1
|
Kałafut J, Czerwonka A, Czapla K, Przybyszewska-Podstawka A, Hermanowicz JM, Rivero-Müller A, Borkiewicz L. Regulation of Notch1 Signalling by Long Non-Coding RNAs in Cancers and Other Health Disorders. Int J Mol Sci 2023; 24:12579. [PMID: 37628760 PMCID: PMC10454443 DOI: 10.3390/ijms241612579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/30/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Notch1 signalling plays a multifaceted role in tissue development and homeostasis. Currently, due to the pivotal role of Notch1 signalling, the relationship between NOTCH1 expression and the development of health disorders is being intensively studied. Nevertheless, Notch1 signalling is not only controlled at the transcriptional level but also by a variety of post-translational events. First is the ligand-dependent mechanical activation of NOTCH receptors and then the intracellular crosstalk with other signalling molecules-among those are long non-coding RNAs (lncRNAs). In this review, we provide a detailed overview of the specific role of lncRNAs in the modulation of Notch1 signalling, from expression to activity, and their connection with the development of health disorders, especially cancers.
Collapse
Affiliation(s)
- Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Karolina Czapla
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
- Department of Clinical Pharmacy, Medical University of Bialystok, Waszyngtona 15, 15-274 Bialystok, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Lidia Borkiewicz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| |
Collapse
|
2
|
Huynh K, Smith BR, Macdonald SJ, Long AD. Genetic variation in chromatin state across multiple tissues in Drosophila melanogaster. PLoS Genet 2023; 19:e1010439. [PMID: 37146087 PMCID: PMC10191298 DOI: 10.1371/journal.pgen.1010439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/17/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023] Open
Abstract
We use ATAC-seq to examine chromatin accessibility for four different tissues in Drosophila melanogaster: adult female brain, ovaries, and both wing and eye-antennal imaginal discs from males. Each tissue is assayed in eight different inbred strain genetic backgrounds, seven associated with a reference quality genome assembly. We develop a method for the quantile normalization of ATAC-seq fragments and test for differences in coverage among genotypes, tissues, and their interaction at 44099 peaks throughout the euchromatic genome. For the strains with reference quality genome assemblies, we correct ATAC-seq profiles for read mis-mapping due to nearby polymorphic structural variants (SVs). Comparing coverage among genotypes without accounting for SVs results in a highly elevated rate (55%) of identifying false positive differences in chromatin state between genotypes. After SV correction, we identify 1050, 30383, and 4508 regions whose peak heights are polymorphic among genotypes, among tissues, or exhibit genotype-by-tissue interactions, respectively. Finally, we identify 3988 candidate causative variants that explain at least 80% of the variance in chromatin state at nearby ATAC-seq peaks.
Collapse
Affiliation(s)
- Khoi Huynh
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, United States of America
| | - Brittny R. Smith
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Stuart J. Macdonald
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
- Center for Computational Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Anthony D. Long
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, United States of America
| |
Collapse
|
3
|
Liang B, Burley G, Lin S, Shi YC. Osteoporosis pathogenesis and treatment: existing and emerging avenues. Cell Mol Biol Lett 2022; 27:72. [PMID: 36058940 PMCID: PMC9441049 DOI: 10.1186/s11658-022-00371-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractOsteoporotic fractures lead to increased disability and mortality in the elderly population. With the rapid increase in the aging population around the globe, more effective treatments for osteoporosis and osteoporotic fractures are urgently required. The underlying molecular mechanisms of osteoporosis are believed to be due to the increased activity of osteoclasts, decreased activity of osteoblasts, or both, which leads to an imbalance in the bone remodeling process with accelerated bone resorption and attenuated bone formation. Currently, the available clinical treatments for osteoporosis have mostly focused on factors influencing bone remodeling; however, they have their own limitations and side effects. Recently, cytokine immunotherapy, gene therapy, and stem cell therapy have become new approaches for the treatment of various diseases. This article reviews the latest research on bone remodeling mechanisms, as well as how this underpins current and potential novel treatments for osteoporosis.
Collapse
|
4
|
Gene Expression Profiles of Human Mesenchymal Stromal Cells Derived from Wharton’s Jelly and Amniotic Membrane before and after Osteo-Induction Using NanoString Platform. Curr Issues Mol Biol 2022; 44:4240-4254. [PMID: 36135203 PMCID: PMC9497674 DOI: 10.3390/cimb44090291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/08/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
The use of perinatal mesenchymal stem cells (MSCs) in bone tissue regeneration and engineering to substitute bone marrow MSCs has drawn great interest due to their high yield, ease of procurement, multilineage differentiation potential and lack of ethical concerns. Although amniotic membrane (AM) and Wharton’s jelly (WJ)-derived MSCs have been widely shown to possess osteogenic differentiation potential, the intrinsic properties determining their osteogenic capacity remain unclear. Here, we compared gene expression profiles of AM- and WJ-MSCs at basal and osteogenic conditions by using the NanoString Stem Cell Panel containing regulatory genes associated with stemness, self-renewal, Wnt, Notch and Hedgehog signalling pathways. At basal condition, WJ-MSCs displayed higher expression in most genes regardless of their functional roles in self-renewal, adhesion, or differentiation signalling pathways. After osteo-induction, elevated expression of self-renewal genes ADAR and PAFAH1B1 was observed in AM-MSCs, while stemness genes MME and ALDH1A1 were upregulated in WJ-MSC. Both MSCs showed differences in genes associated with ligands, receptors and ubiquitin ligases of the Notch pathway. In addition, further evidence was demonstrated in some signalling molecules including CTBPs, protein kinases, phosphatases, RHOA, RAC1. Downstream targets HES1 and JUN especially showed higher expression in non-induced WJ-MSCs. Hedgehog genes initially expressed in both MSCs were downregulated in WJ-MSCs during osteogenesis. This study has provided insights into the intrinsic biological differences that may lead to their discrimination in therapeutic intervention.
Collapse
|
5
|
Notch signaling in malignant gliomas: supporting tumor growth and the vascular environment. Cancer Metastasis Rev 2022; 41:737-747. [PMID: 35624227 DOI: 10.1007/s10555-022-10041-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/18/2022] [Indexed: 11/02/2022]
Abstract
Glioblastoma is the most malignant form of glioma, which is the most commonly occurring tumor of the central nervous system. Notch signaling in glioblastoma is considered to be a marker of an undifferentiated tumor cell state, associated with tumor stem cells. Notch is also known for facilitating tumor dormancy escape, recurrence and progression after treatment. Studies in vitro suggest that reducing, removing or blocking the expression of this gene triggers tumor cell differentiation, which shifts the phenotype away from stemness status and consequently facilitates treatment. In contrast, in the vasculature, Notch appears to also function as an important receptor that defines mature non-leaking vessels, and increasing its expression promotes tumor normalization in models of cancer in vivo. Failures in clinical trials with Notch inhibitors are potentially related to their opposing effects on the tumor versus the tumor vasculature, which points to the need for a greater understanding of this signaling pathway.
Collapse
|
6
|
Kałafut J, Czapiński J, Przybyszewska-Podstawka A, Czerwonka A, Odrzywolski A, Sahlgren C, Rivero-Müller A. Optogenetic control of NOTCH1 signaling. Cell Commun Signal 2022; 20:67. [PMID: 35585598 PMCID: PMC9118860 DOI: 10.1186/s12964-022-00885-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/19/2022] [Indexed: 11/10/2022] Open
Abstract
The Notch signaling pathway is a crucial regulator of cell differentiation as well as tissue organization, whose deregulation is linked to the pathogenesis of different diseases. NOTCH1 plays a key role in breast cancer progression by increasing proliferation, maintenance of cancer stem cells, and impairment of cell death. NOTCH1 is a mechanosensitive receptor, where mechanical force is required to activate the proteolytic cleavage and release of the Notch intracellular domain (NICD). We circumvent this limitation by regulating Notch activity by light. To achieve this, we have engineered an optogenetic NOTCH1 receptor (optoNotch) to control the activation of NOTCH1 intracellular domain (N1ICD) and its downstream transcriptional activities. Using optoNotch we confirm that NOTCH1 activation increases cell proliferation in MCF7 and MDA-MB-468 breast cancer cells in 2D and spheroid 3D cultures, although causing distinct cell-type specific migratory phenotypes. Additionally, optoNotch activation induced chemoresistance on the same cell lines. OptoNotch allows the fine-tuning, ligand-independent, regulation of N1ICD activity and thus a better understanding of the spatiotemporal complexity of Notch signaling. Video Abstract.
Collapse
Affiliation(s)
- Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 21-093, Lublin, Poland
| | - Jakub Czapiński
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 21-093, Lublin, Poland
| | | | - Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 21-093, Lublin, Poland
| | - Adrian Odrzywolski
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 21-093, Lublin, Poland
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Biosciences, Åbo Akademi, Turku, Finland.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 21-093, Lublin, Poland.
| |
Collapse
|
7
|
Patterson LL, Velayutham TS, Byerly CD, Bui DC, Patel J, Veljkovic V, Paessler S, McBride JW. Ehrlichia SLiM Ligand Mimetic Activates Notch Signaling in Human Monocytes. mBio 2022; 13:e0007622. [PMID: 35357214 PMCID: PMC9040721 DOI: 10.1128/mbio.00076-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/14/2022] [Indexed: 12/15/2022] Open
Abstract
Ehrlichia chaffeensis evades innate host defenses by reprogramming the mononuclear phagocyte through mechanisms that involve the exploitation of multiple evolutionarily conserved cellular signaling pathways, including Notch. This immune evasion strategy is directed in part by tandem repeat protein (TRP) effectors. Specifically, the TRP120 effector activates and regulates Notch signaling through interactions with the Notch receptor and the negative regulator, F-Box and WD repeat domain-containing 7 (FBW7). However, the specific molecular interactions and motifs required for E. chaffeensis TRP120-Notch receptor interaction and activation have not been defined. To investigate the molecular basis of TRP120 Notch activation, we compared TRP120 with endogenous canonical/noncanonical Notch ligands and identified a short region of sequence homology within the tandem repeat (TR) domain. TRP120 was predicted to share biological function with Notch ligands, and a function-associated sequence in the TR domain was identified. To investigate TRP120-Notch receptor interactions, colocalization between TRP120 and endogenous Notch-1 was observed. Moreover, direct interactions between full-length TRP120, the TRP120 TR domain containing the putative Notch ligand sequence, and the Notch receptor LBR were demonstrated. To molecularly define the TRP120 Notch activation motif, peptide mapping was used to identify an 11-amino acid short linear motif (SLiM) located within the TRP120 TR that activated Notch signaling and downstream gene expression. Peptide mutants of the Notch SLiM or anti-Notch SLiM antibody reduced or eliminated Notch activation and NICD nuclear translocation. This investigation reveals a novel molecularly defined pathogen encoded Notch SLiM mimetic that activates Notch signaling consistent with endogenous ligands. IMPORTANCE E. chaffeensis infects and replicates in mononuclear phagocytes, but how it evades innate immune defenses of this indispensable primary innate immune cell is not well understood. This investigation revealed the molecular details of a ligand mimicry cellular reprogramming strategy that involved a short linear motif (SLiM), which enabled E. chaffeensis to exploit host cell signaling to establish and maintain infection. E. chaffeensis TRP120 is a moonlighting effector that has been associated with cellular activation and other functions, including ubiquitin ligase activity. Herein, we identified and demonstrated that a SLiM present within each tandem repeat of TRP120 activated Notch signaling. Notch is an evolutionarily conserved signaling pathway responsible for many cell functions, including cell fate, development, and innate immunity. This study is significant because it revealed the first molecularly defined pathogen encoded SLiM that appears to have evolved de novo to mimic endogenous Notch ligands. Understanding Notch activation during E. chaffeensis infection provides a model to study pathogen exploitation of signaling pathways and will be useful in developing molecularly targeted countermeasures for inhibiting infection by a multitude of disease-causing pathogens that exploit cell signaling through molecular mimicry.
Collapse
Affiliation(s)
- LaNisha L. Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Caitlan D. Byerly
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Duc Cuong Bui
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jignesh Patel
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
8
|
Kostina A, Lobov A, Semenova D, Kiselev A, Klausen P, Malashicheva A. Context-Specific Osteogenic Potential of Mesenchymal Stem Cells. Biomedicines 2021; 9:biomedicines9060673. [PMID: 34204737 PMCID: PMC8231580 DOI: 10.3390/biomedicines9060673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/28/2021] [Accepted: 06/10/2021] [Indexed: 11/16/2022] Open
Abstract
Despite the great progress in the field of bone tissue regeneration, the early initiating mechanisms of osteogenic differentiation are not well understood. Cells capable of osteogenic transformation vary from mesenchymal stem cells of various origins to mural cells of vessels. The mechanisms of pathological calcification are thought to be similar to those of bone formation. Notch signaling has been shown to play an important role in osteogenic differentiation, as well as in pathological calcification. Nevertheless, despite its known tissue- and context-specificity, the information about its role in the osteogenic differentiation of different cells is still limited. We compared mesenchymal stem cells from adipogenic tissue (MSCs) and interstitial cells from the aortic valve (VICs) by their ability to undergo Notch-dependent osteogenic differentiation. We showed differences between the two types of cells in their ability to activate the expression of proosteogenic genes RUNX2, BMP2, BMP4, DLX2, BGLAP, SPRY, IBSP, and SPP1 in response to Notch activation. Untargeted metabolomic profiling also confirms differences between MSCs and VICs in their osteogenic state. Analysis of the activity of RUNX2 and SPP1 promoters shows fine-tuned dose-dependency in response to Notch induction and suggests a direct link between the level of Notch activation, and the proostogenic gene expression and corresponding osteogenic induction. Our data suggest that osteogenic differentiation is a context-dependent process and the outcome of it could be cell-type dependent.
Collapse
|
9
|
Zhu S, Zhu Y, Wang Z, Liang C, Cao N, Yan M, Gao F, Liu J, Wang W. Bioinformatics analysis and identification of circular RNAs promoting the osteogenic differentiation of human bone marrow mesenchymal stem cells on titanium treated by surface mechanical attrition. PeerJ 2020; 8:e9292. [PMID: 32742764 PMCID: PMC7365136 DOI: 10.7717/peerj.9292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND To analyze and identify the circular RNAs (circRNAs) involved in promoting the osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs) on titanium by surface mechanical attrition treatment (SMAT). METHODS The experimental material was SMAT titanium and the control material was annealed titanium. Cell Counting Kits-8 (CCK-8) was used to detect the proliferation of hBMSCs, and alkaline phosphatase (ALP) activity and alizarin red staining were used to detect the osteogenic differentiation of hBMSCs on the sample surfaces. The bioinformatics prediction software miwalk3.0 was used to construct competing endogenous RNA (ceRNA) networks by predicting circRNAs with osteogenesis-related messenger RNAs (mRNAs) and microRNAs (miRNAs). The circRNAs located at the key positions in the networks were selected and analyzed by quantitative real-time PCR (QRT-PCR). RESULTS Compared with annealed titanium, SMAT titanium could promote the proliferation and osteogenic differentiation of hBMSCs. The total number of predicted circRNAs was 51. Among these, 30 circRNAs and 8 miRNAs constituted 6 ceRNA networks. Circ-LTBP2 was selected for verification. QRT-PCR results showed that the expression levels of hsa_circ_0032599, hsa_circ_0032600 and hsa_circ_0032601 were upregulated in the experimental group compared with those in the control group; the differential expression of hsa_circ_0032600 was the most obvious and statistically significant, with a fold change (FC) = 4.25 ± 1.60, p-values (p) < 0.05.
Collapse
Affiliation(s)
- Shanshan Zhu
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| | - Yuhe Zhu
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| | - Zhenbo Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Chen Liang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Nanjue Cao
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Ming Yan
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| | - Fei Gao
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| | - Jie Liu
- Department 1 of Science Experiment Center, China Medical University, Shenyang, Liaoning, China
| | - Wei Wang
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| |
Collapse
|
10
|
Rajabi H, Aslani S, Abhari A, Sanajou D. Expression Profiles of MicroRNAs in Stem Cells Differentiation. Curr Pharm Biotechnol 2020; 21:906-918. [PMID: 32072899 DOI: 10.2174/1389201021666200219092520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/06/2019] [Accepted: 02/06/2020] [Indexed: 12/12/2022]
Abstract
Stem cells are undifferentiated cells and have a great potential in multilineage differentiation. These cells are classified into adult stem cells like Mesenchymal Stem Cells (MSCs) and Embryonic Stem Cells (ESCs). Stem cells also have potential therapeutic utility due to their pluripotency, self-renewal, and differentiation ability. These properties make them a suitable choice for regenerative medicine. Stem cells differentiation toward functional cells is governed by different signaling pathways and transcription factors. Recent studies have demonstrated the key role of microRNAs in the pathogenesis of various diseases, cell cycle regulation, apoptosis, aging, cell fate decisions. Several types of stem cells have different and unique miRNA expression profiles. Our review summarizes novel regulatory roles of miRNAs in the process of stem cell differentiation especially adult stem cells into a variety of functional cells through signaling pathways and transcription factors modulation. Understanding the mechanistic roles of miRNAs might be helpful in elaborating clinical therapies using stem cells and developing novel biomarkers for the early and effective diagnosis of pathologic conditions.
Collapse
Affiliation(s)
- Hadi Rajabi
- Department of Biochemistry and Clinical Laboratories, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Aslani
- Department of Biochemistry and Clinical Laboratories, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Abhari
- Department of Biochemistry and Clinical Laboratories, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Sanajou
- Department of Biochemistry and Clinical Laboratories, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Dose-dependent mechanism of Notch action in promoting osteogenic differentiation of mesenchymal stem cells. Cell Tissue Res 2019; 379:169-179. [PMID: 31781870 DOI: 10.1007/s00441-019-03130-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 10/23/2019] [Indexed: 12/21/2022]
Abstract
Osteogenic differentiation is a tightly regulated process realized by progenitor cell osteoblasts. Notch signaling pathway plays a critical role in skeletal development and bone remodeling. Controversial data exist regarding the role of Notch activation in promoting or preventing osteogenic differentiation. This study aims to investigate the effect of several Notch components and their dosage on osteogenic differentiation of mesenchymal stem cells of adipose tissue. Osteogenic differentiation was induced in the presence of either of Notch components (NICD, Jag1, Dll1, Dll4) dosed by lentiviral transduction. We show that osteogenic differentiation was increased by NICD and Jag1 transduction in a dose-dependent manner; however, a high dosage of both NICD and Jag1 decreased the efficiency of osteogenic differentiation. NICD dose-dependently increased activity of the CSL luciferase reporter but a high dosage of NICD caused a decrease in the activity of the reporter. A high dosage of both Notch components NICD and Jag1 induced apoptosis. In co-culture experiments where only half of the cells were transduced with either NICD or Jag1, only NICD increased osteogenic differentiation according to the dosage, while Jag1-transduced cells differentiated almost equally independently on dosage. In conclusion, activation of Notch promotes osteogenic differentiation in a tissue-specific dose-dependent manner; both NICD and Jag1 are able to increase osteogenic potential but at moderate doses only and a high dosage of Notch activation is detrimental to osteogenic differentiation. This result might be especially important when considering possibilities of using Notch activation to promote osteogenesis in clinical applications to bone repair.
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW This article reviews the past 2 years of research on Notch signaling as it relates to bone physiology, with the goal of reconciling seemingly discrepant findings and identifying fruitful areas of potential future research. RECENT FINDINGS Conditional animal models and high-throughput omics have contributed to a greater understanding of the context-dependent role of Notch signaling in bone. However, significant gaps remain in our understanding of how spatiotemporal context and epigenetic state dictate downstream Notch phenotypes. Biphasic activation of Notch signaling orchestrates progression of mesenchymal progenitor cells through the osteoblast lineage, but there is a limited understanding of ligand- and receptor-specific functions. Paracrine Notch signaling through non-osteoblastic cell types contributes additional layers of complexity, and we anticipate impactful future work related to the integration of these cell types and signaling mechanisms.
Collapse
Affiliation(s)
- Daniel W Youngstrom
- Department of Orthopaedic Surgery, University of Michigan Medical School, 109 Zina Pitcher Pl, Ann Arbor, MI, 48872, USA.
| | - Kurt D Hankenson
- Department of Orthopaedic Surgery, University of Michigan Medical School, 109 Zina Pitcher Pl, Ann Arbor, MI, 48872, USA
| |
Collapse
|