1
|
McElvaney OF, Fraughen DD, McElvaney OJ, Carroll TP, McElvaney NG. Alpha-1 antitrypsin deficiency: current therapy and emerging targets. Expert Rev Respir Med 2023; 17:191-202. [PMID: 36896570 DOI: 10.1080/17476348.2023.2174973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
INTRODUCTION Alpha1 antitrypsin deficiency (AATD), a common hereditary disorder affecting mainly lungs, liver and skin has been the focus of some of the most exciting therapeutic approaches in medicine in the past 5 years. In this review, we discuss the therapies presently available for the different manifestations of AATD and new therapies in the pipeline. AREAS COVERED We review therapeutic options for the individual lung, liver and skin manifestations of AATD along with approaches which aim to treat all three. Along with this renewed interest in treating AATD come challenges. How is AAT best delivered to the lung? What is the desired level of AAT in the circulation and lungs which therapeutics should aim to provide? Will treating the liver disease increase the potential for lung disease? Are there treatments to target the underlying genetic defect with the potential to prevent all aspects of AATDrelated disease? EXPERT OPINION With a relatively small population able to participate in clinical studies, increased awareness and diagnosis of AATD is urgently needed. Better, more sensitive clinical parameters will assist in the generation of acceptable and robust evidence of therapeutic effect for current and emerging treatments.
Collapse
Affiliation(s)
- Oisín F McElvaney
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Medicine, Beaumont Hospital, Dublin, Ireland
| | - Daniel D Fraughen
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Medicine, Beaumont Hospital, Dublin, Ireland
| | - Oliver J McElvaney
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Medicine, Beaumont Hospital, Dublin, Ireland
| | - Tomás P Carroll
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Medicine, Beaumont Hospital, Dublin, Ireland.,Alpha-1 Foundation Ireland, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Noel G McElvaney
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Medicine, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
2
|
Lorincz R, Alvarez AB, Walkey CJ, Mendonça SA, Lu ZH, Martinez AE, Ljungberg C, Heaney JD, Lagor WR, Curiel DT. In vivo editing of the pan-endothelium by immunity evading simian adenoviral vector. Biomed Pharmacother 2023; 158:114189. [PMID: 36587560 DOI: 10.1016/j.biopha.2022.114189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Biological applications deriving from the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 site-specific nuclease system continue to impact and accelerate gene therapy strategies. Safe and effective in vivo co-delivery of the CRISPR/Cas9 system to target somatic cells is essential in the clinical therapeutic context. Both non-viral and viral vector systems have been applied for this delivery matter. Despite elegant proof-of-principle studies, available vector technologies still face challenges that restrict the application of CRISPR/Cas9-facilitated gene therapy. Of note, the mandated co-delivery of the gene-editing components must be accomplished in the potential presence of pre-formed anti-vector immunity. Additionally, methods must be sought to limit the potential of off-target editing. To this end, we have exploited the molecular promiscuities of adenovirus (Ad) to address the key requirements of CRISPR/Cas9-facilitated gene therapy. In this regard, we have endeavored capsid engineering of a simian (chimpanzee) adenovirus isolate 36 (SAd36) to achieve targeted modifications of vector tropism. The SAd36 vector with the myeloid cell-binding peptide (MBP) incorporated in the capsid has allowed selective in vivo modifications of the vascular endothelium. Importantly, vascular endothelium can serve as an effective non-hepatic cellular source of deficient serum factors relevant to several inherited genetic disorders. In addition to allowing for re-directed tropism, capsid engineering of nonhuman primate Ads provide the means to circumvent pre-formed vector immunity. Herein we have generated a SAd36. MBP vector that can serve as a single intravenously administered agent allowing effective and selective in vivo editing for endothelial target cells of the mouse spleen, brain and kidney. DATA AVAILABILITY: The data that support the findings of this study are available from the corresponding author upon reasonable request.
Collapse
Affiliation(s)
- Reka Lorincz
- Department of Radiation Oncology, Biologic Therapeutics Center, Washington University School of Medicine, 660 South Euclid Avenue, Campus box 8224, St. Louis, MO 63110, USA
| | - Aluet Borrego Alvarez
- Department of Radiation Oncology, Biologic Therapeutics Center, Washington University School of Medicine, 660 South Euclid Avenue, Campus box 8224, St. Louis, MO 63110, USA
| | - Christopher J Walkey
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Samir A Mendonça
- Department of Radiation Oncology, Biologic Therapeutics Center, Washington University School of Medicine, 660 South Euclid Avenue, Campus box 8224, St. Louis, MO 63110, USA
| | - Zhi Hong Lu
- Department of Radiation Oncology, Biologic Therapeutics Center, Washington University School of Medicine, 660 South Euclid Avenue, Campus box 8224, St. Louis, MO 63110, USA
| | - Alexa E Martinez
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cecilia Ljungberg
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - William R Lagor
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - David T Curiel
- Department of Radiation Oncology, Biologic Therapeutics Center, Washington University School of Medicine, 660 South Euclid Avenue, Campus box 8224, St. Louis, MO 63110, USA.
| |
Collapse
|
3
|
Abstract
This Review examines the state-of-the-art in the delivery of nucleic acid therapies that are directed to the vascular endothelium. First, we review the most important homeostatic functions and properties of the vascular endothelium and summarize the nucleic acid tools that are currently available for gene therapy and nucleic acid delivery. Second, we consider the opportunities available with the endothelium as a therapeutic target and the experimental models that exist to evaluate the potential of those opportunities. Finally, we review the progress to date from investigations that are directly targeting the vascular endothelium: for vascular disease, for peri-transplant therapy, for angiogenic therapies, for pulmonary endothelial disease, and for the blood-brain barrier, ending with a summary of the future outlook in this field.
Collapse
Affiliation(s)
| | | | | | - W. Mark Saltzman
- Department of Biomedical Engineering
- Department of Chemical & Environmental Engineering
- Department of Cellular & Molecular Physiology
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06510
| |
Collapse
|
4
|
Lee M, Rice-Boucher PJ, Collins LT, Wagner E, Aulisa L, Hughes J, Curiel DT. A Novel Piggyback Strategy for mRNA Delivery Exploiting Adenovirus Entry Biology. Viruses 2022; 14:2169. [PMID: 36298724 PMCID: PMC9608319 DOI: 10.3390/v14102169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/01/2022] Open
Abstract
Molecular therapies exploiting mRNA vectors embody enormous potential, as evidenced by the utility of this technology for the context of the COVID-19 pandemic. Nonetheless, broad implementation of these promising strategies has been restricted by the limited repertoires of delivery vehicles capable of mRNA transport. On this basis, we explored a strategy based on exploiting the well characterized entry biology of adenovirus. To this end, we studied an adenovirus-polylysine (AdpL) that embodied "piggyback" transport of the mRNA on the capsid exterior of adenovirus. We hypothesized that the efficient steps of Ad binding, receptor-mediated entry, and capsid-mediated endosome escape could provide an effective pathway for transport of mRNA to the cellular cytosol for transgene expression. Our studies confirmed that AdpL could mediate effective gene transfer of mRNA vectors in vitro and in vivo. Facets of this method may offer key utilities to actualize the promise of mRNA-based therapeutics.
Collapse
Affiliation(s)
- Myungeun Lee
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Paul J. Rice-Boucher
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Logan Thrasher Collins
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Ernst Wagner
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany
| | - Lorenzo Aulisa
- GreenLight Biosciences, Inc., 200 Boston Ave. #3100, Medford, MA 02155, USA
| | - Jeffrey Hughes
- GreenLight Biosciences, Inc., 200 Boston Ave. #3100, Medford, MA 02155, USA
| | - David T. Curiel
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
5
|
Hurt SC, Dickson PI, Curiel DT. Mucopolysaccharidoses type I gene therapy. J Inherit Metab Dis 2021; 44:1088-1098. [PMID: 34189746 PMCID: PMC8525653 DOI: 10.1002/jimd.12414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022]
Abstract
Mucopolysaccharidoses type I (MPS I) is an inherited metabolic disease characterized by a malfunction of the α-l-iduronidase (IDUA) enzyme leading to the storage of glycosaminoglycans in the lysosomes. This disease has longtime been studied as a therapeutic target for those studying gene therapy and many studies have been done using various vectors to deliver the IDUA gene for corrective treatment. Many vectors have difficulties with efficacy and insertional mutagenesis concerns including adeno-associated viral (AAV) vectors. Studies of AAV vectors treating MPS I have seemed promising, but recent deaths in gene therapy clinical trials for other inherited diseases using AAV vectors have left questions about their safety. Additionally, the recent modifications to adenoviral vectors leading them to target the vascular endothelium minimizing the risk of hepatotoxicity could lead to them being a viable option for MPS I gene therapy when coupled with gene editing technologies like CRISPR/Cas9.
Collapse
Affiliation(s)
- Sarah C. Hurt
- Cancer Biology Division, Department of Radiation OncologyWashington University School of MedicineSt. LouisMissouriUSA
- Department of GeneticsWashington University School of MedicineSt. LouisMissouriUSA
| | - Patricia I. Dickson
- Department of GeneticsWashington University School of MedicineSt. LouisMissouriUSA
- Department of PediatricsWashington University School of MedicineSt. LouisMissouriUSA
| | - David T. Curiel
- Cancer Biology Division, Department of Radiation OncologyWashington University School of MedicineSt. LouisMissouriUSA
| |
Collapse
|
6
|
Cimolai N. Untangling the Intricacies of Infection, Thrombosis, Vaccination, and Antiphospholipid Antibodies for COVID-19. SN COMPREHENSIVE CLINICAL MEDICINE 2021; 3:2093-2108. [PMID: 34179695 PMCID: PMC8218573 DOI: 10.1007/s42399-021-00992-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
Advanced SARS-CoV-2 infections not uncommonly associate with the occurrence of silent or manifest thrombotic events which may be found as focal or systemic disease. Given the potential complexity of COVID-19 illnesses, a multifactorial causation is likely, but several studies have focused on infection-induced coagulopathy. Procoagulant states are commonly found in association with the finding of antiphospholipid antibodies. The correlation of the latter with thrombosis and/or clinical severity remains controversial. Although measures of antiphospholipid antibodies most commonly include assessments for lupus anticoagulant, anticardiolipin, and anti-ß2-glycoprotein-I antibodies, lesser common antibodies have been detected, and there remains speculation that other yet undiscovered autoimmune thrombotic events may yet be found. The recent discovery of post-vaccination thromboses associated with platelet factor 4 antibody has created another level of concern. The pathogenesis of antiphospholipid antibodies and their role in COVID-19-related thrombosis deserves further attention. The multifactorial nature of thrombosis associated with both infection and vaccination should continue to be studied as new events unfold. Even if a cause-and-effect relationship is variable at best, such dedicated research is likely to generate other valuable insights that are applicable to medicine generally.
Collapse
Affiliation(s)
- Nevio Cimolai
- Faculty of Medicine, The University of British Columbia, Vancouver, BC Canada
- Children’s and Women’s Health Centre of British Columbia, 4480 Oak Street, Vancouver, BC V6H3V4 Canada
| |
Collapse
|
7
|
Lee M, Lu ZH, Shoemaker CB, Tremblay JM, St Croix B, Seaman S, Gonzalez-Pastor R, Kashentseva EA, Dmitriev IP, Curiel DT. Advanced genetic engineering to achieve in vivo targeting of adenovirus utilizing camelid single domain antibody. J Control Release 2021; 334:106-113. [PMID: 33872627 DOI: 10.1016/j.jconrel.2021.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/11/2021] [Indexed: 11/27/2022]
Abstract
For the developing field of gene therapy the successful address of the basic requirement effective gene delivery has remained a critical barrier. In this regard, the "Holy Grail" vector envisioned by the field's pioneers embodied the ability to achieve efficient and specific in vivo gene delivery. Functional linkage of antibody selectivity with viral vector efficiency represented a logical strategy but has been elusive. Here we have addressed this key issue by developing the technical means to pair antibody-based targeting with adenoviral-mediated gene transfer. Our novel method allows efficient and specific gene delivery. Importantly, our studies validated the achievement of this key vectorology mandate in the context of in vivo gene delivery. Vectors capable of effective in vivo delivery embody the potential to dramatically expand the range of successful gene therapy cures.
Collapse
Affiliation(s)
- Myungeun Lee
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Zhi Hong Lu
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Charles B Shoemaker
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| | - Jacqueline M Tremblay
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| | - Bradley St Croix
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Steven Seaman
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Rebeca Gonzalez-Pastor
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Elena A Kashentseva
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Igor P Dmitriev
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - David T Curiel
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
8
|
Abstract
AAT (alpha-1 antitrypsin) deficiency (AATD), characterized by low levels of circulating serine protease inhibitor AAT, results in emphysematous destruction of the lung. Inherited serum deficiency disorders, such as hemophilia and AATD, have been considered ideal candidates for gene therapy. Although viral vector-meditated transduction of the liver has demonstrated utility in hemophilia, similar success has not been achieved for AATD. The challenge for AAT gene therapy is achieving protective levels of AAT locally in the lung and mitigating potential liver toxicities linked to systemically administered viral vectors. Current strategies with ongoing clinical trials involve different routes of adeno-associated virus administrations, such as intramuscular and intrapleural injections, to provide consistent therapeutic levels from nonhepatic organ sites. Nevertheless, exploration of alternative methods of nonhepatic sourcing of AAT has been of great interest in the field. In this regard, pulmonary endothelium-targeted adenovirus vector could be a key technical mandate to achieve local augmentation of AAT within the lower respiratory tract, with the potential benefit of circumventing liver toxicities. In addition, incorporation of the CRISPR/Cas9 (CRISPR-associated protein 9) nuclease system into gene-delivery technologies has provided adjunctive technologies that could fully realize a one-time treatment for sustained, lifelong expression of AAT in patients with AATD. This review will focus on the adeno-associated virus- and adenoviral vector-mediated gene therapy strategies for the pulmonary manifestations of AATD and show that endeavoring to use genome-editing techniques will advance the current strategy to one fully compatible with direct human translation.
Collapse
Affiliation(s)
- Reka Lorincz
- Department of Radiation Oncology, Biologic Therapeutics Center, School of Medicine, Washington University, St. Louis, Missouri
| | - David T Curiel
- Department of Radiation Oncology, Biologic Therapeutics Center, School of Medicine, Washington University, St. Louis, Missouri
| |
Collapse
|
9
|
A New Gorilla Adenoviral Vector with Natural Lung Tropism Avoids Liver Toxicity and Is Amenable to Capsid Engineering and Vector Retargeting. J Virol 2020; 94:JVI.00265-20. [PMID: 32102889 PMCID: PMC7199421 DOI: 10.1128/jvi.00265-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/24/2022] Open
Abstract
In the aggregate, our mouse studies suggest that GAd is a promising gene therapy vector that utilizes lung ECs as a source of therapeutic payload production and a highly desirable toxicity profile. Further genetic engineering of the GAd capsid holds the promise of in vivo vector tropism modification and targeting. Human adenoviruses have many attractive features for gene therapy applications. However, the high prevalence of preexisting immunity against these viruses in general populations worldwide has greatly limited their clinical utility. In addition, the most commonly used human adenovirus, human adenovirus subgroup C serotype 5 (HAd5), when systemically administered, triggers systemic inflammation and toxicity, with the liver being the most severely affected organ. Here, we evaluated the utility and safety of a new low-seroprevalence gorilla adenovirus (GAd; GC46) as a gene transfer vector in mice. Biodistribution studies revealed that systemically administered GAd had a selective and robust lung endothelial cell (EC) tropism with minimal vector expression throughout many other organs and tissues. Administration of a high dose of GAd accomplished extensive transgene expression in the lung yet elicited no detectable inflammatory histopathology in this organ. Furthermore, GAd, unlike HAd5, did not exhibit hepatotropism or induce liver inflammatory toxicity in mice, demonstrating the exceptional safety profile of the vector vis-à-vis systemic utility. We further demonstrated that the GAd capsid fiber shared the flexibility of the HAd5 equivalent for permitting genetic modification; GAd with the pan-EC-targeting ligand myeloid cell-binding peptide (MBP) incorporated in the capsid displayed a reduced lung tropism and efficiently retargeted gene expression to vascular beds in other organs. IMPORTANCE In the aggregate, our mouse studies suggest that GAd is a promising gene therapy vector that utilizes lung ECs as a source of therapeutic payload production and a highly desirable toxicity profile. Further genetic engineering of the GAd capsid holds the promise of in vivo vector tropism modification and targeting.
Collapse
|
10
|
Daniels BP, Jujjavarapu H, Durrant DM, Williams JL, Green RR, White JP, Lazear HM, Gale M, Diamond MS, Klein RS. Regional astrocyte IFN signaling restricts pathogenesis during neurotropic viral infection. J Clin Invest 2017; 127:843-856. [PMID: 28134626 PMCID: PMC5330728 DOI: 10.1172/jci88720] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 12/06/2016] [Indexed: 01/09/2023] Open
Abstract
Type I IFNs promote cellular responses to viruses, and IFN receptor (IFNAR) signaling regulates the responses of endothelial cells of the blood-brain barrier (BBB) during neurotropic viral infection. However, the role of astrocytes in innate immune responses of the BBB during viral infection of the CNS remains to be fully elucidated. Here, we have demonstrated that type I IFNAR signaling in astrocytes regulates BBB permeability and protects the cerebellum from infection and immunopathology. Mice with astrocyte-specific loss of IFNAR signaling showed decreased survival after West Nile virus infection. Accelerated mortality was not due to expanded viral tropism or increased replication. Rather, viral entry increased specifically in the hindbrain of IFNAR-deficient mice, suggesting that IFNAR signaling critically regulates BBB permeability in this brain region. Pattern recognition receptors and IFN-stimulated genes had higher basal and IFN-induced expression in human and mouse cerebellar astrocytes than did cerebral cortical astrocytes, suggesting that IFNAR signaling has brain region-specific roles in CNS immune responses. Taken together, our data identify cerebellar astrocytes as key responders to viral infection and highlight the existence of distinct innate immune programs in astrocytes from evolutionarily disparate regions of the CNS.
Collapse
Affiliation(s)
- Brian P. Daniels
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Harsha Jujjavarapu
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Douglas M. Durrant
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biological Sciences, California State Polytechnic University, Pomona, California, USA
| | - Jessica L. Williams
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Richard R. Green
- Department of Immunology, University of Washington, Seattle, Washington, USA
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
| | - James P. White
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Helen M. Lazear
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, Washington, USA
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
| | - Michael S. Diamond
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Robyn S. Klein
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
11
|
COX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells. Proc Natl Acad Sci U S A 2017; 114:1117-1122. [PMID: 28096371 DOI: 10.1073/pnas.1612920114] [Citation(s) in RCA: 374] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In recent years, it has been established that programmed cell death protein ligand 1 (PD-L1)-mediated inhibition of activated PD-1+ T lymphocytes plays a major role in tumor escape from immune system during cancer progression. Lately, the anti-PD-L1 and -PD-1 immune therapies have become an important tool for treatment of advanced human cancers, including bladder cancer. However, the underlying mechanisms of PD-L1 expression in cancer are not fully understood. We found that coculture of murine bone marrow cells with bladder tumor cells promoted strong expression of PD-L1 in bone marrow-derived myeloid cells. Tumor-induced expression of PD-L1 was limited to F4/80+ macrophages and Ly-6C+ myeloid-derived suppressor cells. These PD-L1-expressing cells were immunosuppressive and were capable of eliminating CD8 T cells in vitro. Tumor-infiltrating PD-L1+ cells isolated from tumor-bearing mice also exerted morphology of tumor-associated macrophages and expressed high levels of prostaglandin E2 (PGE2)-forming enzymes microsomal PGE2 synthase 1 (mPGES1) and COX2. Inhibition of PGE2 formation, using pharmacologic mPGES1 and COX2 inhibitors or genetic overexpression of PGE2-degrading enzyme 15-hydroxyprostaglandin dehydrogenase (15-PGDH), resulted in reduced PD-L1 expression. Together, our study demonstrates that the COX2/mPGES1/PGE2 pathway involved in the regulation of PD-L1 expression in tumor-infiltrating myeloid cells and, therefore, reprogramming of PGE2 metabolism in tumor microenvironment provides an opportunity to reduce immune suppression in tumor host.
Collapse
|
12
|
Buggio M, Towe C, Annan A, Kaliberov S, Lu ZH, Stephens C, Arbeit JM, Curiel DT. Pulmonary vasculature directed adenovirus increases epithelial lining fluid alpha-1 antitrypsin levels. J Gene Med 2016; 18:38-44. [PMID: 26825735 DOI: 10.1002/jgm.2874] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 01/22/2016] [Accepted: 01/26/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gene therapy for inherited serum deficiency disorders has previously been limited by the balance between obtaining adequate expression and causing hepatic toxicity. Our group has previously described modifications of a replication deficient human adenovirus serotype 5 that increase pulmonary vasculature transgene expression. METHODS In the present study, we use a modified pulmonary targeted adenovirus to express human alpha-1 antitrypsin (A1AT) in C57BL/6 J mice. RESULTS Using the targeted adenovirus, we were able to achieve similar increases in serum A1AT levels with less liver viral uptake. We also increased pulmonary epithelial lining fluid A1AT levels by more than an order of magnitude compared to that of untargeted adenovirus expressing A1AT in a mouse model. These gains are achieved along with evidence of decreased systemic inflammation and no evidence for increased inflammation within the vector-targeted end organ. CONCLUSIONS In addition to comprising a step towards clinically viable gene therapy for A1AT, maximization of protein production at the site of action represents a significant technical advancement in the field of systemically delivered pulmonary targeted gene therapy. It also provides an alternative to the previous limitations of hepatic viral transduction and associated toxicities.
Collapse
Affiliation(s)
- Maurizio Buggio
- Department of Radiation Oncology, Washington University in St Louis, St Louis, MO, USA.,Present address: Institute of Inflammation and Repair, Nanomedicine Laboratory, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| | - Christopher Towe
- Department of Pediatrics, Washington University in St Louis, St Louis, MO, USA.,Present address: Rare Lung Diseases Program, Department of Pediatrics, Cincinnati Children's Hospital, Cincinatti, OH, USA
| | - Anand Annan
- Department of Radiation Oncology, Washington University in St Louis, St Louis, MO, USA.,Present address: Department of Pathology, University of Oklahoma Health Sciences Centre, Oklahoma City, OK, USA
| | - Sergey Kaliberov
- Department of Radiation Oncology, Washington University in St Louis, St Louis, MO, USA
| | - Zhi Hong Lu
- Department of Surgery, Washington University in St Louis, St Louis, MO, USA
| | - Calvin Stephens
- Department of Radiation Oncology, Washington University in St Louis, St Louis, MO, USA
| | - Jeffrey M Arbeit
- Department of Surgery, Washington University in St Louis, St Louis, MO, USA
| | - David T Curiel
- Department of Radiation Oncology, Washington University in St Louis, St Louis, MO, USA
| |
Collapse
|
13
|
A Tetraspecific VHH-Based Neutralizing Antibody Modifies Disease Outcome in Three Animal Models of Clostridium difficile Infection. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:774-84. [PMID: 27413067 PMCID: PMC5014919 DOI: 10.1128/cvi.00730-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 07/01/2016] [Indexed: 12/17/2022]
Abstract
Clostridium difficile infection (CDI), a leading cause of nosocomial infection, is a serious disease in North America, Europe, and Asia. CDI varies greatly from asymptomatic carriage to life-threatening diarrhea, toxic megacolon, and toxemia. The incidence of community-acquired infection has increased due to the emergence of hypervirulent antibiotic-resistant strains. These new strains contribute to the frequent occurrence of disease relapse, complicating treatment, increasing hospital stays, and increasing morbidity and mortality among patients. Therefore, it is critical to develop new therapeutic approaches that bypass the development of antimicrobial resistance and avoid disruption of gut microflora. Here, we describe the construction of a single heteromultimeric VHH-based neutralizing agent (VNA) that targets the two primary virulence factors of Clostridium difficile, toxins A (TcdA) and B (TcdB). Designated VNA2-Tcd, this agent has subnanomolar toxin neutralization potencies for both C. difficile toxins in cell assays. When given systemically by parenteral administration, VNA2-Tcd protected against CDI in gnotobiotic piglets and mice and to a lesser extent in hamsters. Protection from CDI was also observed in gnotobiotic piglets treated by gene therapy with an adenovirus that promoted the expression of VNA2-Tcd.
Collapse
|
14
|
Wang H, Wang G, Zhang L, Zhang J, Zhang J, Wang Q, Billiar TR. ADAR1 Suppresses the Activation of Cytosolic RNA-Sensing Signaling Pathways to Protect the Liver from Ischemia/Reperfusion Injury. Sci Rep 2016; 6:20248. [PMID: 26832817 PMCID: PMC4735287 DOI: 10.1038/srep20248] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/29/2015] [Indexed: 12/21/2022] Open
Abstract
Excessive inflammation resulting from activation of the innate immune system significantly contributes to ischemia/reperfusion injury (IRI). Inflammatory reactions in both IRI and infections share the same signaling pathways evoked by danger/pathogen associated molecular pattern molecules. The cytosolic retinoid-inducible gene I(RIG-I)-like RNA receptor (RLR) RNA sensing pathway mediates type I IFN production during viral infection and the sensing of viral RNA is regulated by adenosine deaminase acting on RNA 1 (ADAR1). Using a model of liver IRI, we provide evidence that ADAR1 also regulates cytosolic RNA-sensing pathways in the setting of ischemic stress. Suppression of ADAR1 significantly enhanced inflammation and liver damage following IRI, which was accompanied by significant increases in type I IFN through cytosolic RNA-sensing pathways. In addition, knocking ADAR1 down in hepatocytes exaggerates inflammatory signaling to dsRNA or endotoxin and results in over production of type I IFN, which could be abolished by the interruption of RIG-I. Therefore, we identified a novel ADAR1-dependent protective contribution through which hepatocytes guard against aberrant cytosolic RLR-RNA-sensing pathway mediated inflammatory reaction in response to acute liver IR. ADAR1 protects against over activation of viral RNA-sensing pathways in non-infectious tissue stress.
Collapse
Affiliation(s)
- Hui Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guoliang Wang
- F1281 UPMC Presbyterian Hospital, 200 Lothrop St, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, 15261, USA.,Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Liyong Zhang
- F1281 UPMC Presbyterian Hospital, 200 Lothrop St, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, 15261, USA
| | - Junbin Zhang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Jinxiang Zhang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Qingde Wang
- F1281 UPMC Presbyterian Hospital, 200 Lothrop St, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, 15261, USA.,Third Xiangya Hospital, Central South University, Changsha, China 410083
| | - Timothy R Billiar
- F1281 UPMC Presbyterian Hospital, 200 Lothrop St, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, 15261, USA
| |
Collapse
|
15
|
Assmann JC, Körbelin J, Schwaninger M. Genetic manipulation of brain endothelial cells in vivo. Biochim Biophys Acta Mol Basis Dis 2015; 1862:381-94. [PMID: 26454206 DOI: 10.1016/j.bbadis.2015.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Julian C Assmann
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Jakob Körbelin
- University Medical Center Hamburg-Eppendorf, Hubertus Wald Cancer Center, Department of Oncology and Hematology, Martinistr. 52, 20246 Hamburg, Germany
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.
| |
Collapse
|
16
|
Lipinski DM, Reid CA, Boye SL, Peterson JJ, Qi X, Boye SE, Boulton ME, Hauswirth WW. Systemic Vascular Transduction by Capsid Mutant Adeno-Associated Virus After Intravenous Injection. Hum Gene Ther 2015; 26:767-76. [PMID: 26359319 DOI: 10.1089/hum.2015.097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The ability to effectively deliver genetic material to vascular endothelial cells remains one of the greatest unmet challenges facing the development of gene therapies to prevent diseases with underlying vascular etiology, such as diabetes, atherosclerosis, and age-related macular degeneration. Herein, we assess the effectiveness of an rAAV2-based capsid mutant vector (Y272F, Y444F, Y500F, Y730F, T491V; termed QuadYF+TV) with strong endothelial cell tropism at transducing the vasculature after systemic administration. Intravenous injection of QuadYF+TV resulted in widespread transduction throughout the vasculature of several major organ systems, as assessed by in vivo bioluminescence imaging and postmortem histology. Robust transduction of lung tissue was observed in QuadYF+TV-injected mice, indicating a role for intravenous gene delivery in the treatment of chronic diseases presenting with pulmonary complications, such as α1-antitrypsin deficiency. The QuadYF+TV vector cross-reacted strongly with AAV2 neutralizing antibodies, however, indicating that a targeted delivery strategy may be required to maximize clinical translatability.
Collapse
Affiliation(s)
- Daniel M Lipinski
- 1 Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, Florida .,2 Nuffield Laboratory of Ophthalmology, Department of Clinical Neuroscience, University of Oxford , Oxford, United Kingdom
| | - Chris A Reid
- 1 Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, Florida
| | - Sanford L Boye
- 1 Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, Florida
| | - James J Peterson
- 1 Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, Florida
| | - Xiaoping Qi
- 3 Department of Ophthalmology, Indiana University School of Medicine, Indiana University , Indianapolis, Indiana
| | - Shannon E Boye
- 1 Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, Florida
| | - Michael E Boulton
- 3 Department of Ophthalmology, Indiana University School of Medicine, Indiana University , Indianapolis, Indiana
| | - William W Hauswirth
- 1 Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, Florida
| |
Collapse
|