1
|
Li D, Lin Q, Luo F, Wang H. Insights into the Structure, Metabolism, Biological Functions and Molecular Mechanisms of Sialic Acid: A Review. Foods 2023; 13:145. [PMID: 38201173 PMCID: PMC10779236 DOI: 10.3390/foods13010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Sialic acid (SA) is a kind of functional monosaccharide which exists widely in edible bird's nest (EBN), milk, meat, mucous membrane surface, etc. SA is an important functional component in promoting brain development, anti-oxidation, anti-inflammation, anti-virus, anti-tumor and immune regulation. The intestinal mucosa covers the microbial community that has a significant impact on health. In the gut, SA can also regulate gut microbiota and metabolites, participating in different biological functions. The structure, source and physiological functions of SA were reviewed in this paper. The biological functions of SA through regulating key signaling pathways and target genes were discussed. In summary, SA can modulate gut microbiota and metabolites, which affect gene expressions and exert its biological activities. It is helpful to provide scientific reference for the further investigation of SA in the functional foods.
Collapse
Affiliation(s)
- Dan Li
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
- Hunan Engineering Research Center of Full Life-Cycle Energy-Efficient Buildings and Environmental Health, School of Civil Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qinlu Lin
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Feijun Luo
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Hanqing Wang
- Hunan Engineering Research Center of Full Life-Cycle Energy-Efficient Buildings and Environmental Health, School of Civil Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
2
|
Abou Assale T, Kuenzel T, Schink T, Shahraz A, Neumann H, Klaus C. 6'-sialyllactose ameliorates the ototoxic effects of the aminoglycoside antibiotic neomycin in susceptible mice. Front Immunol 2023; 14:1264060. [PMID: 38130726 PMCID: PMC10733791 DOI: 10.3389/fimmu.2023.1264060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Sialic acids are terminal sugars of the cellular glycocalyx and are highly abundant in the nervous tissue. Sialylation is sensed by the innate immune system and acts as an inhibitory immune checkpoint. Aminoglycoside antibiotics such as neomycin have been shown to activate tissue macrophages and induce ototoxicity. In this study, we investigated the systemic subcutaneous application of the human milk oligosaccharide 6'-sialyllactose (6SL) as a potential therapy for neomycin-induced ototoxicity in postnatal mice. Repeated systemic treatment of mice with 6SL ameliorated neomycin-induced hearing loss and attenuated neomycin-triggered macrophage activation in the cochlear spiral ganglion. In addition, 6SL reversed the neomycin-mediated increase in gene transcription of the pro-inflammatory cytokine interleukin-1β (Il-1b) and the apoptotic/inflammatory kinase Pik3cd in the inner ear. Interestingly, neomycin application also increased the transcription of desialylating enzyme neuraminidase 3 (Neu3) in the inner ear. In vitro, we confirmed that treatment with 6SL had anti-inflammatory, anti-phagocytic, and neuroprotective effects on cultured lipopolysaccharide-challenged human THP1-macrophages. Thus, our data demonstrated that treatment with 6SL has anti-inflammatory and protective effects against neomycin-mediated macrophage activation and ototoxicity.
Collapse
Affiliation(s)
- Tawfik Abou Assale
- Neural Regeneration, Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| | - Thomas Kuenzel
- Auditory Neurophysiology, Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Tamara Schink
- Neural Regeneration, Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| | - Anahita Shahraz
- Neural Regeneration, Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| | - Harald Neumann
- Neural Regeneration, Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| | - Christine Klaus
- Neural Regeneration, Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
3
|
Kho I, Demina EP, Pan X, Londono I, Cairo CW, Sturiale L, Palmigiano A, Messina A, Garozzo D, Ung RV, Mac-Way F, Bonneil É, Thibault P, Lemaire M, Morales CR, Pshezhetsky AV. Severe kidney dysfunction in sialidosis mice reveals an essential role for neuraminidase 1 in reabsorption. JCI Insight 2023; 8:e166470. [PMID: 37698928 PMCID: PMC10619504 DOI: 10.1172/jci.insight.166470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
Sialidosis is an ultra-rare multisystemic lysosomal disease caused by mutations in the neuraminidase 1 (NEU1) gene. The severe type II form of the disease manifests with a prenatal/infantile or juvenile onset, bone abnormalities, severe neuropathology, and visceromegaly. A subset of these patients present with nephrosialidosis, characterized by abrupt onset of fulminant glomerular nephropathy. We studied the pathophysiological mechanism of the disease in 2 NEU1-deficient mouse models, a constitutive Neu1-knockout, Neu1ΔEx3, and a conditional phagocyte-specific knockout, Neu1Cx3cr1ΔEx3. Mice of both strains exhibited terminal urinary retention and severe kidney damage with elevated urinary albumin levels, loss of nephrons, renal fibrosis, presence of storage vacuoles, and dysmorphic mitochondria in the intraglomerular and tubular cells. Glycoprotein sialylation in glomeruli, proximal distal tubules, and distal tubules was drastically increased, including that of an endocytic reabsorption receptor megalin. The pool of megalin bearing O-linked glycans with terminal galactose residues, essential for protein targeting and activity, was reduced to below detection levels. Megalin levels were severely reduced, and the protein was directed to lysosomes instead of the apical membrane. Together, our results demonstrated that desialylation by NEU1 plays a crucial role in processing and cellular trafficking of megalin and that NEU1 deficiency in sialidosis impairs megalin-mediated protein reabsorption.
Collapse
Affiliation(s)
- Ikhui Kho
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, Québec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Québec, Canada
| | - Ekaterina P. Demina
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, Québec, Canada
| | - Xuefang Pan
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, Québec, Canada
| | - Irene Londono
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, Québec, Canada
| | | | - Luisa Sturiale
- CNR, Institute for Polymers, Composites and Biomaterials, Catania, Italy
| | - Angelo Palmigiano
- CNR, Institute for Polymers, Composites and Biomaterials, Catania, Italy
| | - Angela Messina
- CNR, Institute for Polymers, Composites and Biomaterials, Catania, Italy
| | - Domenico Garozzo
- CNR, Institute for Polymers, Composites and Biomaterials, Catania, Italy
| | - Roth-Visal Ung
- CHU de Québec Research Center, L’Hôtel-Dieu de Québec Hospital, Faculty and Department of Medicine, University Laval, Québec City, Québec, Canada
| | - Fabrice Mac-Way
- CHU de Québec Research Center, L’Hôtel-Dieu de Québec Hospital, Faculty and Department of Medicine, University Laval, Québec City, Québec, Canada
| | - Éric Bonneil
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Québec, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Québec, Canada
| | - Mathieu Lemaire
- Division of Nephrology, The Hospital for Sick Kids, Faculty of Medicine, University of Toronto, Ontario, Canada
- Cell Biology Program, SickKids Research Institute, Toronto, Ontario, Canada
| | - Carlos R. Morales
- Department of Anatomy and Cell Biology, McGill University, Montreal, Québec, Canada
| | - Alexey V. Pshezhetsky
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, Québec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Québec, Canada
| |
Collapse
|
4
|
Stotter BR, Talbot BE, Capen DE, Artelt N, Zeng J, Matsumoto Y, Endlich N, Cummings RD, Schlondorff JS. Cosmc-dependent mucin-type O-linked glycosylation is essential for podocyte function. Am J Physiol Renal Physiol 2020; 318:F518-F530. [PMID: 31904283 DOI: 10.1152/ajprenal.00399.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mucin-type O-linked glycosylation, a posttranslational modification affecting the stability and biophysical characteristics of proteins, requires C1GalT1 (T synthase) and its obligate, X-linked chaperone Cosmc. Hypomorphic C1GalT1 mutations cause renal failure via not yet established mechanisms. We hypothesize that impaired Cosmc-dependent O-glycosylation in podocytes is sufficient to cause disease. Podocyte-specific Cosmc knockout mice were generated and phenotyped to test this hypothesis. Female heterozygous mice displaying mosaic inactivation of Cosmc in podocytes due to random X-linked inactivation were also examined. Mice with podocyte-specific Cosmc deletion develop profound albuminuria, foot process effacement, glomerular sclerosis, progressive renal failure, and impaired survival. Glomerular transcriptome analysis reveals early changes in cell adhesion, extracellular matrix organization, and chemokine-mediated signaling pathways, coupled with podocyte loss. Expression of the O-glycoprotein podoplanin was lost, while Tn antigen, representing immature O-glycans, was most abundantly found on podocalyxin. In contrast to hemizygous male and homozygous female animals, heterozygous female mosaic animals developed only mild albuminuria, focal foot process effacement, and nonprogressive kidney disease. Ultrastructurally, Cosmc-deficient podocytes formed Tn antigen-positive foot processes interdigitating with those of normal podocytes but not with other Cosmc-deficient cells. This suggests a cell nonautonomous mechanism for mucin-type O-glycoproteins in maintaining podocyte function. In summary, our findings demonstrated an essential and likely cell nonautonomous role for mucin-type O-glycosylation for podocyte function.
Collapse
Affiliation(s)
- Brian R Stotter
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.,Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Brianna E Talbot
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Diane E Capen
- Center for Systems Biology/Program in Membrane Biology, Massachusetts General Hospital, Boston, Massachusetts
| | - Nadine Artelt
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Junwei Zeng
- National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Yasuyuki Matsumoto
- National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Nicole Endlich
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Richard D Cummings
- National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Johannes S Schlondorff
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
5
|
Huizing M, Yardeni T, Fuentes F, Malicdan MC, Leoyklang P, Volkov A, Dekel B, Brede E, Blake J, Powell A, Chatrathi H, Anikster Y, Carrillo N, Gahl WA, Kopp JB. Rationale and Design for a Phase 1 Study of N-Acetylmannosamine for Primary Glomerular Diseases. Kidney Int Rep 2019; 4:1454-1462. [PMID: 31701055 PMCID: PMC6829193 DOI: 10.1016/j.ekir.2019.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Sialic acids are important contributors to the polyanionic component of the glomerular filtration barrier, which regulates permeability selectivity. Pathologic glomerular hyposialylation, associated with podocyte effacement, has been implicated in human and mouse glomerulopathies. Oral treatment with N-acetylmannosamine (ManNAc), the uncharged precursor of sialic acid, ameliorates glomerular pathology in different models of glomerular disease. METHODS Here we explore the sialylation status of kidney biopsies obtained from 27 subjects with various glomerular diseases using lectin histochemistry. RESULTS We identified severe glomerular hyposialylation in 26% of the biopsies. These preliminary findings suggest that this condition may occur relatively frequently and may be a novel target for therapy. We describe the background, rationale, and design of a phase 1 study to test safety, tolerability, and pharmacokinetics of ManNAc in subjects with primary podocyte diseases. CONCLUSION We recently demonstrated that ManNAc was safe and well tolerated in a first-in-human phase 1 study in subjects with UDP-N-acetylglucosamine (GlcNAc) 2-epimerase/ManNAc kinase (GNE) myopathy, a disorder of impaired sialic acid synthesis. Using previous preclinical and clinical data, we propose to test ManNAc therapy for subjects with primary glomerular diseases. Even though the exact mechanisms, affected cell types, and pathologic consequences of glomerular hyposialylation need further study, treatment with this physiological monosaccharide could potentially replace or supplement existing glomerular diseases therapies.
Collapse
Affiliation(s)
- Marjan Huizing
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tal Yardeni
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Federico Fuentes
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - May C.V. Malicdan
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Petcharat Leoyklang
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Alexander Volkov
- Pediatric Nephrology Unit and Pediatric Stem Cell Research Institute, Sheba Medical Center, Tel Hashomer and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Benjamin Dekel
- Pediatric Nephrology Unit and Pediatric Stem Cell Research Institute, Sheba Medical Center, Tel Hashomer and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Emily Brede
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jodi Blake
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alva Powell
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Harish Chatrathi
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yair Anikster
- Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nuria Carrillo
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - William A. Gahl
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey B. Kopp
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Sanchez-Niño MD, Perez-Gomez MV, Valiño-Rivas L, Torra R, Ortiz A. Podocyturia: why it may have added value in rare diseases. Clin Kidney J 2018; 12:49-52. [PMID: 30863545 PMCID: PMC6407136 DOI: 10.1093/ckj/sfy081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
Fabry disease is an inherited lysosomal disease in which defects in the GLA gene lead to α-galactosidase-A deficiency, and accumulation of glycosphingolipids, including lyso-Gb3, a podocyte stressor. Therapy is available as enzyme replacement therapy and, for some patients, the chaperone migalastat. A key decision is when to start therapy, given its costs and potential impact on some aspects of quality of life. The decision is especially difficult in otherwise asymptomatic patients. A delayed start of therapy may allow kidney injury to progress subclinically up to the development of irreversible lesions. Non-invasive tools to monitor subclinical kidney injury are needed. One such tool may be assessment of podocyturia. In this issue of CKJ, [Trimarchi H, Canzonieri R, Costales-Collaguazo C et al. Early decrease in the podocalyxin to synaptopodin ratio in urinary Fabry podocytes. Clin Kidney J 2019; doi.org/10.1093/ckj/sfy053] report on podocyturia assessment in Fabry nephropathy. Specifically, they report that podocalyxin may be lost from detached urinary podocytes.
Collapse
Affiliation(s)
- Maria Dolores Sanchez-Niño
- IIS-Fundacion Jimenez Diaz, School of Medicine, Universidad Autonoma de Madrid; Fundacion Renal Iñigo Alvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Maria Vanessa Perez-Gomez
- IIS-Fundacion Jimenez Diaz, School of Medicine, Universidad Autonoma de Madrid; Fundacion Renal Iñigo Alvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Lara Valiño-Rivas
- IIS-Fundacion Jimenez Diaz, School of Medicine, Universidad Autonoma de Madrid; Fundacion Renal Iñigo Alvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Roser Torra
- Inherited Renal Disorders, Nephrology Department, Fundació Puigvert, REDINREN, IIB Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alberto Ortiz
- IIS-Fundacion Jimenez Diaz, School of Medicine, Universidad Autonoma de Madrid; Fundacion Renal Iñigo Alvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| |
Collapse
|
7
|
Abstract
Podocytes are highly specialized cells of the kidney glomerulus that wrap around capillaries and that neighbor cells of the Bowman’s capsule. When it comes to glomerular filtration, podocytes play an active role in preventing plasma proteins from entering the urinary ultrafiltrate by providing a barrier comprising filtration slits between foot processes, which in aggregate represent a dynamic network of cellular extensions. Foot processes interdigitate with foot processes from adjacent podocytes and form a network of narrow and rather uniform gaps. The fenestrated endothelial cells retain blood cells but permit passage of small solutes and an overlying basement membrane less permeable to macromolecules, in particular to albumin. The cytoskeletal dynamics and structural plasticity of podocytes as well as the signaling between each of these distinct layers are essential for an efficient glomerular filtration and thus for proper renal function. The genetic or acquired impairment of podocytes may lead to foot process effacement (podocyte fusion or retraction), a morphological hallmark of proteinuric renal diseases. Here, we briefly discuss aspects of a contemporary view of podocytes in glomerular filtration, the patterns of structural changes in podocytes associated with common glomerular diseases, and the current state of basic and clinical research.
Collapse
Affiliation(s)
- Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Mehmet M Altintas
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|