1
|
Lee S, Kerns S, Ostrer H, Rosenstein B, Deasy JO, Oh JH. Machine Learning on a Genome-wide Association Study to Predict Late Genitourinary Toxicity After Prostate Radiation Therapy. Int J Radiat Oncol Biol Phys 2018; 101:128-135. [PMID: 29502932 DOI: 10.1016/j.ijrobp.2018.01.054] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/02/2018] [Accepted: 01/16/2018] [Indexed: 01/23/2023]
Abstract
PURPOSE Late genitourinary (GU) toxicity after radiation therapy limits the quality of life of prostate cancer survivors; however, efforts to explain GU toxicity using patient and dose information have remained unsuccessful. We identified patients with a greater congenital GU toxicity risk by identifying and integrating patterns in genome-wide single nucleotide polymorphisms (SNPs). METHODS AND MATERIALS We applied a preconditioned random forest regression method for predicting risk from the genome-wide data to combine the effects of multiple SNPs and overcome the statistical power limitations of single-SNP analysis. We studied a cohort of 324 prostate cancer patients who were self-assessed for 4 urinary symptoms at 2 years after radiation therapy using the International Prostate Symptom Score. RESULTS The predictive accuracy of the method varied across the symptoms. Only for the weak stream endpoint did it achieve a significant area under the curve of 0.70 (95% confidence interval 0.54-0.86; P = .01) on hold-out validation data that outperformed competing methods. Gene ontology analysis highlighted key biological processes, such as neurogenesis and ion transport, from the genes known to be important for urinary tract functions. CONCLUSIONS We applied machine learning methods and bioinformatics tools to genome-wide data to predict and explain GU toxicity. Our approach enabled the design of a more powerful predictive model and the determination of plausible biomarkers and biological processes associated with GU toxicity.
Collapse
Affiliation(s)
- Sangkyu Lee
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sarah Kerns
- Department of Radiation Oncology, University of Rochester Medical Center, New York, New York
| | - Harry Ostrer
- Department of Pathology, Albert Einstein College of Medicine, New York, New York; Department of Pediatrics, Albert Einstein College of Medicine, New York, New York
| | - Barry Rosenstein
- Department of Radiation Oncology and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jung Hun Oh
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
2
|
DAI YI, TIAN YE, LUO DEYI, WAZIR ROMEL, YUE XUAN, LI HONG, WANG KUNJIE. Cyclic stretch induces human bladder smooth muscle cell proliferation in vitro through muscarinic receptors. Mol Med Rep 2014; 11:2292-8. [DOI: 10.3892/mmr.2014.2984] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 09/19/2014] [Indexed: 11/06/2022] Open
|
3
|
van der Veer EP, de Bruin RG, Kraaijeveld AO, de Vries MR, Bot I, Pera T, Segers FM, Trompet S, van Gils JM, Roeten MK, Beckers CM, van Santbrink PJ, Janssen A, van Solingen C, Swildens J, de Boer HC, Peters EA, Bijkerk R, Rousch M, Doop M, Kuiper J, Schalij MJ, van der Wal AC, Richard S, van Berkel TJC, Pickering JG, Hiemstra PS, Goumans MJ, Rabelink TJ, de Vries AAF, Quax PHA, Jukema JW, Biessen EAL, van Zonneveld AJ. Quaking, an RNA-binding protein, is a critical regulator of vascular smooth muscle cell phenotype. Circ Res 2013; 113:1065-75. [PMID: 23963726 DOI: 10.1161/circresaha.113.301302] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
RATIONALE RNA-binding proteins are critical post-transcriptional regulators of RNA and can influence pre-mRNA splicing, RNA localization, and stability. The RNA-binding protein Quaking (QKI) is essential for embryonic blood vessel development. However, the role of QKI in the adult vasculature, and in particular in vascular smooth muscle cells (VSMCs), is currently unknown. OBJECTIVE We sought to determine the role of QKI in regulating adult VSMC function and plasticity. METHODS AND RESULTS We identified that QKI is highly expressed by neointimal VSMCs of human coronary restenotic lesions, but not in healthy vessels. In a mouse model of vascular injury, we observed reduced neointima hyperplasia in Quaking viable mice, which have decreased QKI expression. Concordantly, abrogation of QKI attenuated fibroproliferative properties of VSMCs, while potently inducing contractile apparatus protein expression, rendering noncontractile VSMCs with the capacity to contract. We identified that QKI localizes to the spliceosome, where it interacts with the myocardin pre-mRNA and regulates the splicing of alternative exon 2a. This post-transcriptional event impacts the Myocd_v3/Myocd_v1 mRNA balance and can be modulated by mutating the quaking response element in exon 2a of myocardin. Furthermore, we identified that arterial damage triggers myocardin alternative splicing and is tightly coupled with changes in the expression levels of distinct QKI isoforms. CONCLUSIONS We propose that QKI is a central regulator of VSMC phenotypic plasticity and that intervention in QKI activity can ameliorate pathogenic, fibroproliferative responses to vascular injury.
Collapse
|
4
|
Arrighi N, Bodei S, Zani D, Michel MC, Simeone C, Cosciani Cunico S, Spano P, Sigala S. Different muscarinic receptor subtypes modulate proliferation of primary human detrusor smooth muscle cells via Akt/PI3K and map kinases. Pharmacol Res 2013; 74:1-6. [PMID: 23628881 DOI: 10.1016/j.phrs.2013.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 04/20/2013] [Accepted: 04/22/2013] [Indexed: 11/17/2022]
Abstract
While acetylcholine (ACh) and muscarinic receptors in the bladder are mainly known for their role in the regulation of smooth muscle contractility, in other tissues they are involved in tissue remodelling and promote cell growth and proliferation. In the present study we have used primary cultures of human detrusor smooth muscle cells (HDSMCs), in order to investigate the role of muscarinic receptors in HDSMC proliferation. Samples were obtained as discarded tissue from men >65 years undergoing radical cystectomy for bladder cancer and cut in pieces that were either immediately frozen or placed in culture medium for the cell culture establishment. HDSMCs were isolated from samples, propagated and maintained in culture. [(3)H]-QNB radioligand binding on biopsies revealed the presence of muscarinic receptors, with a Kd of 0.10±0.02nM and a Bmax of 72.8±0.1fmol/mg protein. The relative expression of muscarinic receptor subtypes, based on Q-RT-PCR, was similar in biopsies and HDSMC with a rank order of M2≥M3>M1>M4>M5. The cholinergic agonist carbachol (CCh, 1-100μM) concentration-dependently increased [(3)H]-thymidine incorporation (up to 46±4%). This was concentration-dependently inhibited by the general muscarinic receptor antagonist atropine and by subtype-preferring antagonists with an order of potency of darifenacin >4-DAMP>AF-DX 116. The CCh-induced cell proliferation was blocked by selective PI-3 kinase and ERK activation inhibitors, strongly suggesting that these intracellular pathways mediate, at least in part, the muscarinic receptor-mediated cell proliferation. This work shows that M2 and M3 receptors can mediate not only HDSM contraction but also proliferation; they may also contribute bladder remodelling including detrusor hypertrophy.
Collapse
Affiliation(s)
- Nicola Arrighi
- Urology Unit, Istituto Clinico Città di Brescia, Brescia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Luo DY, Wazir R, Tian Y, Yue X, Wei TQ, Wang KJ. Integrin αv mediates contractility whereas integrin α4 regulates proliferation of human bladder smooth muscle cells via FAK pathway under physiological stretch. J Urol 2013; 190:1421-9. [PMID: 23587631 DOI: 10.1016/j.juro.2013.04.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2013] [Indexed: 02/05/2023]
Abstract
PURPOSE The requirement of integrins for mechanotransduction has been recognized for some time. We investigated the role of integrin subunits and their pathway in the physiological stretch induced contractility and proliferation of human bladder smooth muscle cells. MATERIALS AND METHODS Human bladder smooth muscle cells were seeded on silicone membrane and subjected to stretch, simulating bladder cycles of various stretches and times, as controlled by customized software on a modified BioDynamic bioreactor. Cell proliferation, viability and cycle were determined by BrdU incorporation assay, the Cell Counting Kit-8 (Beyotime Institute of Biotechnology, Haimen, People's Republic of China) and flow cytometry, respectively. Cell contractility was determined using a collagen gel contraction assay. RESULTS Physiological stretch increased cell contractility, proliferation and viability. Knockdown of integrin αv but not α4 in the cells disrupted the enhanced contractility induced by stretch. Under physiological stretch conditions, the integrin αv level and phospho-FAK/FAK ratio correlated positively with cell stretch induced enhanced contractility. Further examination revealed that contractile marker expression was associated with integrin αv activation through the FAK pathway. At the same time integrin α4 but not integrin αv mediated stretch induced cell proliferation and viability. CONCLUSIONS These data revealed that different integrins have different roles in the contractility and proliferation of human bladder smooth muscle cells under physiological stretch. This suggests that different integrins may become specific therapeutic targets in patients with voiding dysfunction. They may also be used to design a specific microenvironment for optimal bladder tissue regeneration.
Collapse
Affiliation(s)
- De-Yi Luo
- Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | | | | | | | | | | |
Collapse
|
6
|
[Acetylcholine induces human detrusor muscle cell proliferation: molecular and pharmacological characterization]. Urologia 2012; 79:102-8. [PMID: 22610841 DOI: 10.5301/ru.2012.9272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2012] [Indexed: 01/28/2023]
Abstract
INTRODUCTION The purpose of the study is to understand whether the cholinergic stimulation is important, not only in inducing contraction of the detrusor muscle, but also in modulating the proliferation of smooth muscle cells. These results could help to better understand the role of antimuscarinic drugs, which are currently used for the treatment of many urological diseases. PATIENTS AND METHODS Primary cultures were prepared from biopsies of human detrusor muscle of subjects >65 years. From the cell culture set-up for each patient, mRNA was extracted and both the gene expression and the influence of increasing passages on the expression of muscarinic receptor subtypes were evaluated by semi-quantitative and quantitative PCR (RT-PCR and Q-RT-PCR). The rate of cell proliferation induced by cholinergic drugs was assessed by the evaluation of the [3H]-thymidine incorporation. RESULTS The gene expression analysis demonstrated that the range of expression of muscarinic subtypes in human detrusor smooth muscle cells (HDSMCs) is M2 > M3 > M1 > M4 >> M5. The exposure to the cholinergic agonist carbachol induced a concentration-dependent increase in cell proliferation rate. The pharmacological characterization indicated that this effect was mainly mediated by the receptor subtypes M3 and M2. DISCUSSION The cholinergic stimulation led to an increase in HDSMC proliferation, suggesting that this phenomenon might be involved in the pathogenic mechanism through which the cervico-urethral obstruction causes a detrusor hypertrophy, followed by a loss of function. These results could then provide an indication of the use of antimuscarinic drugs in the treatment of lower urinary tract disorders.
Collapse
|
7
|
Ramachandran A, Gong EM, Pelton K, Ranpura SA, Mulone M, Seth A, Gomez P, Adam RM. FosB regulates stretch-induced expression of extracellular matrix proteins in smooth muscle. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2977-89. [PMID: 21996678 DOI: 10.1016/j.ajpath.2011.08.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 07/29/2011] [Accepted: 08/09/2011] [Indexed: 11/19/2022]
Abstract
Fibroproliferative remodeling in smooth muscle-rich hollow organs is associated with aberrant extracellular matrix (ECM) production. Although mechanical stimuli regulate ECM protein expression, the transcriptional mediators of this process remain poorly defined. Previously, we implicated AP-1 as a mediator of smooth muscle cell (SMC) mechanotransduction; however, its role in stretch-induced ECM regulation has not been explored. Herein, we identify a novel role for the AP-1 subunit FosB in stretch-induced ECM expression in SMCs. The DNA-binding activity of AP-1 increased after stretch stimulation of SMCs in vitro. In contrast to c-Jun and c-fos, which are also activated by the SMC mitogen platelet-derived growth factor, FosB was only activated by stretch. FosB silencing attenuated the expression of the profibrotic factors tenascin C (TNC) and connective tissue growth factor (CTGF), whereas forced expression of Jun~FosB stimulated TNC and CTGF promoter activity. Chromatin immunoprecipitation revealed enrichment of AP-1 at the TNC and CTGF promoters. Bladder distension in vivo enhanced nuclear localization of c-jun and FosB. Finally, the distension-induced expression of TNC and CTGF in the detrusor smooth muscle of bladders from wild-type mice was significantly attenuated in FosB-null mice. Together, these findings identify FosB as a mechanosensitive regulator of ECM production in smooth muscle.
Collapse
Affiliation(s)
- Aruna Ramachandran
- Urological Diseases Research Center, Children's Hospital Boston, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Méndez-López LF, Zapata-Benavides P, Zavala-Pompa A, Aguado-Barrera ME, Pacheco-Calleros J, Rodríguez-Padilla C, Cerda-Flores RM, Cortés-Gutiérrez EI, Dávila-Rodríguez MI. Immunohistochemical analysis of prostate apoptosis response-4 (Par-4) in Mexican women with breast cancer: a preliminary study. Arch Med Res 2010; 41:261-8. [PMID: 20637369 DOI: 10.1016/j.arcmed.2010.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 05/13/2010] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS We undertook this study to compare the expression level of prostate apoptosis response-4 (Par-4) among patient outcome in two groups of women with breast cancer (short and long survival) and two groups without breast cancer (benign lesion and control). METHODS We included breast specimens with nonhistological abnormalities (eight samples) as a control group. Semiquantitative and quantitative analysis of immunohistochemical staining by image analysis software were used to study the intensity of Par-4 expression. Both methods produced similar results (p>0.05). RESULTS No significant expression of Par-4 was observed in normal breast tissue. Benign lesions and breast cancer tissue showed strong nuclear expression of Par-4, predominantly on epithelial cells and specifically in ductal cells. Par-4 expression was lower in myoepithelial cells and there was no appreciable stromal staining. Significantly less Par-4 reactivity was detected in tissue from patients with a short survival compared with patients with benign lesions and those with a long survival. CONCLUSIONS Our findings suggest that a lower expression level of Par-4 is related to an unfavorable prognosis. A larger prospective study of samples of all patient groups with a longer follow-up is needed to validate this finding.
Collapse
Affiliation(s)
- Luis Fernando Méndez-López
- División de Genética, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Liao PL, Cheng YW, Li CH, Wang YT, Kang JJ. 7-Ketocholesterol and cholesterol-5α,6α-epoxide induce smooth muscle cell migration and proliferation through the epidermal growth factor receptor/phosphoinositide 3-kinase/Akt signaling pathways. Toxicol Lett 2010; 197:88-96. [DOI: 10.1016/j.toxlet.2010.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 04/10/2010] [Accepted: 05/04/2010] [Indexed: 12/28/2022]
|
10
|
Ramachandran A, Ranpura SA, Gong EM, Mulone M, Cannon GM, Adam RM. An Akt- and Fra-1-dependent pathway mediates platelet-derived growth factor-induced expression of thrombomodulin, a novel regulator of smooth muscle cell migration. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:119-31. [PMID: 20472895 PMCID: PMC2893656 DOI: 10.2353/ajpath.2010.090772] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/09/2010] [Indexed: 11/20/2022]
Abstract
Overdistension of hollow organs evokes pathological changes characterized by smooth muscle remodeling. Mechanical stimuli induce smooth muscle cell (SMC) growth through acute activation of signaling cascades and by increased expression of soluble mitogens. Physical forces have also been implicated in ligand-independent activation of receptor tyrosine kinases, including the platelet-derived growth factor (PDGF) receptor, although the extent to which this occurs in intact tissue is unknown. Previously, we implicated Akt and activator protein-1 (AP-1) as mediators of growth and gene expression in SMC exposed to cyclic stretch or PDGF. Here we show that bladder wall distension leads to PDGFR activation and identify thrombomodulin (TM) as an Akt and AP-1 target in SMC. We demonstrate that TM, also induced by bladder stretch injury, is regulated at the transcriptional level by the AP-1 components c-jun and Fra1. Mutation of an AP-1 motif at -2010/-2004 abolished both AP-1 binding and PDGF responsiveness of the TM promoter. Fra1 silencing diminished PDGF-induced TM expression and SMC cell cycle transit. In contrast, TM knockdown did not affect cell growth but attenuated PDGF-stimulated SMC migration. Taken together, these results reveal new facets of TM regulation in SMC and provide the first demonstration of a role for endogenous TM in PDGF-induced cell migration. Moreover, TM induction on bladder injury suggests that it may be a biomarker for pathological smooth muscle remodeling.
Collapse
Affiliation(s)
- Aruna Ramachandran
- Urological Diseases Research Center, John F. Enders Research Laboratories, Room 1077, Children's Hospital Boston, 300 Longwood Ave., Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
11
|
Parekh A, Cigan AD, Wognum S, Heise RL, Chancellor MB, Sacks MS. Ex vivo deformations of the urinary bladder wall during whole bladder filling: contributions of extracellular matrix and smooth muscle. J Biomech 2010; 43:1708-16. [PMID: 20398903 DOI: 10.1016/j.jbiomech.2010.02.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 01/21/2010] [Accepted: 02/19/2010] [Indexed: 11/19/2022]
Abstract
As the complete understanding of urinary bladder function requires knowledge of organ level deformations, we conducted ex vivo studies of surface strains of whole bladders during controlled filling. The surface strains derived from displacements of surface markers applied to the posterior surface of excised rat bladders were tracked under slow filling with pressure and volume simultaneously recorded in the passive and completely inactivated states (i.e. with and without smooth muscle tone, respectively). Bladders evaluated in the passive state exhibited spontaneous contractions and larger average peak pressures (16.7 mm Hg compared to 6.4 mm Hg in the inactive state). Overall, the bladders exhibited anisotropic deformations and were stiffer in the circumferential direction, with average peak stretch values of approximately 2.3 and approximately 1.9 in the longitudinal and circumferential directions, respectively, for both states. Although bladders in the passive state were stiffer, they had similar average peak areal stretches of 4.3 in both states. However, differences early in the filling process as a result of a loss in smooth muscle tone in the inactive state resulted in longitudinal lengthening of 36%. Idealizing the bladder as a prolate spheroid, we estimated the wall stress-strain relation during filling and demonstrated that the intact bladder exhibited the classic stress-stretch relation, with a significantly protracted low stress region and peak stresses of 36 and 51 kPa in the longitudinal and circumferential directions, respectively. The present study fills a major gap in the urinary bladder biomechanics literature, wherein knowledge of the pressure-volume-wall stress-wall strain relation was explored for the first time in a functioning organ ex vivo.
Collapse
Affiliation(s)
- Aron Parekh
- Department of Bioengineering, Swanson School of Engineering, McGowan Institute, School of Medicine, 300 Technology Drive, Pittsburgh, PA 15219, USA
| | | | | | | | | | | |
Collapse
|
12
|
Dahal BK, Cornitescu T, Tretyn A, Pullamsetti SS, Kosanovic D, Dumitrascu R, Ghofrani HA, Weissmann N, Voswinckel R, Banat GA, Seeger W, Grimminger F, Schermuly RT. Role of Epidermal Growth Factor Inhibition in Experimental Pulmonary Hypertension. Am J Respir Crit Care Med 2010; 181:158-67. [DOI: 10.1164/rccm.200811-1682oc] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
13
|
Aitken KJ, Tolg C, Panchal T, Leslie B, Yu J, Elkelini M, Sabha N, Tse DJ, Lorenzo AJ, Hassouna M, Bägli DJ. Mammalian target of rapamycin (mTOR) induces proliferation and de-differentiation responses to three coordinate pathophysiologic stimuli (mechanical strain, hypoxia, and extracellular matrix remodeling) in rat bladder smooth muscle. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:304-19. [PMID: 20019183 DOI: 10.2353/ajpath.2010.080834] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Maladaptive bladder muscle overgrowth and de-differentiation in human bladder obstructive conditions is instigated by coordinate responses to three stimuli: mechanical strain, tissue hypoxia, and extracellular matrix remodeling.( 1,2) Pathway analysis of genes induced by obstructive models of injury in bladder smooth muscle cells (BSMCs) identified a mammalian target of rapamycin (mTOR)-specific inhibitor as a potential pharmacological inhibitor. Strain-induced mTOR-specific S6K activation segregated differently from ERK1/2 activation in intact bladder ex vivo. Though rapamycin's antiproliferative effects in vascular smooth muscle cells are well known, its effects on BSMCs were previously unknown. Rapamycin significantly inhibited proliferation of BSMCs in response to mechanical strain, hypoxia, and denatured collagen. Rapamycin inhibited S6K at mTOR-sensitive phosphorylation sites in response to strain and hypoxia. Rapamycin also supported smooth muscle actin expression in response to strain or hypoxia-induced de-differentiation. Importantly, strain plus hypoxia synergistically augmented mTOR-dependent S6K activation, Mmp7 expression and proliferation. Forced expression of wild-type and constitutively active S6K resulted in loss of smooth muscle actin expression. Decreased smooth muscle actin, increased Mmp7 levels and mTOR pathway activation during in vivo partial bladder obstruction paralleled our in vitro studies. These results point to a coordinate role for mTOR in BSMCs responses to the three stimuli and a potential new therapeutic target for myopathic bladder disease.
Collapse
Affiliation(s)
- Karen J Aitken
- Developmental & Stem Cell Biology, The Hospital For Sick Children Research Institute, Toronto, ON M5G 1X8, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Liu J, Liu J, Mao J, Yuan X, Lin Z, Li Y. Caspase-3-mediated cyclic stretch-induced myoblast apoptosis via a Fas/FasL-independent signaling pathway during myogenesis. J Cell Biochem 2009; 107:834-44. [DOI: 10.1002/jcb.22182] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Halachmi S. The molecular pathways behind bladder stretch injury. J Pediatr Urol 2009; 5:13-6. [PMID: 18793873 DOI: 10.1016/j.jpurol.2008.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 08/05/2008] [Indexed: 02/04/2023]
Abstract
Stretch injury is a non-reversible process that changes the cellular and extracellular characteristics of the bladder wall, leading to bladder dysfunction. Posterior urethral valve and neurogenic bladder are examples of disorders that may lead to stretch injury. There is a lack of understanding of the molecular processes leading to stretch injury. The current literature is reviewed in this paper, with the aim of giving some insight into the molecular and genetic pathways of bladder stretch injury.
Collapse
Affiliation(s)
- Sarel Halachmi
- Department of Urology, Faculty of Medicine, Pediatric Urology Service, Rambam Medical Center, Technion Israeli Institute of Technology, Haifa, Israel
| |
Collapse
|
16
|
Elkelini MS, Aitken K, Bagli DJ, Hassouna MM. Effects of doxycycline on voiding behaviour of rats with bladder outlet obstruction. BJU Int 2008; 103:537-40. [PMID: 18990141 DOI: 10.1111/j.1464-410x.2008.08131.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To examine the voiding behaviour changes in rats with bladder outlet obstruction (BOO) while inhibiting matrix metalloproteinase (MMP) activity with doxycycline, as increased MMP activity may be involved in obstruction-induced bladder hypertrophy. MATERIALS AND METHODS Female Sprague-Dawley were divided into eight groups (three rats in each group): normal control (NC) +/- doxycycline, 3 weeks partial BOO (3WPBOO) +/- doxycycline, 6 weeks PBOO +/- doxycycline, and 3 weeks PBOO followed by 3 weeks de-obstruction (3WOD) +/- doxycycline. All rats received the same food and water and were on the same 12 h dark/light cycle housed in metabolic cages. Treatment groups were given doxycycline 15 mg/kg/day subcutaneously twice daily. The voiding variables measured were average voided volume (AV V) and voiding frequency (VF) in 24 h. After completion of the voiding behaviour studies, the rats were killed and their bladders were excised and weighed. RESULTS The AV Vs were significantly increased (P < 0.05) in all study groups compared with the NC group except for the 3WPBOO-doxycycline and 3WOD-doxycycline groups. The VF was significantly increased (P < 0.05) only in the 3WOD-doxycycline group. The bladder weights were significantly increased after PBOO in all the study groups (P < 0.05), except for the 3WOD group. CONCLUSION These data show that MMP inhibition may affect voiding behaviour during the response to BOO or its relief. This is the first clinical demonstration that interfering with a principal target of bladder muscle wall remodelling may have a direct effect on bladder function.
Collapse
Affiliation(s)
- Mohamed S Elkelini
- Surgery/Urology and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
17
|
17β-Estradiol affects the proliferation and apoptosis of rat bladder neck smooth muscle cells by modulating cell cycle transition and related proteins. World J Urol 2008; 27:241-8. [DOI: 10.1007/s00345-008-0333-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Accepted: 09/11/2008] [Indexed: 11/27/2022] Open
|
18
|
|