1
|
Gascard PD, Wang X, Nosrati M, Kim KB, Kashani-Sabet M, Tlsty TD, Leong SP, Hendrix MJC. Higher Nodal expression is often associated with poorer survival in patients diagnosed with melanoma and treated with anti-PD1 therapy. Pathol Oncol Res 2024; 30:1611889. [PMID: 39376672 PMCID: PMC11456440 DOI: 10.3389/pore.2024.1611889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/12/2024] [Indexed: 10/09/2024]
Abstract
Advanced melanoma is considered the most aggressive and deadly form of skin cancer whose incidence has been rising over the past three decades. In the absence of treatment, the median overall survival for advanced-stage metastatic disease is less than 6 months. Although most melanomas detected at an early stage can be cured with surgery, a subset of these eventually metastasize. Therefore, a critical need exists to identify unique molecular features that would be predictive of long-term outcome and response to specific therapies. Recent promising therapeutic regimens have included the use of immune checkpoint inhibitors, such as anti-PD1 antibodies. However, the ability to identify responders and non-responders to this therapy remains elusive. To address this challenge at the molecular level, previously our laboratory identified the emergence of a stem cell phenotype associated with advanced melanoma and other aggressive forms of cancer. Underlying this phenotype is the aberrant re-expression of the embryonic morphogen "Nodal". Particularly noteworthy, we have observed Nodal to remain in advanced tumors of non-responders to standard-of-care therapies (i.e., BRAFi). This pilot study is the first proof-of-principle attempt to predict treatment response survival outcome in a small cohort of melanoma patients receiving anti-PD1 immune checkpoint inhibitor therapy - based on their Nodal expression profile. Using advanced multiplex immunohistochemistry-based digital pathology, the major finding of this preliminary study indicates that higher Nodal expression is often associated with poorer overall survival after anti-PD1 therapy, reaching nearly statistical relevance.
Collapse
Affiliation(s)
- Philippe D. Gascard
- Department of Pathology, University of California San Francisco, San Francisco, CA, United States
| | - Xianhong Wang
- Department of Pathology, University of California San Francisco, San Francisco, CA, United States
| | - Mehdi Nosrati
- California Pacific Medical Center, Center for Melanoma Research and Treatment, Sutter Health, San Francisco, CA, United States
| | - Kevin B. Kim
- California Pacific Medical Center, Center for Melanoma Research and Treatment, Sutter Health, San Francisco, CA, United States
| | - Mohammed Kashani-Sabet
- California Pacific Medical Center, Center for Melanoma Research and Treatment, Sutter Health, San Francisco, CA, United States
| | - Thea D. Tlsty
- Department of Pathology, University of California San Francisco, San Francisco, CA, United States
| | - Stanley P. Leong
- California Pacific Medical Center, Center for Melanoma Research and Treatment, Sutter Health, San Francisco, CA, United States
| | - Mary J. C. Hendrix
- Department of Biology, Shepherd University, Shepherdstown, WV, United States
| |
Collapse
|
2
|
Sivaccumar JP, Iaccarino E, Oliver A, Cantile M, Olimpieri P, Leonardi A, Ruvo M, Sandomenico A. Production in Bacteria and Characterization of Engineered Humanized Fab Fragment against the Nodal Protein. Pharmaceuticals (Basel) 2023; 16:1130. [PMID: 37631045 PMCID: PMC10459755 DOI: 10.3390/ph16081130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Drug development in recent years is increasingly focused on developing personalized treatments based on blocking molecules selective for therapeutic targets specifically present in individual patients. In this perspective, the specificity of therapeutic targets and blocking agents plays a crucial role. Monoclonal antibodies (mAbs) and their surrogates are increasingly used in this context thanks to their ability to bind therapeutic targets and to inhibit their activity or to transport bioactive molecules into the compartments in which the targets are expressed. Small antibody-like molecules, such as Fabs, are often used in certain clinical settings where small size and better tissue penetration are required. In the wake of this research trend, we developed a murine mAb (3D1) neutralizing the activity of Nodal, an oncofetal protein that is attracting an ever-increasing interest as a selective therapeutic target for several cancer types. Here, we report the preparation of a recombinant Fab of 3D1 that has been humanized through a computational approach starting from the sequence of the murine antibody. The Fab has been expressed in bacterial cells (1 mg/L bacterial culture), biochemically characterized in terms of stability and binding properties by circular dichroism and bio-layer interferometry techniques and tested in vitro on Nodal-positive cancer cells.
Collapse
Affiliation(s)
- Jwala P. Sivaccumar
- Institute of Biostructures and Bioimaging, CNR, Via P. Castellino, 111, 80131 Naples, Italy (E.I.)
| | - Emanuela Iaccarino
- Institute of Biostructures and Bioimaging, CNR, Via P. Castellino, 111, 80131 Naples, Italy (E.I.)
| | - Angela Oliver
- Institute of Biostructures and Bioimaging, CNR, Via P. Castellino, 111, 80131 Naples, Italy (E.I.)
- Università degli Studi della Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | | | | | - Antonio Leonardi
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, via Pansini 5, 80131 Naples, Italy
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging, CNR, Via P. Castellino, 111, 80131 Naples, Italy (E.I.)
| | - Annamaria Sandomenico
- Institute of Biostructures and Bioimaging, CNR, Via P. Castellino, 111, 80131 Naples, Italy (E.I.)
| |
Collapse
|
3
|
Catara G, Spano D. Combinatorial Strategies to Target Molecular and Signaling Pathways to Disarm Cancer Stem Cells. Front Oncol 2021; 11:689131. [PMID: 34381714 PMCID: PMC8352560 DOI: 10.3389/fonc.2021.689131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is an urgent public health issue with a very huge number of cases all over the world expected to increase by 2040. Despite improved diagnosis and therapeutic protocols, it remains the main leading cause of death in the world. Cancer stem cells (CSCs) constitute a tumor subpopulation defined by ability to self-renewal and to generate the heterogeneous and differentiated cell lineages that form the tumor bulk. These cells represent a major concern in cancer treatment due to resistance to conventional protocols of radiotherapy, chemotherapy and molecular targeted therapy. In fact, although partial or complete tumor regression can be achieved in patients, these responses are often followed by cancer relapse due to the expansion of CSCs population. The aberrant activation of developmental and oncogenic signaling pathways plays a relevant role in promoting CSCs therapy resistance. Although several targeted approaches relying on monotherapy have been developed to affect these pathways, they have shown limited efficacy. Therefore, an urgent need to design alternative combinatorial strategies to replace conventional regimens exists. This review summarizes the preclinical studies which provide a proof of concept of therapeutic efficacy of combinatorial approaches targeting the CSCs.
Collapse
Affiliation(s)
- Giuliana Catara
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Spano
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|
4
|
Dieters-Castator D, Dantonio PM, Piaseczny M, Zhang G, Liu J, Kuljanin M, Sherman S, Jewer M, Quesnel K, Kang EY, Köbel M, Siegers GM, Leask A, Hess D, Lajoie G, Postovit LM. Embryonic protein NODAL regulates the breast tumor microenvironment by reprogramming cancer-derived secretomes. Neoplasia 2021; 23:375-390. [PMID: 33784590 PMCID: PMC8041663 DOI: 10.1016/j.neo.2021.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
The tumor microenvironment (TME) is an important mediator of breast cancer progression. Cancer-associated fibroblasts constitute a major component of the TME and may originate from tissue-associated fibroblasts or infiltrating mesenchymal stromal cells (MSCs). The mechanisms by which cancer cells activate fibroblasts and recruit MSCs to the TME are largely unknown, but likely include deposition of a pro-tumorigenic secretome. The secreted embryonic protein NODAL is clinically associated with breast cancer stage and promotes tumor growth, metastasis, and vascularization. Herein, we show that NODAL expression correlates with the presence of activated fibroblasts in human triple-negative breast cancers and that it directly induces Cancer-associated fibroblasts phenotypes. We further show that NODAL reprograms cancer cell secretomes by simultaneously altering levels of chemokines (e.g., CXCL1), cytokines (e.g., IL-6) and growth factors (e.g., PDGFRA), leading to alterations in MSC chemotaxis. We therefore demonstrate a hitherto unappreciated mechanism underlying the dynamic regulation of the TME.
Collapse
Affiliation(s)
| | - Paola M Dantonio
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Matt Piaseczny
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Guihua Zhang
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Jiahui Liu
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Miljan Kuljanin
- Robarts Research Institute, London, ON, Canada; Department of Biochemistry, Western University, London, ON, Canada
| | - Stephen Sherman
- Robarts Research Institute, London, ON, Canada; Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Michael Jewer
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada; Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Katherine Quesnel
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Eun Young Kang
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Andrew Leask
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - David Hess
- Robarts Research Institute, London, ON, Canada; Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Gilles Lajoie
- Department of Biochemistry, Western University, London, ON, Canada
| | - Lynne-Marie Postovit
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada; Department of Oncology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
5
|
Proietti I, Skroza N, Bernardini N, Tolino E, Balduzzi V, Marchesiello A, Michelini S, Volpe S, Mambrin A, Mangino G, Romeo G, Maddalena P, Rees C, Potenza C. Mechanisms of Acquired BRAF Inhibitor Resistance in Melanoma: A Systematic Review. Cancers (Basel) 2020; 12:E2801. [PMID: 33003483 PMCID: PMC7600801 DOI: 10.3390/cancers12102801] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/18/2022] Open
Abstract
This systematic review investigated the literature on acquired v-raf murine sarcoma viral oncogene homolog B1 (BRAF) inhibitor resistance in patients with melanoma. We searched MEDLINE for articles on BRAF inhibitor resistance in patients with melanoma published since January 2010 in the following areas: (1) genetic basis of resistance; (2) epigenetic and transcriptomic mechanisms; (3) influence of the immune system on resistance development; and (4) combination therapy to overcome resistance. Common resistance mutations in melanoma are BRAF splice variants, BRAF amplification, neuroblastoma RAS viral oncogene homolog (NRAS) mutations and mitogen-activated protein kinase kinase 1/2 (MEK1/2) mutations. Genetic and epigenetic changes reactivate previously blocked mitogen-activated protein kinase (MAPK) pathways, activate alternative signaling pathways, and cause epithelial-to-mesenchymal transition. Once BRAF inhibitor resistance develops, the tumor microenvironment reverts to a low immunogenic state secondary to the induction of programmed cell death ligand-1. Combining a BRAF inhibitor with a MEK inhibitor delays resistance development and increases duration of response. Multiple other combinations based on known mechanisms of resistance are being investigated. BRAF inhibitor-resistant cells develop a range of 'escape routes', so multiple different treatment targets will probably be required to overcome resistance. In the future, it may be possible to personalize combination therapy towards the specific resistance pathway in individual patients.
Collapse
Affiliation(s)
- Ilaria Proietti
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Nevena Skroza
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Nicoletta Bernardini
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Ersilia Tolino
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Veronica Balduzzi
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Anna Marchesiello
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Simone Michelini
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Salvatore Volpe
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Alessandra Mambrin
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Giorgio Mangino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (G.R.)
| | - Giovanna Romeo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (G.R.)
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, 00185 Rome, Italy
- Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy
| | - Patrizia Maddalena
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | | | - Concetta Potenza
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| |
Collapse
|
6
|
Daraghma H, Untiveros G, Raskind A, Iaccarino E, Sandomenico A, Ruvo M, Arnouk H, Ciancio MJ, Cuevas-Nunez M, Strizzi L. The role of Nodal and Cripto-1 in human oral squamous cell carcinoma. Oral Dis 2020; 27:1137-1147. [PMID: 32916013 DOI: 10.1111/odi.13640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/05/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is a common epithelial malignancy of the oral cavity. Nodal and Cripto-1 (CR-1) are important developmental morphogens expressed in several adult cancers and are associated with disease progression. Whether Nodal and CR-1 are simultaneously expressed in the same tumor and how this affects cancer biology are unclear. We investigate the expression and potential role of both Nodal and CR-1 in human OSCC. Immunohistochemistry results show that Nodal and CR-1 are both expressed in the same human OSCC sample and that intensity of Nodal staining is correlated with advanced-stage disease. However, this was not observed with CR-1 staining. Western blot analysis of lysates from two human OSCC line experiments shows expression of CR-1 and Nodal, and their respective signaling molecules, Src and ERK1/2. Treatment of SCC25 and SCC15 cells with both Nodal and CR-1 inhibitors simultaneously resulted in reduced cell viability and reduced levels of P-Src and P-ERK1/2. Further investigation showed that the combination treatment with both Nodal and CR-1 inhibitors was capable of reducing invasiveness of SCC25 cells. Our results show a possible role for Nodal/CR-1 function during progression of human OSCC and that targeting both proteins simultaneously may have therapeutic potential.
Collapse
Affiliation(s)
- Hussein Daraghma
- Department of Pathology, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA.,Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA
| | - Gustavo Untiveros
- Department of Pathology, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA
| | - Aleksandr Raskind
- Department of Pathology, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA
| | - Emanuela Iaccarino
- Institute of Biostructure and Bioimaging, National Research Council (IBB-CNR), Naples, Italy
| | - Annamaria Sandomenico
- Institute of Biostructure and Bioimaging, National Research Council (IBB-CNR), Naples, Italy
| | - Menotti Ruvo
- Institute of Biostructure and Bioimaging, National Research Council (IBB-CNR), Naples, Italy
| | - Hilal Arnouk
- Department of Pathology, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA
| | - Mae J Ciancio
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA
| | - Maria Cuevas-Nunez
- College of Dental Medicine Illinois, Midwestern University, Downers Grove, IL, USA
| | - Luigi Strizzi
- Department of Pathology, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA
| |
Collapse
|
7
|
Mabeta P. Paradigms of vascularization in melanoma: Clinical significance and potential for therapeutic targeting. Biomed Pharmacother 2020; 127:110135. [PMID: 32334374 DOI: 10.1016/j.biopha.2020.110135] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
Melanoma is the most aggressive form of skin cancer. Malignant melanoma in particular has a poor prognosis and although treatment has improved, drug resistance continues to be a challenge. Angiogenesis, the formation of blood vessels from existing microvessels, precedes the progression of melanoma from a radial growth phase to a malignant phenotype. In addition, melanoma cells can form networks of vessel-like fluid conducting channels through vasculogenic mimicry (VM). Both angiogenesis and VM have been postulated to contribute to the development of resistance to treatment and to enable metastasis. Also, the metastatic spread of melanoma is highly dependent on lymphangiogenesis, the formation of lymphatic vessels from pre-existing vessels. Interestingly, the design and clinical testing of drugs that target VM and lymphangiogenesis lag behind that of angiogenesis inhibitors. Despite this, antiangiogenic drugs have not significantly improved the overall survival of melanoma patients, thus necessitating the targeting of alternative mechanisms. In this article, I review the roles of the three paradigms of tissue perfusion, namely, angiogenesis, VM and lymphangiogenesis, in promoting melanoma progression and metastasis. This article also explores the latest development and potential opportunities in the therapeutic targeting of these processes.
Collapse
Affiliation(s)
- Peace Mabeta
- Angiogenesis Laboratory, Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
8
|
Sandomenico A, Ruvo M. Targeting Nodal and Cripto-1: Perspectives Inside Dual Potential Theranostic Cancer Biomarkers. Curr Med Chem 2019; 26:1994-2050. [PMID: 30207211 DOI: 10.2174/0929867325666180912104707] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Elucidating the mechanisms of recurrence of embryonic signaling pathways in tumorigenesis has led to the discovery of onco-fetal players which have physiological roles during normal development but result aberrantly re-activated in tumors. In this context, Nodal and Cripto-1 are recognized as onco-developmental factors, which are absent in normal tissues but are overexpressed in several solid tumors where they can serve as theranostic agents. OBJECTIVE To collect, review and discuss the most relevant papers related to the involvement of Nodal and Cripto-1 in the development, progression, recurrence and metastasis of several tumors where they are over-expressed, with a particular attention to their occurrence on the surface of the corresponding sub-populations of cancer stem cells (CSC). RESULTS We have gathered, rationalized and discussed the most interesting findings extracted from some 370 papers related to the involvement of Cripto-1 and Nodal in all tumor types where they have been detected. Data demonstrate the clear connection between Nodal and Cripto-1 presence and their multiple oncogenic activities across different tumors. We have also reviewed and highlighted the potential of targeting Nodal, Cripto-1 and the complexes that they form on the surface of tumor cells, especially of CSC, as an innovative approach to detect and suppress tumors with molecules that block one or more mechanisms that they regulate. CONCLUSION Overall, Nodal and Cripto-1 represent two innovative and effective biomarkers for developing potential theranostic anti-tumor agents that target normal as well as CSC subpopulations and overcome both pharmacological resistance and tumor relapse.
Collapse
Affiliation(s)
- Annamaria Sandomenico
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (IBB-CNR), via Mezzocannone, 16, 80134, Napoli, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (IBB-CNR), via Mezzocannone, 16, 80134, Napoli, Italy
| |
Collapse
|
9
|
Marzagalli M, Raimondi M, Fontana F, Montagnani Marelli M, Moretti RM, Limonta P. Cellular and molecular biology of cancer stem cells in melanoma: Possible therapeutic implications. Semin Cancer Biol 2019; 59:221-235. [PMID: 31265892 DOI: 10.1016/j.semcancer.2019.06.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/27/2019] [Indexed: 01/17/2023]
Abstract
Malignant melanoma is a tumor characterized by a very high level of heterogeneity, responsible for its malignant behavior and ability to escape from standard therapies. In this review we highlight the molecular and biological features of the subpopulation of cancer stem cells (CSCs), well known to be characterized by self-renewal properties, deeply involved in triggering the processes of tumor generation, metastasis, progression and drug resistance. From the molecular point of view, melanoma CSCs are identified and characterized by the expression of stemness markers, such as surface markers, ATP-binding cassette (ABC) transporters, embryonic stem cells and intracellular markers. These cells are endowed with different functional features. In particular, they play pivotal roles in the processes of tumor dissemination, epithelial-to-mesenchymal transition (EMT) and angiogenesis, mediated by specific intracellular signaling pathways; moreover, they are characterized by a unique metabolic reprogramming. As reported for other types of tumors, the CSCs subpopulation in melanoma is also characterized by a low immunogenic profile as well as by the ability to escape the immune system, through the expression of a negative modulation of T cell functions and the secretion of immunosuppressive factors. These biological features allow melanoma CSCs to escape standard treatments, thus being deeply involved in tumor relapse. Targeting the CSCs subpopulation is now considered an attractive treatment strategy; in particular, combination treatments, based on both CSCs-targeting and standard drugs, will likely increase the therapeutic options for melanoma patients. The characterization of CSCs in liquid biopsies from single patients will pave the way towards precision medicine.
Collapse
Affiliation(s)
- Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | - Michela Raimondi
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | | | - Roberta M Moretti
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy.
| |
Collapse
|
10
|
PMN-MDSCs Enhance CTC Metastatic Properties through Reciprocal Interactions via ROS/Notch/Nodal Signaling. Int J Mol Sci 2019; 20:ijms20081916. [PMID: 31003475 PMCID: PMC6514876 DOI: 10.3390/ijms20081916] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 12/15/2022] Open
Abstract
Intratumoral infiltration of myeloid-derived suppressor cells (MDSCs) is known to promote neoplastic growth by inhibiting the tumoricidal activity of T cells. However, direct interactions between patient-derived MDSCs and circulating tumors cells (CTCs) within the microenvironment of blood remain unexplored. Dissecting interplays between CTCs and circulatory MDSCs by heterotypic CTC/MDSC clustering is critical as a key mechanism to promote CTC survival and sustain the metastatic process. We characterized CTCs and polymorphonuclear-MDSCs (PMN-MDSCs) isolated in parallel from peripheral blood of metastatic melanoma and breast cancer patients by multi-parametric flow cytometry. Transplantation of both cell populations in the systemic circulation of mice revealed significantly enhanced dissemination and metastasis in mice co-injected with CTCs and PMN-MDSCs compared to mice injected with CTCs or MDSCs alone. Notably, CTC/PMN-MDSC clusters were detected in vitro and in vivo either in patients’ blood or by longitudinal monitoring of blood from animals. This was coupled with in vitro co-culturing of cell populations, demonstrating that CTCs formed physical clusters with PMN-MDSCs; and induced their pro-tumorigenic differentiation through paracrine Nodal signaling, augmenting the production of reactive oxygen species (ROS) by PMN-MDSCs. These findings were validated by detecting significantly higher Nodal and ROS levels in blood of cancer patients in the presence of naïve, heterotypic CTC/PMN-MDSC clusters. Augmented PMN-MDSC ROS upregulated Notch1 receptor expression in CTCs through the ROS-NRF2-ARE axis, thus priming CTCs to respond to ligand-mediated (Jagged1) Notch activation. Jagged1-expressing PMN-MDSCs contributed to enhanced Notch activation in CTCs by engagement of Notch1 receptor. The reciprocity of CTC/PMN-MDSC bi-directional paracrine interactions and signaling was functionally validated in inhibitor-based analyses, demonstrating that combined Nodal and ROS inhibition abrogated CTC/PMN-MDSC interactions and led to a reduction of CTC survival and proliferation. This study provides seminal evidence showing that PMN-MDSCs, additive to their immuno-suppressive roles, directly interact with CTCs and promote their dissemination and metastatic potency. Targeting CTC/PMN-MDSC heterotypic clusters and associated crosstalks can therefore represent a novel therapeutic avenue for limiting hematogenous spread of metastatic disease.
Collapse
|
11
|
The Stem Cell Phenotype of Aggressive Breast Cancer Cells. Cancers (Basel) 2019; 11:cancers11030340. [PMID: 30857267 PMCID: PMC6468512 DOI: 10.3390/cancers11030340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/25/2019] [Accepted: 03/04/2019] [Indexed: 11/16/2022] Open
Abstract
Aggressive cancer cells are characterized by their capacity to proliferate indefinitely and to propagate a heterogeneous tumor comprised of subpopulations with varying degrees of metastatic propensity and drug resistance properties. Particularly daunting is the challenge we face in the field of oncology of effectively targeting heterogeneous tumor cells expressing a variety of markers, especially those associated with a stem cell phenotype. This dilemma is especially relevant in breast cancer, where therapy is based on traditional classification schemes, including histological criteria, differentiation status, and classical receptor markers. However, not all patients respond in a similar manner to standard-of-care therapy, thereby necessitating the need to identify and evaluate novel biomarkers associated with the difficult-to-target stem cell phenotype and drug resistance. Findings related to the convergence of embryonic and tumorigenic signaling pathways have identified the embryonic morphogen Nodal as a promising new oncofetal target that is reactivated only in aggressive cancers, but not in normal tissues. The work presented in this paper confirms previous studies demonstrating the importance of Nodal as a cancer stem cell molecule associated with aggressive breast cancer, and advances the field by providing new findings showing that Nodal is not targeted by standard-of-care therapy in breast cancer patients. Most noteworthy is the linkage found between Nodal expression and the drug resistance marker ATP-binding cassette member 1 (ABCA1), which may provide new insights into developing combinatorial approaches to overcome drug resistance and disease recurrence.
Collapse
|
12
|
Seftor EA, Margaryan NV, Seftor REB, Hendrix MJC. Heterogeneity of Melanoma with Stem Cell Properties. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1139:105-114. [PMID: 31134497 DOI: 10.1007/978-3-030-14366-4_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metastatic melanoma continues to present a significant challenge-with a cure rate of less than 10% and a median survival of 6-9 months. Despite noteworthy advances in the field, the heterogeneity of melanoma tumors, comprised of cell subpopulations expressing a cancer stem cell (CSC) phenotype concomitant with drug resistance markers presents a formidable challenge in the design of current therapies. Particularly vexing is the ability of distinct subpopulations of melanoma cells to resist standard-of-care treatments, resulting in relapse and progression to metastasis. Recent studies have provided new information and insights into the expression and function of CSC markers associated with the aggressive melanoma phenotype, such as the embryonic morphogen Nodal and CD133, together with a drug resistance marker ABCA1. This chapter highlights major findings that demonstrate the promise of targeting Nodal as a viable option to pursue in combination with standard-of-care therapy. In recognizing that aggressive melanoma tumors utilize multiple mechanisms to survive, we must consider a more strategic approach to effectively target heterogeneity, tumor cell plasticity, and functional adaptation and resistance to current therapies-to eliminate relapse, disease progression, and metastasis.
Collapse
Affiliation(s)
- Elisabeth A Seftor
- Department of Biochemistry and Cancer Institute, West Virginia University Health Sciences Center, One Medical Center Drive, Morgantown, WV, USA
| | - Naira V Margaryan
- Department of Biochemistry and Cancer Institute, West Virginia University Health Sciences Center, One Medical Center Drive, Morgantown, WV, USA
| | - Richard E B Seftor
- Department of Biochemistry and Cancer Institute, West Virginia University Health Sciences Center, One Medical Center Drive, Morgantown, WV, USA
| | - Mary J C Hendrix
- Department of Biology, Shepherd University, Shepherdstown, WV, USA.
| |
Collapse
|
13
|
Margaryan NV, Seftor EA, Seftor RE, Hendrix MJ. Targeting the Stem Cell Properties of Adult Breast Cancer Cells: Using Combinatorial Strategies to Overcome Drug Resistance. CURRENT MOLECULAR BIOLOGY REPORTS 2017; 3:159-164. [PMID: 29152453 PMCID: PMC5687579 DOI: 10.1007/s40610-017-0067-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Cancer is a major public health problem worldwide. In aggressive cancers, which are heterogeneous in nature, there exists a paucity of targetable molecules that can be used to predict outcome and response to therapy in patients, especially those in the high risk category with a propensity to relapse following chemotherapy. This review addresses the challenges pertinent to treating aggressive cancer cells with inherent stem cell properties, with a special focus on triple-negative breast cancer (TNBC). RECENT FINDINGS Plasticity underlies the cancer stem cell (CSC) phenotype in aggressive cancers like TNBC. Progenitors and CSCs implement similar signaling pathways to sustain growth, and the convergence of embryonic and tumorigenic signaling pathways has led to the discovery of novel oncofetal targets, rigorously regulated during normal development, but aberrantly reactivated in aggressive forms of cancer. SUMMARY Translational studies have shown that Nodal, an embryonic morphogen, is reactivated in aggressive cancers, but not in normal tissues, and underlies tumor growth, invasion, metastasis and drug resistance. Front-line therapies do not inhibit Nodal, but when a combinatorial approach is used with an agent such as doxorubicin followed by anti-Nodal antibody therapy, significant decreases in cell growth and viability occur. These findings are of special interest in the development of new therapeutic interventions that target the stem cell properties of cancer cells to overcome drug resistance and metastasis.
Collapse
Affiliation(s)
- Naira V. Margaryan
- Department of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506 USA
- Cancer Institute, West Virginia University, Morgantown, WV 26506 USA
- Department of Biology, Shepherd University, Shepherdstown, WV 25443 USA
| | - Elisabeth A. Seftor
- Department of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506 USA
- Cancer Institute, West Virginia University, Morgantown, WV 26506 USA
- Department of Biology, Shepherd University, Shepherdstown, WV 25443 USA
| | - Richard E.B. Seftor
- Department of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506 USA
- Cancer Institute, West Virginia University, Morgantown, WV 26506 USA
- Department of Biology, Shepherd University, Shepherdstown, WV 25443 USA
| | - Mary J.C. Hendrix
- Department of Internal Medicine, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506 USA
- Cancer Institute, West Virginia University, Morgantown, WV 26506 USA
- Department of Biology, Shepherd University, Shepherdstown, WV 25443 USA
| |
Collapse
|