1
|
Rodrigues MC, Oliveira LBF, Vieira MAR, Caruso-Neves C, Peruchetti DB. Receptor-mediated endocytosis in kidney cells during physiological and pathological conditions. CURRENT TOPICS IN MEMBRANES 2024; 93:1-25. [PMID: 39181576 DOI: 10.1016/bs.ctm.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Mammalian cell membranes are very dynamic where they respond to several environmental stimuli by rearranging the membrane composition by basic biological processes, including endocytosis. In this context, receptor-mediated endocytosis, either clathrin-dependent or caveolae-dependent, is involved in different physiological and pathological conditions. In the last years, an important amount of evidence has been reported that kidney function involves the modulation of different types of endocytosis, including renal protein handling. In addition, the dysfunction of the endocytic machinery is involved with the development of proteinuria as well as glomerular and tubular injuries observed in kidney diseases associated with hypertension, diabetes, and others. In this present review, we will discuss the mechanisms underlying the receptor-mediated endocytosis in different glomerular cells and proximal tubule epithelial cells as well as their modulation by different factors during physiological and pathological conditions. These findings could help to expand the current understanding regarding renal protein handling as well as identify possible new therapeutic targets to halt the progression of kidney disease.
Collapse
Affiliation(s)
- Mariana C Rodrigues
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Laura B F Oliveira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria Aparecida R Vieira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Celso Caruso-Neves
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAUDE/FAPERJ, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-Regenera, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCTI, Rio de Janeiro, RJ, Brazil
| | - Diogo B Peruchetti
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nanobiofarmacêutica, INCT-NANOBiofar, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCTI, Belo Horizonte, MG, Brazil.
| |
Collapse
|
2
|
Li Y, Zou T, Xue L, Yin ZQ, Huo S, Xu H. TGF-β1 enhances phagocytic removal of neuron debris and neuronal survival by olfactory ensheathing cells via integrin/MFG-E8 signaling pathway. Mol Cell Neurosci 2017; 85:45-56. [PMID: 28860093 DOI: 10.1016/j.mcn.2017.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/24/2017] [Accepted: 08/26/2017] [Indexed: 01/14/2023] Open
Abstract
Olfactory ensheathing cells (OECs) have been shown to be a leading candidate in cell therapies for central nervous system (CNS) injuries and neurodegenerative diseases. Rapid clearance of neuron debris can promote neuronal survival and axonal regeneration in CNS injuries and neurodegenerative diseases. The phagocytic removal of neuron debris by OECs has been shown to contribute to neuronal outgrowth. However, the precise molecular and cellular mechanisms of phagocytic removal of neuron debris by OECs have not been explored. In this study, we found that OECs secreted anti-inflammatory cytokine transforming growth factor β1 (TGF-β1) during the phagocytic removal of neuron debris. TGF-β1 enhanced phagocytic activity of OECs through regulating integrin/MFG-E8 signaling pathway. In addition, TGF-β1 shifted OECs towards a flattened shape with increased cellular area, which might also be involved in the enhancement of phagocytic activity of OECs. Furthermore, the removal of neuron debris by OECs affected neuronal survival and outgrowth. TGF-β1 enhanced the clearance of neuron debris by OECs and increased neuronal survival. These results reveal the role and mechanism of TGF-β1 in enhancing the phagocytic activity of OECs, which will update the understanding of phagocytosis of OECs and improve the therapeutic use of OECs in CNS injuries and neurodegenerative diseases.
Collapse
Affiliation(s)
- Yijian Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Langyue Xue
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Shujia Huo
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.
| |
Collapse
|
3
|
Zhang M, Huang W, Bai J, Nie X, Wang W. Chymase inhibition protects diabetic rats from renal lesions. Mol Med Rep 2016; 14:121-8. [PMID: 27176496 PMCID: PMC4918600 DOI: 10.3892/mmr.2016.5234] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 04/01/2016] [Indexed: 01/08/2023] Open
Abstract
The present study aimed to investigate the effects of a chymase inhibitor on renal injury in diabetic rats. A total of 24 Sprague-Dawley rats were randomly divided into the following groups: The control group (n=7), the diabetes group (DM group; n=7), and the DM + chymase inhibitor group (DM + Chy-I group; n=10). Diabetes was induced via an intraperitoneal injection of streptozotocin (65 mg/kg). Rats in the DM + Chy-I group were administered 1 mg/kg chymase inhibitor [Suc-Val-Pro-PheP-(OPh)2] daily for 12 weeks by intraperitoneal injection. Subsequently, kidney weight, various biochemical parameters and blood pressure were measured. In addition, the expression levels of fibronectin (FN), type IV collagen (ColIV), transforming growth factor (TGF)-β1 and vascular endothelial growth factor (VEGF) were determined by immunohistochemistry and reverse transcription polymerase chain reaction. Compared with in the DM group, the levels of serum cholesterol and urinary albumin/creatinine were decreased in the DM + Chy-I group (P<0.05). Furthermore, chymase inhibition reduced the overexpression of FN, ColIV, TGF-β1 and VEGF (P<0.05) in the renal tissue of diabetic rats. These results indicated that chymase inhibition may reduce the excretion of urinary albumin and the deposition of extracellular matrix components in the kidney of diabetic rats. These effects may be mediated by altered expression of the VEGF and TGF-β1 pathways. In conclusion, chymase inhibition may be considered a potential method for the treatment of renal damage.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Nephrology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Wen Huang
- Department of Nephrology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Jing Bai
- Department of Nephrology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Xiaodong Nie
- Department of Nephrology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Wen Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
4
|
Spittau B, Rilka J, Steinfath E, Zöller T, Krieglstein K. TGFβ1 increases microglia-mediated engulfment of apoptotic cells via upregulation of the milk fat globule-EGF factor 8. Glia 2014; 63:142-53. [PMID: 25130376 DOI: 10.1002/glia.22740] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 07/29/2014] [Indexed: 12/18/2022]
Abstract
Milk fat globule-epidermal growth factor-factor 8 (Mfge8) has been described as an essential molecule during microglia-mediated clearance of apoptotic cells via binding to phosphatidylserine residues and subsequent phagocytosis. Impaired uptake of apoptotic cells by microglia results in prolonged inflammatory responses and damage of healthy cells. Although the mechanisms of Mfge8-mediated engulfment of apoptotic cells are well understood, endogenous or exogenous factors that regulate Mfge8 expression remain elusive. Here, we describe that TGFβ1 increases the expression of Mfge8 and enhances the engulfment of apoptotic cells by primary mouse microglia in a Mfge8-dependent manner. Further, apoptotic cells are capable of increasing microglial TGFβ expression and release and shift the microglia phenotype toward alternative activation. Moreover, we provide evidence that Mfge8 expression is differentially regulated in microglia after classical and alternative activation and that Mfge8 is not able to exert direct antiinflammatory effects on LPS-treated primary microglia. Together, these results underline the importance of TGFβ1 as a regulatory factor for microglia and suggest that increased TGFβ1 expression in models of neurodegeneration might be involved in clearance of apoptotic cells via regulation of Mfge8 expression.
Collapse
Affiliation(s)
- Björn Spittau
- Department of Molecular Embryology, Institute for Anatomy and Cell Biology, Albert-Ludwigs-University, Freiburg, Germany
| | | | | | | | | |
Collapse
|
5
|
Sato AYS, Antonioli E, Tambellini R, Campos AH. ID1 inhibits USF2 and blocks TGF-β-induced apoptosis in mesangial cells. Am J Physiol Renal Physiol 2011; 301:F1260-9. [PMID: 21921026 DOI: 10.1152/ajprenal.00128.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mesangial cells (MC) play an essential role in normal function of the glomerulus. Phenotypic changes in MC lead to the development of glomerular diseases such as diabetic nephropathy and glomerulosclerosis. The late phase of diabetic glomerulopathy is characterized by MC death and fibrosis. Current data highlight the transforming growth factor (TGF)-β as a trigger of the pathological changes observed in MC, including death by apoptosis. However, the mechanisms and mediators involved in this process are still poorly understood. Identification of novel elements involved in MC death may provide a better understanding of the pathophysiology of glomerular diseases. Here, we show that bone morphogenetic proteins (BMPs; known antagonists of the profibrotic effects of TGF-β in the kidney) strongly induce inhibitor of DNA binding (ID1) mRNA transcription and protein expression in human MC. ID genes have been implicated in cell survival control and are constitutively expressed in MC. We show that BMPs and ID1 exert an anti-apoptotic effect in MC by inhibition of USF2 transcriptional activity. On the other hand, TGF-β upregulates USF2, increasing BAX (proapoptotic gene) levels and apoptosis rates. Taken together, our results point to a novel molecular pathway that modulates MC apoptosis, which is potentially involved in the pathogenesis of glomerular diseases.
Collapse
Affiliation(s)
- Alex Yuri Simões Sato
- Department of Physiology and Biophysics, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Albert Einstein, 627 Morumbi, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
6
|
Huang TH, Ka SM, Hsu YJ, Shui HA, Tang BL, Hu KY, Chang JL, Chen A. Rab23 plays a role in the pathophysiology of mesangial cells--a proteomic analysis. Proteomics 2011; 11:380-94. [PMID: 21268268 DOI: 10.1002/pmic.201000165] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 10/13/2010] [Accepted: 11/02/2010] [Indexed: 12/23/2022]
Abstract
Rab23, a novel member of the Rab family of small GTPases, has recently been identified in mesangial cells (MCs). Although Rab23 levels in MCs are associated with glomerular nephropathies, the exact physiological and pathological roles of Rab23 in MCs are unknown. In the present study, its roles in MCs were explored by performing proteomics and systems biology analyses in MCs after knockdown or overexpression of Rab23. Knockdown of Rab23 was achieved by transfecting MCs with a plasmid expressing short hairpin RNA against Rab23, while overexpression of Rab23 was accomplished by transfection with the wild-type, dominant negative, and constitutively active Rab23 gene constructs. The effects of different levels of Rab23 activity on proteome of various biological pathways were investigated. Gel-based proteomic approaches and systems biology tools, respectively, were used to identify the Rab23-regulated proteins and the functional pathways. Proteomic analysis revealed the potential roles for Rab23 in multiple processes, including G-protein signal transduction, transcription modulation, RNA stabilization, protein synthesis and degradation, cytoskeleton reorganization, anti-oxidation and detoxification, circadian rhythm regulation and phagocytosis. Bioinformatics analyses showed that Rab23 impacts on multiple biological networks in MCs. These data may shed light on the roles of Rab23 in mesangiopathy or MC damage.
Collapse
Affiliation(s)
- Tzu-Hao Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Isenberg JS, Maxhimer JB, Powers P, Tsokos M, Frazier WA, Roberts DD. Treatment of liver ischemia-reperfusion injury by limiting thrombospondin-1/CD47 signaling. Surgery 2008; 144:752-61. [PMID: 19081017 DOI: 10.1016/j.surg.2008.07.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2008] [Accepted: 07/10/2008] [Indexed: 11/19/2022]
Abstract
BACKGROUND Ischemia-reperfusion (I/R) injury remains a primary complication of transplant surgery, accounting for about 80% of liver transplant failures, and is a major source of morbidity in other pathologic conditions. Activation of endothelium and inflammatory cell recruitment are central to the initiation and promulgation of I/R injury, which can be limited by the bioactive gas nitric oxide (NO). The discovery that thrombsospondin-1 (TSP1), via CD47, limits NO signaling in vascular cells and ischemic injuries in vivo suggested that I/R injury could be another important target of this signaling pathway. METHODS Wild-type, TSP1-null, and CD47-null mice underwent liver I/R injury. Wild-type animals were pretreated with CD47 or control antibodies before liver I/R injury. Tissue perfusion via laser Doppler imaging, serum enzymes, histology, and immunohistology were assessed. RESULTS TSP1-null and CD47-null mice subjected to subtotal liver I/R injury showed improved perfusion relative to wild-type mice. Null mice subjected to liver I/R had decreased liver enzyme release and less histologic evidence of injury. Elevated TSP1 expression in liver tissue after I/R injury suggested that preventing its interaction with CD47 could be protective. Thus, pretreatment of wild-type mice using a blocking CD47 antibody improved recovery of tissue perfusion and preserved liver integrity after I/R injury. CONCLUSIONS Tissue survival and perfusion after liver I/R injury are limited by TSP1 and CD47. Targeting CD47 before I/R injury enhances tissue survival and perfusion in a model of liver I/R injury and suggests therapeutics for enhancing organ survival in transplantation surgery.
Collapse
Affiliation(s)
- Jeff S Isenberg
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | | | | | | | | | | |
Collapse
|