19 patients.
Collapse
Affiliation(s)
- Xiaoyan Ding
- College of Basic Medicine, Army Medical University, Chongqing, 400038, China
| | - Nan Ye
- College of Basic Medicine, Army Medical University, Chongqing, 400038, China
| | - Minyue Qiu
- College of Basic Medicine, Army Medical University, Chongqing, 400038, China
| | - Hongxia Guo
- College of Basic Medicine, Army Medical University, Chongqing, 400038, China
| | - Junjie Li
- College of Basic Medicine, Army Medical University, Chongqing, 400038, China
| | - Xiaoyang Zhou
- College of Basic Medicine, Army Medical University, Chongqing, 400038, China
| | - Maocheng Yang
- College of Basic Medicine, Army Medical University, Chongqing, 400038, China
| | - Jing Xi
- College of Basic Medicine, Army Medical University, Chongqing, 400038, China
| | - Yongjie Liang
- College of Basic Medicine, Army Medical University, Chongqing, 400038, China
| | - Yuanxin Gong
- College of Basic Medicine, Army Medical University, Chongqing, 400038, China
| | - Jintao Li
- College of Basic Medicine, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
6
|
Shi J, Tang M, Zhou S, Xu D, Zhao J, Wu C, Wang Q, Tian X, Li M, Zeng X. Programmed Cell Death Pathways in the Pathogenesis of Idiopathic Inflammatory Myopathies. Front Immunol 2021; 12:783616. [PMID: 34899749 PMCID: PMC8651702 DOI: 10.3389/fimmu.2021.783616] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022] Open
Abstract
Idiopathic inflammatory myopathy (IIM) is a heterogeneous group of acquired, autoimmune muscle diseases characterized by muscle inflammation and extramuscular involvements. Present literatures have revealed that dysregulated cell death in combination with impaired elimination of dead cells contribute to the release of autoantigens, damage-associated molecular patterns (DAMPs) and inflammatory cytokines, and result in immune responses and tissue damages in autoimmune diseases, including IIMs. This review summarizes the roles of various forms of programmed cell death pathways in the pathogenesis of IIMs and provides evidence for potential therapeutic targets.
Collapse
Affiliation(s)
- Jia Shi
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
| | - Mingwei Tang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
| | - Shuang Zhou
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
| | - Dong Xu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
| | - Jiuliang Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
| | - Chanyuan Wu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
| | - Qian Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
| | - Xinping Tian
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
| |
Collapse
|
7
|
Brugiere O, Verleden SE. Putting the spotlight on macrophage-derived cathepsin in the pathophysiology of obliterative bronchiolitis. Eur Respir J 2021; 57:57/5/2004607. [PMID: 33985982 DOI: 10.1183/13993003.04607-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/19/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Olivier Brugiere
- Lung Transplant Dept, Foch Hospital, Suresnes, France .,Inserm UMR S 1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Paris, France
| | | |
Collapse
|
8
|
Yu J, Zhu H, Taheri S, Mondy W, Perry S, Kirstein C, Kindy MS. Effects of GrandFusion Diet on Cognitive Impairment in Transgenic Mouse Model of Alzheimer's Disease. Nutrients 2020; 13:nu13010117. [PMID: 33396967 PMCID: PMC7824640 DOI: 10.3390/nu13010117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 12/17/2022] Open
Abstract
Alzheimer’s disease (AD) is the result of the deposition of amyloid β (Aβ) peptide into amyloid fibrils and tau into neurofibrillary tangles. At the present time, there are no possible treatments for the disease. We have recently shown that diets enriched in phytonutrients show protection or limit the extent of damage in a number of neurological disorders. GrandFusion (GF) diets have attenuated the outcomes in animal models of traumatic brain injury, cerebral ischemia, and chronic traumatic encephalopathy. In this study, we investigated the effect of GF diets in a mouse model of AD prior to the development of amyloid plaques to show how this treatment paradigm would alter the accumulation of Aβ peptide and related pathologic changes (i.e., inflammation, cathepsin B, and memory impairment). Administration of GF diets (2–4%) over a period of four months in APP/ΔPS1 double-transgenic mice resulted in attenuation in Aβ peptide levels, reduction of amyloid load, and inflammation, increased cathepsin B expression, and improved spatial orientation. Additionally, treatment with GF diets increased nerve growth factor (NGF) levels in the brain and tempered the memory impairment in the animal model. These data suggest that GF diets may alter the development and progression of the mechanisms associated with the disease process to effectively modify AD pathogenesis.
Collapse
Affiliation(s)
- Jin Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33620, USA; (J.Y.); (H.Z.); (S.T.); (W.M.)
| | - Hong Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33620, USA; (J.Y.); (H.Z.); (S.T.); (W.M.)
| | - Saeid Taheri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33620, USA; (J.Y.); (H.Z.); (S.T.); (W.M.)
| | - William Mondy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33620, USA; (J.Y.); (H.Z.); (S.T.); (W.M.)
| | | | - Cheryl Kirstein
- Department of Psychology, College of Arts and Sciences, University of South Florida, Tampa, FL 33620, USA;
| | - Mark S. Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33620, USA; (J.Y.); (H.Z.); (S.T.); (W.M.)
- Department of Psychology, College of Arts and Sciences, University of South Florida, Tampa, FL 33620, USA;
- James A. Haley Veterans Administration Medical Center, Research, Tampa, FL 33612, USA
- Shriners Hospital for Children, Research, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-974-1468
| |
Collapse
|
9
|
Kryczka J, Papiewska-Pajak I, Kowalska MA, Boncela J. Cathepsin B Is Upregulated and Mediates ECM Degradation in Colon Adenocarcinoma HT29 Cells Overexpressing Snail. Cells 2019; 8:cells8030203. [PMID: 30818851 PMCID: PMC6468499 DOI: 10.3390/cells8030203] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/08/2019] [Accepted: 02/20/2019] [Indexed: 12/16/2022] Open
Abstract
During tumor development and ongoing metastasis the acquisition of mesenchymal cell traits by epithelial carcinoma cells is achieved through a programmed phenotypic shift called the epithelial-to-mesenchymal transition, EMT. EMT contributes to increased cancer cell motility and invasiveness mainly through invadosomes, the adhesion structures that accompany the mesenchymal migration. The invadosomes and their associated proteases restrict protease activity to areas of the cell in direct contact with the ECM, thus precisely controlling cell invasion. Our data prove that Snail-overexpressing HT-29 cells that imitate the phenotype of colon cancer cells in the early stage of the EMT showed an increase in the expression and pericellular activity of cathepsin B. It appears that the pericellular localization of cathepsin B, also observed in colon and rectum adenocarcinoma tissue samples, plays a key role in its function.
Collapse
Affiliation(s)
- Jakub Kryczka
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland.
| | | | - M Anna Kowalska
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland.
| | - Joanna Boncela
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland.
| |
Collapse
|
10
|
Zuo X, Hou Q, Jin J, Chen X, Zhan L, Tang Y, Shi Z, Sun W, Xu E. Inhibition of Cathepsins B Induces Neuroprotection Against Secondary Degeneration in Ipsilateral Substantia Nigra After Focal Cortical Infarction in Adult Male Rats. Front Aging Neurosci 2018; 10:125. [PMID: 29867438 PMCID: PMC5954112 DOI: 10.3389/fnagi.2018.00125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 04/13/2018] [Indexed: 11/27/2022] Open
Abstract
Stroke is the leading cause of adult disability in the world. In general, recovery from stroke is incomplete. Accumulating evidences have shown that focal cerebral infarction leads to dynamic trans-neuronal degeneration in non-ischemic remote brain regions, with the disruption of connections to synapsed neurons sustaining ischemic insults. Previously, we had reported that the ipsilateral striatum, thalamus degenerated in succession after permanent distal branch of middle cerebral artery occlusion (dMCAO) in Sprague-Dawley (SD) rats and cathepsin (Cath) B was activated before these relay degeneration. Here, we investigate the role of CathB in the secondary degeneration of ipsilateral substantia nigra (SN) after focal cortical infarction. We further examined whether the inhibition of CathB with L-3-trans-(Propyl-carbamoyloxirane-2-carbonyl)-L-isoleucyl-L-proline methyl ester (CA-074Me) would attenuate secondary degeneration through enhancing the cortico-striatum-nigral connections and contribute to the neuroprotective effects. Our results demonstrated that secondary degeneration in the ipsilateral SN occurred and CathB was upregulated in the ipsilateral SN after focal cortical infarction. The inhibition of CathB with CA-074Me reduced the neuronal loss and gliosis in the ipsilateral SN. Using biotinylated dextran amine (BDA) or pseudorabies virus (PRV) 152 as anterograde or retrograde tracer to trace striatum-nigral and cortico-nigral projections pathway, CA-074Me can effectively enhance the cortico-striatum-nigral connections and exert neuroprotection against secondary degeneration in the ipsilateral SN after cortical ischemia. Our study suggests that the lysosomal protease CathB mediates the secondary damage in the ipsilateral SN after dMCAO, thus it can be a promising neuroprotective target for the rehabilitation of stroke patients.
Collapse
Affiliation(s)
- Xialin Zuo
- Institute of Neurosciences and Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, The Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Qinghua Hou
- Institute of Neurosciences and Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, The Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China.,Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jizi Jin
- Institute of Neurosciences and Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, The Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Xiaohui Chen
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lixuan Zhan
- Institute of Neurosciences and Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, The Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Yanyan Tang
- Institute of Neurosciences and Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, The Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Zhe Shi
- Institute of Neurosciences and Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, The Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Weiwen Sun
- Institute of Neurosciences and Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, The Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - En Xu
- Institute of Neurosciences and Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, The Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| |
Collapse
|
11
|
Kim YI, Shin HW, Chun YS, Cho CH, Koh J, Chung DH, Park JW. Epithelial cell-derived cytokines CST3 and GDF15 as potential therapeutics for pulmonary fibrosis. Cell Death Dis 2018; 9:506. [PMID: 29724997 PMCID: PMC5938700 DOI: 10.1038/s41419-018-0530-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 12/22/2022]
Abstract
While wound healing is completed, the epithelium functions to normalize the interstitial context by eliminating fibroblasts excited during matrix reconstruction. If not, tissues undergo pathologic fibrosis. Pulmonary fibrosis is a fatal and hardly curable disorder. We here tried to identify epithelium-derived cytokines capable of ameliorating pulmonary fibrosis. Human lung fibroblasts were inactivated in epithelial cell-conditioned media. Cystatin C (CST3) and growth differentiation factor 15 (GDF15) were found to be enriched in the conditioned media and to inhibit the growth and activation of lung fibroblasts by inactivating the TGF–Smad pathway. In mouse and human lungs with interstitial fibrosis, CST3 and GDF15 expressions were markedly reduced, and the restoration of these cytokines alleviated the fibrotic changes in mouse lungs. These results suggest that CST3 and GDF15 are bona fide regulators to prevent excessive proliferation and activation of fibroblasts in injured lungs. These cytokines could be potential therapeutics for ameliorating interstitial lung fibrosis.
Collapse
Affiliation(s)
- Young-Im Kim
- Department of Biomedical Sciences, BK21-plus Education Program, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun-Woo Shin
- Department of Biomedical Sciences, BK21-plus Education Program, Seoul National University College of Medicine, Seoul, Korea.,Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yang-Sook Chun
- Department of Biomedical Sciences, BK21-plus Education Program, Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Chung-Hyun Cho
- Department of Biomedical Sciences, BK21-plus Education Program, Seoul National University College of Medicine, Seoul, Korea.,Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jaemoon Koh
- Department of Pathology, Seoul National University Hospital, Seoul, Korea
| | - Doo Hyun Chung
- Department of Biomedical Sciences, BK21-plus Education Program, Seoul National University College of Medicine, Seoul, Korea.,Department of Pathology, Seoul National University Hospital, Seoul, Korea
| | - Jong-Wan Park
- Department of Biomedical Sciences, BK21-plus Education Program, Seoul National University College of Medicine, Seoul, Korea. .,Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea. .,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
12
|
Wang Y, Jia L, Shen J, Wang Y, Fu Z, Su SA, Cai Z, Wang JA, Xiang M. Cathepsin B aggravates coxsackievirus B3-induced myocarditis through activating the inflammasome and promoting pyroptosis. PLoS Pathog 2018; 14:e1006872. [PMID: 29360865 PMCID: PMC5809100 DOI: 10.1371/journal.ppat.1006872] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 02/12/2018] [Accepted: 01/09/2018] [Indexed: 12/22/2022] Open
Abstract
Cathepsin B (CatB) is a cysteine proteolytic enzyme widely expressed in various cells and mainly located in the lysosomes. It contributes to the pathogenesis and development of many diseases. However, the role of CatB in viral myocarditis (VMC) has never been elucidated. Here we generated the VMC model by intraperitoneal injection of coxsackievirus B3 (CVB3) into mice. At day 7 and day 28, we found CatB was significantly activated in hearts from VMC mice. Compared with the wild-type mice receiving equal amount of CVB3, genetic ablation of CatB (Ctsb-/-) significantly improved survival, reduced inflammatory cell infiltration, decreased serum level of cardiac troponin I, and ameliorated cardiac dysfunction, without altering virus titers in hearts. Conversely, genetic deletion of cystatin C (Cstc-/-), which markedly enhanced CatB levels in hearts, distinctly increased the severity of VMC. Furthermore, compared with the control, we found the inflammasome was activated in the hearts of wild-type mice with VMC, which was attenuated in the hearts of Ctsb-/- mice but was further enhanced in Cstc-/- mice. Consistently, the inflammasome-initiated pyroptosis was reduced in Ctsb-/- mice hearts and further increased in Cstc-/- mice. These results suggest that CatB aggravates CVB3-induced VMC probably through activating the inflammasome and promoting pyroptosis. This finding might provide a novel strategy for VMC treatment. Severe VMC could lead to sudden cardiac death especially in youths, and is also the most common cause of secondary dilated cardiomyopathy. However, we still lack effective and specific clinical treatments currently. Therefore, further exploration of the pathogenesis and new therapeutic targets are urgently needed. Our results implied that CatB, a cysteine protease mainly located in the lysosome, is activated in the hearts of mice with VMC induced by intraperitoneal injection of CVB3. Genetic deletion of CatB significantly improves survival, attenuates cardiac inflammation, decreases serum cardiac troponin I levels and alleviates cardiac dysfunction, without altering virus titers in hearts. However, ablation of its main endogenous inhibitor, cystatin C, distinctly exaggerates the disease severity. Mechanistically, we found that CatB influences VMC probably by activating the NLRP3 inflammasome and promoting caspase-1-induced pyroptosis. This may provide a potential new therapeutic strategy for VMC.
Collapse
Affiliation(s)
- Yaping Wang
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Cardiovascular Key Lab of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Liangliang Jia
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Cardiovascular Key Lab of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jian Shen
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Cardiovascular Key Lab of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yidong Wang
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Cardiovascular Key Lab of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zurong Fu
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Cardiovascular Key Lab of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Sheng-an Su
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Cardiovascular Key Lab of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhejun Cai
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Cardiovascular Key Lab of Zhejiang Province, Hangzhou, Zhejiang, China
- * E-mail: (MX); (ZC)
| | - Jian-an Wang
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Cardiovascular Key Lab of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Meixiang Xiang
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Cardiovascular Key Lab of Zhejiang Province, Hangzhou, Zhejiang, China
- * E-mail: (MX); (ZC)
| |
Collapse
|
13
|
Downs CA, Dang VD, Johnson NM, Denslow N, Alli AA. Hydrogen Peroxide Stimulates Exosomal Cathepsin B Regulation of the Receptor for Advanced Glycation End-Products (RAGE). J Cell Biochem 2018; 119:599-606. [PMID: 28618037 PMCID: PMC11632669 DOI: 10.1002/jcb.26219] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/14/2017] [Indexed: 01/03/2023]
Abstract
Exosomes are nano-sized vesicles that are secreted into the extracellular environment. These vesicles contain various biological effector molecules that can regulate intracellular signaling pathways in recipient cells. The aim of this study was to examine a correlation between exosomal cathepsin B activity and the receptor for advanced glycation end-products (RAGE). Type 1 alveolar epithelial (R3/1) cells were treated with or without hydrogen peroxide and exosomes isolated from the cell conditioned media were characterized by NanoSight analysis. Lipidomic and proteomic analysis showed exosomes released from R3/1 cells exposed to oxidative stress induced by hydrogen peroxide or vehicle differ in their lipid and protein content, respectively. Cathepsin B activity was detected in exosomes isolated from hydrogen peroxide treated cells. The mRNA and protein expression of RAGE increased in cultured R3/1 cells treated with exosomes containing active cathepsin B while depletion of exosomal cathepsin B attenuated RAGE mRNA and protein expression. These results suggest exosomal cathepsin B regulates RAGE in type 1 alveolar cells under conditions of oxidative stress. J. Cell. Biochem. 119: 599-606, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Charles A. Downs
- College of Nursing, Biobehavioral Healthscience Division & College of Medicine, Department of Medicine Division of Translational & Regenerative Medicine, The University of Arizona, Tucson, AZ
| | - Viet D. Dang
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville Florida
| | - Nicholle M Johnson
- College of Nursing, Biobehavioral Healthscience Division & College of Medicine, Department of Medicine Division of Translational & Regenerative Medicine, The University of Arizona, Tucson, AZ
| | - Nancy Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville Florida
| | - Abdel A. Alli
- Department of Physiology and Functional Genomics and Department of Medicine Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville Florida
| |
Collapse
|
14
|
Cocchiaro P, De Pasquale V, Della Morte R, Tafuri S, Avallone L, Pizard A, Moles A, Pavone LM. The Multifaceted Role of the Lysosomal Protease Cathepsins in Kidney Disease. Front Cell Dev Biol 2017; 5:114. [PMID: 29312937 PMCID: PMC5742100 DOI: 10.3389/fcell.2017.00114] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/07/2017] [Indexed: 12/18/2022] Open
Abstract
Kidney disease is worldwide the 12th leading cause of death affecting 8–16% of the entire population. Kidney disease encompasses acute (short-lasting episode) and chronic (developing over years) pathologies both leading to renal failure. Since specific treatments for acute or chronic kidney disease are limited, more than 2 million people a year require dialysis or kidney transplantation. Several recent evidences identified lysosomal proteases cathepsins as key players in kidney pathophysiology. Cathepsins, originally found in the lysosomes, exert important functions also in the cytosol and nucleus of cells as well as in the extracellular space, thus participating in a wide range of physiological and pathological processes. Based on their catalytic active site residue, the 15 human cathepsins identified up to now are classified in three different families: serine (cathepsins A and G), aspartate (cathepsins D and E), or cysteine (cathepsins B, C, F, H, K, L, O, S, V, X, and W) proteases. Specifically in the kidney, cathepsins B, D, L and S have been shown to regulate extracellular matrix homeostasis, autophagy, apoptosis, glomerular permeability, endothelial function, and inflammation. Dysregulation of their expression/activity has been associated to the onset and progression of kidney disease. This review summarizes most of the recent findings that highlight the critical role of cathepsins in kidney disease development and progression. A better understanding of the signaling pathways governed by cathepsins in kidney physiopathology may yield novel selective biomarkers or therapeutic targets for developing specific treatments against kidney disease.
Collapse
Affiliation(s)
- Pasquale Cocchiaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,Faculty of Medicine, Institut National de la Santé Et de la Recherche Médicale, "Défaillance Cardiaque Aigüe et Chronique", Nancy, France.,Université de Lorraine, Nancy, France.,Institut Lorrain du Coeur et des Vaisseaux, Center for Clinical Investigation 1433, Nancy, France.,CHRU de Nancy, Hôpitaux de Brabois, Nancy, France
| | - Valeria De Pasquale
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Rossella Della Morte
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Simona Tafuri
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Anne Pizard
- Faculty of Medicine, Institut National de la Santé Et de la Recherche Médicale, "Défaillance Cardiaque Aigüe et Chronique", Nancy, France.,Université de Lorraine, Nancy, France.,Institut Lorrain du Coeur et des Vaisseaux, Center for Clinical Investigation 1433, Nancy, France.,CHRU de Nancy, Hôpitaux de Brabois, Nancy, France
| | - Anna Moles
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
15
|
Li X, Zhu L, Wang B, Yuan M, Zhu R. Drugs and Targets in Fibrosis. Front Pharmacol 2017; 8:855. [PMID: 29218009 PMCID: PMC5703866 DOI: 10.3389/fphar.2017.00855] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/08/2017] [Indexed: 01/18/2023] Open
Abstract
Fibrosis contributes to the development of many diseases and many target molecules are involved in fibrosis. Currently, the majority of fibrosis treatment strategies are limited to specific diseases or organs. However, accumulating evidence demonstrates great similarities among fibroproliferative diseases, and more and more drugs are proved to be effective anti-fibrotic therapies across different diseases and organs. Here we comprehensively review the current knowledge on the pathological mechanisms of fibrosis, and divide factors mediating fibrosis progression into extracellular and intracellular groups. Furthermore, we systematically summarize both single and multiple component drugs that target fibrosis. Future directions of fibrosis drug discovery are also proposed.
Collapse
Affiliation(s)
- Xiaoyi Li
- Department of Gastroenterology, School of Life Sciences and Technology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Lixin Zhu
- Department of Pediatrics, Digestive Diseases and Nutrition Center, State University of New York at Buffalo, Buffalo, NY, United States
- Genome, Environment and Microbiome Community of Excellence, State University of New York at Buffalo, Buffalo, NY, United States
| | - Beibei Wang
- Department of Gastroenterology, School of Life Sciences and Technology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Meifei Yuan
- Center for Drug Discovery, SINO High Goal Chemical Technology Co., Ltd., Shanghai, China
| | - Ruixin Zhu
- Department of Gastroenterology, School of Life Sciences and Technology, Shanghai East Hospital, Tongji University, Shanghai, China
| |
Collapse
|
16
|
Abstract
Proteases target many substrates, triggering changes in distinct biological processes correlated with cell migration, EMT/EndMT and fibrosis. Extracellular protease activity, demonstrated by secreted and membrane-bound protease forms, leads to ECM degradation, activation of other proteases (i.e., proteolysis of nonactive zymogens), decomposition of cell-cell junctions, release of sequestered growth factors (TGF-β and VEGF), activation of signal proteins and receptors, degradation of inflammatory inhibitors or inflammation-related proteins, and changes in cell mechanosensing and motility. Intracellular proteases, mainly caspases and cathepsins, modulate lysosome activity and signal transduction pathways. Herein, we discuss the current knowledge on the multidimensional impact of proteases on the development of fibrosis.
Collapse
|
17
|
Ketcham CM, Umezawa A, Zou H, Siegal GP. Laboratory Investigation web focus on China. J Transl Med 2016; 96:1144-1146. [PMID: 27777411 DOI: 10.1038/labinvest.2016.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The vast growth of China's publishing output is a reflection of the increasing strength of Chinese science. The editors of Laboratory Investigation (LI) present a collection of papers that showcases research by authors from institutions across China, highlighting the significant contributions of Chinese scientists to the journal.
Collapse
Affiliation(s)
| | - Akihiro Umezawa
- Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan
| | - Hejian Zou
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Gene P Siegal
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
18
|
Zhang L, Wu G, Gao D, Liu G, Pan L, Ni L, Li Z, Wang Q. Factors Associated with Interstitial Lung Disease in Patients with Polymyositis and Dermatomyositis: A Systematic Review and Meta-Analysis. PLoS One 2016; 11:e0155381. [PMID: 27171228 PMCID: PMC4865124 DOI: 10.1371/journal.pone.0155381] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 04/27/2016] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Interstitial lung disease (ILD) is an extramuscular manifestation that results in increased morbidity and mortality from polymyositis (PM) and dermatomyositis (DM). The aim of this study was to systematically evaluate risk factors associated with the development of ILD in PM/DM. METHODS Observational studies were identified from searching PubMed, Medline, Embase, and the Cochrane Library. Pooled odds ratios (ORs) or standardized mean differences (SMDs) and corresponding 95% confidence intervals (CIs) were obtained for the relationships between risk factors and ILD in PM/DM using either fixed- or random-effects models, whichever were appropriate. Heterogeneity tests, sensitivity analyses, and publication bias assessments were also performed. RESULTS Twenty-three studies were selected for a meta-analysis that included 834 patients and 1245 control subjects. Risk factors that may have increased the risk of developing ILD in PM/DM patients included older age at diagnosis (SMD, 0.35; 95% CI, 0.18-0.52; P < 0.0001), arthritis/arthralgia (OR, 3.17; 95% CI, 1.99-5.04; P < 0.00001), fever (OR, 2.31; 95% CI, 1.42-3.76; P = 0.0007), presence of anti-Jo-1 antibodies (OR, 3.34; 95% CI, 2.16-5.16; P < 0.00001), elevated erythrocyte sedimentation rate (ESR; SMD, 0.48; 95% CI, 0.32-0.64; P < 0.00001), presence of anti-MDA5 antibodies (OR, 18.26; 95% CI, 9.66-34.51; P < 0.00001), and elevated C-reactive protein level (CRP; OR, 3.50; 95% CI, 1.48-8.28; P = 0.004). Meanwhile, malignancy (OR, 0.36; 95% CI, 0.18-0.72; P = 0.004) reduced the risk of developing ILD in PM/DM patients. CONCLUSION Our meta-analysis results suggest that the association between PM/DM and ILD may be due to such risk factors as older age at diagnosis, arthritis/arthralgia, fever, presence of anti-Jo-1 antibodies, elevated ESR, presence of anti-MDA5 antibodies, and elevated CRP level, while malignancy was associated with a reduced risk of developing ILD. Thus, these variables may be used to guide screening processes for ILD in patients with PM/DM.
Collapse
Affiliation(s)
- Li Zhang
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Guoqin Wu
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Di Gao
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Guijian Liu
- Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Lin Pan
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Liyan Ni
- Department of Dermatology, Shanghai Skin Diseases Hospital, Shanghai, P.R. China
| | - Zheng Li
- Department of Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Qiang Wang
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
- * E-mail:
| |
Collapse
|
19
|
Shi C, Zhang S, Hong S, Pang J, Yesibulati Y, Yin P, Zhuang G. The pro-apoptotic effects of TIPE2 on AA rat fibroblast-like synoviocytes via regulation of the DR5-caspase-NF-κB pathway in vitro. Onco Targets Ther 2016; 9:993-1000. [PMID: 27013892 PMCID: PMC4778775 DOI: 10.2147/ott.s92907] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
TIPE2, also known as TNFAIP8L2, a member of the tumor necrosis factor-alpha-induced protein-8 (TNFAIP8) family, is known as an inhibitor in inflammation and cancer, and its overexpression induces cell death. We examined the role of TIPE2 with respect to adjuvant arthritis (AA)-associated pathogenesis by analyzing the TIPE2 regulation of death receptor (DR5)-mediated apoptosis in vitro. The results showed that TIPE2 was detected in normal fibroblast-like synoviocytes (FLSs), but scarcely observed in AA-FLSs. Therefore, recombinant MIGR1/TIPE2+/+ and control MIGR1 lentivirus vectors were transfected to AA-FLSs, which were denoted as TIPE2+/+-FLSs and MIGR1-FLSs, respectively. Our results showed that TIPE2+/+-FLSs were highly susceptible to ZF1-mediated apoptosis, and ZF1 was our own purification of an anti-DR5 single chain variable fragment antibody. Under the presence of TIPE2, the expression of DR5 was significantly increased compared with that of the MIGR1-FLS group. In contrast, the level of phosphorylated nuclear factor-kappa B (pNF-κB) was lower in the TIPE2+/+-FLS group treated with ZF1, whereas the activity of caspase was higher. Moreover, the rate of apoptosis in the TIPE2+/+-FLS group, which was pretreated with caspase inhibitor Z-VAD-FMK, was significantly decreased. In contrast, the apoptosis occurrence in the MIGR1-FLS group increased significantly with the pretreatment of the NF-κB inhibitor Bay. These results indicated that TIPE2 increased the apoptosis of AA-FLSs by enhancing DR5 expression levels, thereby promoting the activation of caspase and inhibiting the activation of NF-κB in AA-FLSs. TIPE2 might potentially act as a therapeutic target for rheumatoid arthritis.
Collapse
Affiliation(s)
- Chunyan Shi
- Organ Transplantation Institute, Anti-Cancer Research Center, Medical College, Xiamen University, Xiamen, Fujian, People's Republic of China; The Department of Oncology, Jiujiang No. 1 People's Hospital, Jiujiang, Jiangxi City, People's Republic of China
| | - Shifeng Zhang
- Organ Transplantation Institute, Anti-Cancer Research Center, Medical College, Xiamen University, Xiamen, Fujian, People's Republic of China; Division of Gastroenterology Surgery, Zhongshan Hospital, Gastroenterology Institute of Xiamen University, Gastroenterology Center of Xiamen, Xiamen, Fujian, People's Republic of China
| | - Shifu Hong
- Organ Transplantation Institute, Anti-Cancer Research Center, Medical College, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Jinglong Pang
- Organ Transplantation Institute, Anti-Cancer Research Center, Medical College, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Yeletai Yesibulati
- Organ Transplantation Institute, Anti-Cancer Research Center, Medical College, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Ping Yin
- The Department of Pathology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Guohong Zhuang
- Organ Transplantation Institute, Anti-Cancer Research Center, Medical College, Xiamen University, Xiamen, Fujian, People's Republic of China
| |
Collapse
|
20
|
Hu Q, Yang C, Wang Q, Zeng H, Qin W. Demethylzeylasteral (T-96) Treatment Ameliorates Mice Lupus Nephritis Accompanied by Inhibiting Activation of NF-κB Pathway. PLoS One 2015. [PMID: 26208003 PMCID: PMC4514757 DOI: 10.1371/journal.pone.0133724] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Inflammation plays a vital role in the pathogenesis in lupus nephritis (LN), which is largely attributable to the activation of nuclear factor kappa B (NF-κB) signal pathway. NF-κB up-regulates pro-inflammatory mediators, such as TNF-α, cyclo-oxygenase-2 (COX-2) and ICAM-1, and promotes macrophage infiltration into renal tissue, further inducing the progression of LN. Over the past 30 years, research has demonstrated that Tripterygium wilfordii Hook F (TWHF) possesses potent anti-inflammatory and immunosuppressive activities, and that demethylzeylasteral (T-96), an extract of TWHF, may be one of the responsible compounds. Here, we investigate the pharmacodynamic role and therapeutic mechanism by which T-96 suppresses inflammation and reduces renal pathology in the lupus-prone MRL/lpr mice. Methods Forty-eight MRL/lpr mice were equally randomly divided into 6 groups (1.2, 0.6 or 0.3 mg/10g T-96, 0.022 pills/10g kang lang chuang san (one of Traditional Chinese herb as positive control), 0.125 mg/10g prednisone and 0.1 ml/10g normal saline as the LN disease control group). Also, eight WT C57BL/6 mice were used as normal control. After treatment by gavage with 0.10 ml/10g/day volumes for 8 weeks, all mice were sacrificed and renal tissues were collected. The amount of 24 h proteinuria and the levels of anti-dsDNA antibody in serum were assessed respectively at weeks 0, 4 and 8. Inflammation, cytokines and NF-κB levels were assessed by histological examinations, immunohistochemical analyses and Western blot analyses. Results In comparison with untreated MRL/lpr mice, mice treated with 1.2 and 0.6 mg/10g of T-96 showed a significant improvement in 24 h proteinuria and the levels of anti-dsDNA antibody in serum. In addition, T-96 reduced the secretion of pro-inflammatory mediators such as TNF-α, COX-2 and ICAM-1, and the infiltration of macrophages in renal tissue. Moreover, T-96 significantly suppressed phosphorylations of cytoplasmic IKK and nuclear p65. Conclusion This study suggests that T-96 exhibits reno-protective effects in LN accompanied by inhibiting the activation of NF-κB, reducing the downstream pro-inflammatory mediators and thus restricting macrophage infiltration. Because of these potent properties, T-96 should be considered as a promising therapeutic drug for LN.
Collapse
Affiliation(s)
- Qiongyi Hu
- Department of Dermatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Chunxin Yang
- Department of Pharmaceutical Chemistry, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- * E-mail: (CXY); (QW)
| | - Qiang Wang
- Department of Dermatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- * E-mail: (CXY); (QW)
| | - Haiying Zeng
- Department of Pathology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Wanzhang Qin
- Department of Dermatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
| |
Collapse
|