1
|
Fahim SA, El Sobky SA, Abdellatif A, Fawzy IO, Abdelaziz AI. MEIS1: From functional versatility to post-transcriptional/translational regulation. Life Sci 2025; 374:123683. [PMID: 40339957 DOI: 10.1016/j.lfs.2025.123683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/14/2025] [Accepted: 04/30/2025] [Indexed: 05/10/2025]
Abstract
Myeloid ecotropic virus insertion site 1 (MEIS1) is a transcription factor involved in a myriad of functions such as hematopoiesis, cardiac regeneration, cell cycle progression, and limb and organ development. Its functional versatility extends beyond developmental biology, as aberrant MEIS1 expression has been implicated in various pathological contexts like carcinogenesis, cardiomyopathies, and neurodegenerative disorders. Recent advances in the field have uncovered novel layers of MEIS1 regulation, focusing on post-transcriptional and translational mechanisms, which collectively fine-tune its activity, stability, and subcellular localization. These include chromatin remodeling, epigenetic modifications in the enhancer and promoter regions, and protein modifications like phosphorylation and ubiquitination. The sophisticated regulation of MEIS1 including its interplay with non-coding RNAs (ncRNAs), either being an upstream or downstream of ncRNAs, equally represents an important regulatory mechanism orchestrating MEIS1 expression and function. This review explores the multifaceted roles of MEIS1, emphasizing its dynamic regulatory networks and their implications in physiological and pathological conditions. It also provides forward-thinking guidance on the utilization of MEIS1 in targeted therapies across various clinical settings, highlighting its potential as a key regulatory factor in disease modulation and therapeutic innovation.
Collapse
Affiliation(s)
- Salma A Fahim
- School of Medicine, Newgiza University (NGU), Giza, Egypt; Biotechnology Program, American University in Cairo, New Cairo, Egypt
| | | | - Ahmed Abdellatif
- Biotechnology Program, American University in Cairo, New Cairo, Egypt
| | | | | |
Collapse
|
2
|
Herrera J, Bensussen A, García-Gómez ML, Garay-Arroyo A, Álvarez-Buylla ER. A system-level model reveals that transcriptional stochasticity is required for hematopoietic stem cell differentiation. NPJ Syst Biol Appl 2024; 10:145. [PMID: 39639033 PMCID: PMC11621455 DOI: 10.1038/s41540-024-00469-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
HSCs differentiation has been difficult to study experimentally due to the high number of components and interactions involved, as well as the impact of diverse physiological conditions. From a 200-node network, that was grounded on experimental data, we derived a 21-node regulatory network by collapsing linear pathways and retaining the functional feedback loops. This regulatory network core integrates key nodes and interactions underlying HSCs differentiation, including transcription factors, metabolic, and redox signaling pathways. We used Boolean, continuous, and stochastic dynamic models to simulate the hypoxic conditions of the HSCs niche, as well as the patterns and temporal sequences of HSCs transitions and differentiation. Our findings indicate that HSCs differentiation is a plastic process in which cell fates can transdifferentiate among themselves. Additionally, we found that cell heterogeneity is fundamental for HSCs differentiation. Lastly, we found that oxygen activates ROS production, inhibiting quiescence and promoting growth and differentiation pathways of HSCs.
Collapse
Affiliation(s)
- Joel Herrera
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Antonio Bensussen
- Departamento de Control Automático, Cinvestav-IPN, Ciudad de México, México
| | - Mónica L García-Gómez
- Theoretical Biology, Institute of Biodynamics and Biocomplexity; Experimental and Computational Plant Development, Institute of Environmental Biology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Adriana Garay-Arroyo
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Elena R Álvarez-Buylla
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
3
|
Kittke V, Zhao C, Lam DD, Harrer P, Krezel W, Schormair B, Oexle K, Winkelmann J. RLS-associated MEIS transcription factors control distinct processes in human neural stem cells. Sci Rep 2024; 14:28986. [PMID: 39578497 PMCID: PMC11584712 DOI: 10.1038/s41598-024-80266-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024] Open
Abstract
MEIS1 and MEIS2 encode highly conserved homeodomain transcription factors crucial for developmental processes in a wide range of tissues, including the brain. They can execute redundant functions when co-expressed in the same cell types, but their roles during early stages of neural differentiation have not been systematically compared. By separate knockout and overexpression of MEIS1 and MEIS2 in human neural stem cells, we find they control specific sets of target genes, associated with distinct biological processes. Integration of DNA binding sites with differential transcriptomics implicates MEIS1 to co-regulate gene expression by interaction with transcription factors of the SOX and FOX families. MEIS1 harbors the strongest risk factor for restless legs syndrome (RLS). Our data suggest that MEIS1 can directly regulate the RLS-associated genes NTNG1, MDGA1 and DACH1, constituting new approaches to study the elusive pathomechanism or RLS.
Collapse
Affiliation(s)
- Volker Kittke
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany.
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
- DZPG (German Center for Mental Health), Munich, Germany.
| | - Chen Zhao
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Daniel D Lam
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Philip Harrer
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Wojciech Krezel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Barbara Schormair
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany.
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
- DZPG (German Center for Mental Health), Munich, Germany.
| | - Konrad Oexle
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany.
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany.
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
- DZPG (German Center for Mental Health), Munich, Germany.
- Munich Cluster for Systems Neurology, SyNergy, Munich, Germany.
| |
Collapse
|
4
|
Fortin J, Chiang MF, Meydan C, Foox J, Ramachandran P, Leca J, Lemonnier F, Li WY, Gams MS, Sakamoto T, Chu M, Tobin C, Laugesen E, Robinson TM, You-Ten A, Butler DJ, Berger T, Minden MD, Levine RL, Guidos CJ, Melnick AM, Mason CE, Mak TW. Distinct and opposite effects of leukemogenic Idh and Tet2 mutations in hematopoietic stem and progenitor cells. Proc Natl Acad Sci U S A 2023; 120:e2208176120. [PMID: 36652477 PMCID: PMC9942850 DOI: 10.1073/pnas.2208176120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mutations in IDH1, IDH2, and TET2 are recurrently observed in myeloid neoplasms. IDH1 and IDH2 encode isocitrate dehydrogenase isoforms, which normally catalyze the conversion of isocitrate to α-ketoglutarate (α-KG). Oncogenic IDH1/2 mutations confer neomorphic activity, leading to the production of D-2-hydroxyglutarate (D-2-HG), a potent inhibitor of α-KG-dependent enzymes which include the TET methylcytosine dioxygenases. Given their mutual exclusivity in myeloid neoplasms, IDH1, IDH2, and TET2 mutations may converge on a common oncogenic mechanism. Contrary to this expectation, we observed that they have distinct, and even opposite, effects on hematopoietic stem and progenitor cells in genetically engineered mice. Epigenetic and single-cell transcriptomic analyses revealed that Idh2R172K and Tet2 loss-of-function have divergent consequences on the expression and activity of key hematopoietic and leukemogenic regulators. Notably, chromatin accessibility and transcriptional deregulation in Idh2R172K cells were partially disconnected from DNA methylation alterations. These results highlight unanticipated divergent effects of IDH1/2 and TET2 mutations, providing support for the optimization of genotype-specific therapies.
Collapse
Affiliation(s)
- Jerome Fortin
- aPrincess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
- 2To whom correspondence may be addressed. , , or
| | - Ming-Feng Chiang
- aPrincess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
| | - Cem Meydan
- bDepartment of Physiology and Biophysics, Weill Cornell Medicine, New York, NY10065
- cThe HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY10065
- dWorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY10065
| | - Jonathan Foox
- bDepartment of Physiology and Biophysics, Weill Cornell Medicine, New York, NY10065
- cThe HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY10065
| | | | - Julie Leca
- aPrincess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
| | - François Lemonnier
- aPrincess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
- eInstitut Mondor de Recherche Biomédicale, INSERMU955, Université Paris Est Créteil, Créteil94010, France
| | - Wanda Y. Li
- aPrincess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
- fCentre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Miki S. Gams
- gDepartment of Immunology, The Hospital for Sick Children Research Institute, University of Toronto, Toronto, ONM5G 0A4, Canada
| | - Takashi Sakamoto
- aPrincess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
- hDepartment of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Mandy Chu
- aPrincess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
| | - Chantal Tobin
- aPrincess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
| | - Eric Laugesen
- aPrincess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
| | - Troy M. Robinson
- iHuman Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
- jLouis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Annick You-Ten
- aPrincess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
| | - Daniel J. Butler
- bDepartment of Physiology and Biophysics, Weill Cornell Medicine, New York, NY10065
| | - Thorsten Berger
- aPrincess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
| | - Mark D. Minden
- aPrincess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
| | - Ross L. Levine
- iHuman Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
- kCenter for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY10065
- lCenter for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Cynthia J. Guidos
- gDepartment of Immunology, The Hospital for Sick Children Research Institute, University of Toronto, Toronto, ONM5G 0A4, Canada
| | - Ari M. Melnick
- mDepartment of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY10021
| | - Christopher E. Mason
- bDepartment of Physiology and Biophysics, Weill Cornell Medicine, New York, NY10065
- cThe HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY10065
- dWorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY10065
| | - Tak W. Mak
- aPrincess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
- fCentre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
- nDepartment of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- 2To whom correspondence may be addressed. , , or
| |
Collapse
|
5
|
Elucidating the importance and regulation of key enhancers for human MEIS1 expression. Leukemia 2022; 36:1980-1989. [PMID: 35624144 PMCID: PMC9343249 DOI: 10.1038/s41375-022-01602-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 11/20/2022]
Abstract
Myeloid ecotropic virus insertion site 1 (MEIS1) is essential for normal hematopoiesis and is a critical factor in the pathogenesis of a large subset of acute myeloid leukemia (AML). Despite the clinical relevance of MEIS1, its regulation is largely unknown. To understand the transcriptional regulatory mechanisms contributing to human MEIS1 expression, we created a knock-in green florescent protein (GFP) reporter system at the endogenous MEIS1 locus in a human AML cell line. Using this model, we have delineated and dissected a critical enhancer region of the MEIS1 locus for transcription factor (TF) binding through in silico prediction in combination with oligo pull-down, mass-spectrometry and knockout analysis leading to the identification of FLI1, an E-twenty-six (ETS) transcription factor, as an important regulator of MEIS1 transcription. We further show direct binding of FLI1 to the MEIS1 locus in human AML cell lines as well as enrichment of histone acetylation in MEIS1-high healthy and leukemic cells. We also observe a positive correlation between high FLI1 transcript levels and worse overall survival in AML patients. Our study expands the role of ETS factors in AML and our model constitutes a feasible tool for a more detailed understanding of transcriptional regulatory elements and their interactome.
Collapse
|
6
|
Wu Z, Shou L, Wang J, Huang T, Xu X. The Methylation Pattern for Knee and Hip Osteoarthritis. Front Cell Dev Biol 2020; 8:602024. [PMID: 33240895 PMCID: PMC7677303 DOI: 10.3389/fcell.2020.602024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/22/2020] [Indexed: 01/08/2023] Open
Abstract
Osteoarthritis is one of the most prevalent chronic joint diseases for middle-aged and elderly people. But in recent years, the number of young people suffering from the disease increases quickly. It is known that osteoarthritis is a common degenerative disease caused by the combination and interaction of many factors such as natural and environmental factors. DNA methylations reflect the effects of environmental factors. Several researches on DNA methylation at specific genes in OA cartilage indicated the great potential roles of DNA methylation in OA. To systematically investigate the methylation pattern in knee and hip osteoarthritis, we analyzed the methylation profiles in cartilage of 16 OA hip samples, 19 control hip samples and 62 OA knee samples. 12 discriminative methylation sites were identified using advanced minimal Redundancy Maximal Relevance (mRMR) and Incremental Feature Selection (IFS) methods. The SVM classifier of these 12 methylation sites from genes like MEIS1, GABRG3, RXRA, and EN1, can perfectly classify the OA hip samples, control hip samples and OA knee samples evaluated with LOOCV (Leave-One Out-Cross Validation). These 12 methylation sites can not only serve as biomarker, but also provide underlying mechanism of OA.
Collapse
Affiliation(s)
- Zhen Wu
- Departmemt of Orthopaedics, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Lu Shou
- Departmemt of Pneumology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Jian Wang
- Departmemt of Orthopaedics, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Xinwei Xu
- Departmemt of Orthopaedics, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
7
|
Lin L, Huang M, Shi X, Mayakonda A, Hu K, Jiang YY, Guo X, Chen L, Pang B, Doan N, Said JW, Xie J, Gery S, Cheng X, Lin Z, Li J, Berman BP, Yin D, Lin DC, Koeffler H. Super-enhancer-associated MEIS1 promotes transcriptional dysregulation in Ewing sarcoma in co-operation with EWS-FLI1. Nucleic Acids Res 2019; 47:1255-1267. [PMID: 30496486 PMCID: PMC6379679 DOI: 10.1093/nar/gky1207] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 10/27/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023] Open
Abstract
As the second most common malignant bone tumor in children and adolescents, Ewing sarcoma is initiated and exacerbated by a chimeric oncoprotein, most commonly, EWS-FLI1. In this study, we apply epigenomic analysis to characterize the transcription dysregulation in this cancer, focusing on the investigation of super-enhancer and its associated transcriptional regulatory mechanisms. We demonstrate that super-enhancer-associated transcripts are significantly enriched in EWS-FLI1 target genes, contribute to the aberrant transcriptional network of the disease, and mediate the exceptional sensitivity of Ewing sarcoma to transcriptional inhibition. Through integrative analysis, we identify MEIS1 as a super-enhancer-driven oncogene, which co-operates with EWS-FLI1 in transcriptional regulation, and plays a key pro-survival role in Ewing sarcoma. Moreover, APCDD1, another super-enhancer-associated gene, acting as a downstream target of both MEIS1 and EWS-FLI1, is also characterized as a novel tumor-promoting factor in this malignancy. These data delineate super-enhancer-mediated transcriptional deregulation in Ewing sarcoma, and uncover numerous candidate oncogenes which can be exploited for further understanding of the molecular pathogenesis for this disease.
Collapse
Affiliation(s)
- Lehang Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Moli Huang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, P.R. China
| | - Xianping Shi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anand Mayakonda
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Yan-Yi Jiang
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Xiao Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Li Chen
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Brendan Pang
- Department of Pathology, National University Hospital Singapore, 119074, Singapore
| | - Ngan Doan
- Department of Pathology and Laboratory Medicine, University of California Los Angeles and David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Jonathan W Said
- Department of Pathology and Laboratory Medicine, University of California Los Angeles and David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Jianjun Xie
- Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 515041, P.R. China
| | - Sigal Gery
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xu Cheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Zhaoyu Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
- Department of Oral & Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Jinsong Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
- Department of Oral & Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Benjamin P Berman
- Department of Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - De-Chen Lin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - H Phillip Koeffler
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
- National University Cancer Institute, National University Hospital Singapore, 119074, Singapore
| |
Collapse
|
8
|
Zhang D, Hou J, Wu Y, Liu Y, Li R, Xu T, Liu J, Pan Y. Distinct gene expression characteristics in epithelial cell- Porphyromonas gingivalis interactions by integrating transcriptome analyses. Int J Med Sci 2019; 16:1320-1327. [PMID: 31692996 PMCID: PMC6818190 DOI: 10.7150/ijms.33728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 08/24/2019] [Indexed: 12/28/2022] Open
Abstract
Porphyromonas gingivalis is a pivotal periodontal pathogen, and the epithelial cells serve as the first physical barrier to defend the host from bacterial attack. Within this host-bacteria interaction, P. gingivalis can modify the host immune reaction and adjust the gene expression, which is associated with periodontitis pathogenesis and developing strategies. Herein, a meta-analysis was made to get the differential gene expression profiles in epithelial cells with or without P. gingivalis infection. The network-based meta-analysis program for gene expression profiling was used. Both the gene ontology analysis and the pathway enrichment analysis of the differentially expressed genes were conducted. Our results determined that 290 genes were consistently up-regulated in P. gingivalis infected epithelial cells. 229 gene ontology biological process terms of up-regulated genes were discovered, including "negative regulation of apoptotic process" and "positive regulation of cell proliferation/migration/angiogenesis". In addition to the well-known inflammatory signaling pathways, the pathway associated with a transcriptional misregulation in cancer has also been increased. Our findings indicated that P. gingivalis benefited from the survival of epithelial cells, and got its success as a colonizer in oral epithelium. The results also suggested that infection of P. gingivalis might contribute to oral cancer through chronic inflammation. Negative regulation of the apoptotic process and transcriptional misregulation in cancer pathway are important contributors to the cellular physiology changes during infection development, which have particular relevance to the pathogenesis and progressions of periodontitis, even to the occurrence of oral cancer.
Collapse
Affiliation(s)
- Dongmei Zhang
- Department of Periodontics and Oral Biology, School of Stomatology, China Medical University, Shenyang 110002, China
| | - Jingya Hou
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang 110002, China
| | - Yun Wu
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang 110002, China
| | - Yanqing Liu
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang 110002, China
| | - Rong Li
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang 110002, China
| | - Tong Xu
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang 110002, China
| | - Junchao Liu
- Department of Periodontics and Oral Biology, School of Stomatology, China Medical University, Shenyang 110002, China
| | - Yaping Pan
- Department of Periodontics and Oral Biology, School of Stomatology, China Medical University, Shenyang 110002, China
| |
Collapse
|
9
|
Ferguson A, Lyall LM, Ward J, Strawbridge RJ, Cullen B, Graham N, Niedzwiedz CL, Johnston KJA, MacKay D, Biello SM, Pell JP, Cavanagh J, McIntosh AM, Doherty A, Bailey MES, Lyall DM, Wyse CA, Smith DJ. Genome-Wide Association Study of Circadian Rhythmicity in 71,500 UK Biobank Participants and Polygenic Association with Mood Instability. EBioMedicine 2018; 35:279-287. [PMID: 30120083 PMCID: PMC6154782 DOI: 10.1016/j.ebiom.2018.08.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Circadian rhythms are fundamental to health and are particularly important for mental wellbeing. Disrupted rhythms of rest and activity are recognised as risk factors for major depressive disorder and bipolar disorder. METHODS We conducted a genome-wide association study (GWAS) of low relative amplitude (RA), an objective measure of rest-activity cycles derived from the accelerometer data of 71,500 UK Biobank participants. Polygenic risk scores (PRS) for low RA were used to investigate potential associations with psychiatric phenotypes. OUTCOMES Two independent genetic loci were associated with low RA, within genomic regions for Neurofascin (NFASC) and Solute Carrier Family 25 Member 17 (SLC25A17). A secondary GWAS of RA as a continuous measure identified a locus within Meis Homeobox 1 (MEIS1). There were no significant genetic correlations between low RA and any of the psychiatric phenotypes assessed. However, PRS for low RA was significantly associated with mood instability across multiple PRS thresholds (at PRS threshold 0·05: OR = 1·02, 95% CI = 1·01-1·02, p = 9·6 × 10-5), and with major depressive disorder (at PRS threshold 0·1: OR = 1·03, 95% CI = 1·01-1·05, p = 0·025) and neuroticism (at PRS threshold 0·5: Beta = 0·02, 95% CI = 0·007-0·04, p = 0·021). INTERPRETATION Overall, our findings contribute new knowledge on the complex genetic architecture of circadian rhythmicity and suggest a putative biological link between disrupted circadian function and mood disorder phenotypes, particularly mood instability, but also major depressive disorder and neuroticism. FUNDING Medical Research Council (MR/K501335/1).
Collapse
Affiliation(s)
- Amy Ferguson
- Institute of Health & Wellbeing, University of Glasgow, Scotland, UK.
| | - Laura M Lyall
- Institute of Health & Wellbeing, University of Glasgow, Scotland, UK
| | - Joey Ward
- Institute of Health & Wellbeing, University of Glasgow, Scotland, UK
| | - Rona J Strawbridge
- Institute of Health & Wellbeing, University of Glasgow, Scotland, UK; Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Breda Cullen
- Institute of Health & Wellbeing, University of Glasgow, Scotland, UK
| | - Nicholas Graham
- Institute of Health & Wellbeing, University of Glasgow, Scotland, UK
| | | | | | - Daniel MacKay
- Institute of Health & Wellbeing, University of Glasgow, Scotland, UK
| | - Stephany M Biello
- Institute of Neuroscience and Psychology, University of Glasgow, Scotland, UK
| | - Jill P Pell
- Institute of Health & Wellbeing, University of Glasgow, Scotland, UK
| | - Jonathan Cavanagh
- Institute of Health & Wellbeing, University of Glasgow, Scotland, UK
| | - Andrew M McIntosh
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Scotland, UK
| | - Aiden Doherty
- Big Data Institute, Nuffield Department of Population Health, BHF Centre of Research Excellence, University of Oxford, Oxford, UK; Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Mark E S Bailey
- School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| | - Donald M Lyall
- Institute of Health & Wellbeing, University of Glasgow, Scotland, UK
| | - Cathy A Wyse
- Department of Molecular and Cellular Therapeutics, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Daniel J Smith
- Institute of Health & Wellbeing, University of Glasgow, Scotland, UK.
| |
Collapse
|
10
|
ANP32A regulates histone H3 acetylation and promotes leukemogenesis. Leukemia 2018; 32:1587-1597. [PMID: 29467488 DOI: 10.1038/s41375-018-0010-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 12/07/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022]
|
11
|
Zhang J, Han B, Li X, Bies J, Jiang P, Koller RP, Wolff L. Distal regulation of c-myb expression during IL-6-induced differentiation in murine myeloid progenitor M1 cells. Cell Death Dis 2016; 7:e2364. [PMID: 27607579 PMCID: PMC5059869 DOI: 10.1038/cddis.2016.267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/25/2016] [Accepted: 07/29/2016] [Indexed: 12/31/2022]
Abstract
The c-Myb transcription factor is a major regulator that controls differentiation and proliferation of hematopoietic progenitor cells, which is frequently deregulated in hematological diseases, such as lymphoma and leukemia. Understanding of the mechanisms regulating the transcription of c-myb gene is challenging as it lacks a typical promoter and multiple factors are involved. Our previous studies identified some distal regulatory elements in the upstream regions of c-myb gene in murine myeloid progenitor M1 cells, but the detailed mechanisms still remain unclear. In the present study, we found that a cell differentiation-related DNase1 hypersensitive site is located at a -28k region upstream of c-myb gene and that transcription factors Hoxa9, Meis1 and PU.1 bind to the -28k region. Circular chromosome conformation capture (4C) assay confirmed the interaction between the -28k region and the c-myb promoter, which is supported by the enrichment of CTCF and Cohesin. Our analysis also points to a critical role for Hoxa9 and PU.1 in distal regulation of c-myb expression in murine myeloid cells and cell differentiation. Overexpression of Hoxa9 disrupted the IL-6-induced differentiation of M1 cells and upregulated c-myb expression through binding of the -28k region. Taken together, our results provide an evidence for critical role of the -28k region in distal regulatory mechanism for c-myb gene expression during differentiation of myeloid progenitor M1 cells.
Collapse
Affiliation(s)
- Junfang Zhang
- Key Laboratory of Aquacultural Resources and Utilization, Ministry of Education, College of Fishery and Life Science, Shanghai Ocean University, No.999 Huchenghuan Road, Pudong New District, Shanghai 201306, China
| | - Bingshe Han
- Key Laboratory of Aquacultural Resources and Utilization, Ministry of Education, College of Fishery and Life Science, Shanghai Ocean University, No.999 Huchenghuan Road, Pudong New District, Shanghai 201306, China
| | - Xiaoxia Li
- Key Laboratory of Aquacultural Resources and Utilization, Ministry of Education, College of Fishery and Life Science, Shanghai Ocean University, No.999 Huchenghuan Road, Pudong New District, Shanghai 201306, China
| | - Juraj Bies
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Penglei Jiang
- Key Laboratory of Aquacultural Resources and Utilization, Ministry of Education, College of Fishery and Life Science, Shanghai Ocean University, No.999 Huchenghuan Road, Pudong New District, Shanghai 201306, China
| | - Richard P Koller
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Linda Wolff
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Chen Y, Wang L, Li L, Zhang H, Yuan Z. Informative gene selection and the direct classification of tumors based on relative simplicity. BMC Bioinformatics 2016; 17:44. [PMID: 26792270 PMCID: PMC4721022 DOI: 10.1186/s12859-016-0893-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/19/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Selecting a parsimonious set of informative genes to build highly generalized performance classifier is the most important task for the analysis of tumor microarray expression data. Many existing gene pair evaluation methods cannot highlight diverse patterns of gene pairs only used one strategy of vertical comparison and horizontal comparison, while individual-gene-ranking method ignores redundancy and synergy among genes. RESULTS Here we proposed a novel score measure named relative simplicity (RS). We evaluated gene pairs according to integrating vertical comparison with horizontal comparison, finally built RS-based direct classifier (RS-based DC) based on a set of informative genes capable of binary discrimination with a paired votes strategy. Nine multi-class gene expression datasets involving human cancers were used to validate the performance of new method. Compared with the nine reference models, RS-based DC received the highest average independent test accuracy (91.40%), the best generalization performance and the smallest informative average gene number (20.56). Compared with the four reference feature selection methods, RS also received the highest average test accuracy in three classifiers (Naïve Bayes, k-Nearest Neighbor and Support Vector Machine), and only RS can improve the performance of SVM. CONCLUSIONS Diverse patterns of gene pairs could be highlighted more fully while integrating vertical comparison with horizontal comparison strategy. DC core classifier can effectively control over-fitting. RS-based feature selection method combined with DC classifier can lead to more robust selection of informative genes and classification accuracy.
Collapse
Affiliation(s)
- Yuan Chen
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha, China. .,Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha, China.
| | - Lifeng Wang
- Biotechnology Research Center, Hunan Academy of Agricultural Sciences, Changsha, China.
| | - Lanzhi Li
- Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha, China.
| | - Hongyan Zhang
- Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha, China.
| | - Zheming Yuan
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha, China. .,Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
13
|
Barr T, Girke T, Sureshchandra S, Nguyen C, Grant K, Messaoudi I. Alcohol Consumption Modulates Host Defense in Rhesus Macaques by Altering Gene Expression in Circulating Leukocytes. THE JOURNAL OF IMMUNOLOGY 2015; 196:182-95. [PMID: 26621857 DOI: 10.4049/jimmunol.1501527] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/30/2015] [Indexed: 12/25/2022]
Abstract
Several lines of evidence indicate that chronic alcohol use disorder leads to increased susceptibility to several viral and bacterial infections, whereas moderate alcohol consumption decreases the incidence of colds and improves immune responses to some pathogens. In line with these observations, we recently showed that heavy ethanol intake (average blood ethanol concentrations > 80 mg/dl) suppressed, whereas moderate alcohol consumption (blood ethanol concentrations < 50 mg/dl) enhanced, T and B cell responses to modified vaccinia Ankara vaccination in a nonhuman primate model of voluntary ethanol consumption. To uncover the molecular basis for impaired immunity with heavy alcohol consumption and enhanced immune response with moderate alcohol consumption, we performed a transcriptome analysis using PBMCs isolated on day 7 post-modified vaccinia Ankara vaccination, the earliest time point at which we detected differences in T cell and Ab responses. Overall, chronic heavy alcohol consumption reduced the expression of immune genes involved in response to infection and wound healing and increased the expression of genes associated with the development of lung inflammatory disease and cancer. In contrast, chronic moderate alcohol consumption upregulated the expression of genes involved in immune response and reduced the expression of genes involved in cancer. To uncover mechanisms underlying the alterations in PBMC transcriptomes, we profiled the expression of microRNAs within the same samples. Chronic heavy ethanol consumption altered the levels of several microRNAs involved in cancer and immunity and known to regulate the expression of mRNAs differentially expressed in our data set.
Collapse
Affiliation(s)
- Tasha Barr
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521
| | - Thomas Girke
- Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521; and
| | - Suhas Sureshchandra
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521
| | - Christina Nguyen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521
| | - Kathleen Grant
- Division of Neurosciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - Ilhem Messaoudi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521;
| |
Collapse
|
14
|
Multiple functional variants in long-range enhancer elements contribute to the risk of SNP rs965513 in thyroid cancer. Proc Natl Acad Sci U S A 2015; 112:6128-33. [PMID: 25918370 DOI: 10.1073/pnas.1506255112] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The [A] allele of SNP rs965513 in 9q22 has been consistently shown to be highly associated with increased papillary thyroid cancer (PTC) risk with an odds ratio of ∼1.8 as determined by genome-wide association studies, yet the molecular mechanisms remain poorly understood. Previously, we noted that the expression of two genes in the region, forkhead box E1 (FOXE1) and PTC susceptibility candidate 2 (PTCSC2), is regulated by rs965513 in unaffected thyroid tissue, but the underlying mechanisms were not elucidated. Here, we fine-mapped the 9q22 region in PTC and controls and detected an ∼33-kb linkage disequilibrium block (containing the lead SNP rs965513) that significantly associates with PTC risk. Chromatin characteristics and regulatory element signatures in this block disclosed at least three regulatory elements functioning as enhancers. These enhancers harbor at least four SNPs (rs7864322, rs12352658, rs7847449, and rs10759944) that serve as functional variants. The variant genotypes are associated with differential enhancer activities and/or transcription factor binding activities. Using the chromosome conformation capture methodology, long-range looping interactions of these elements with the promoter region shared by FOXE1 and PTCSC2 in a human papillary thyroid carcinoma cell line (KTC-1) and unaffected thyroid tissue were found. Our results suggest that multiple variants coinherited with the lead SNP and located in long-range enhancers are involved in the transcriptional regulation of FOXE1 and PTCSC2 expression. These results explain the mechanism by which the risk allele of rs965513 predisposes to thyroid cancer.
Collapse
|
15
|
Garcia-Cuellar MP, Steger J, Füller E, Hetzner K, Slany RK. Pbx3 and Meis1 cooperate through multiple mechanisms to support Hox-induced murine leukemia. Haematologica 2015; 100:905-13. [PMID: 25911551 DOI: 10.3324/haematol.2015.124032] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/17/2015] [Indexed: 12/18/2022] Open
Abstract
Hox homeobox transcription factors drive leukemogenesis efficiently only in the presence of Meis or Pbx proteins. Here we show that Pbx3 and Meis1 need to dimerize to support Hox-induced leukemia and we analyze the molecular details of this cooperation. In the absence of Pbx3, Meis1 was highly unstable. As shown by a deletion analysis Meis1 degradation was contingent on a motif coinciding with the Pbx-binding domain. Either deletion of this sequence or binding to Pbx3 prolonged the half-life of Meis1 by preventing its ubiquitination. Meis1 break-down could also be blocked by inhibition of the ubiquitin proteasome system, indicating tight post-transcriptional control. In addition, Meis1 and Pbx3 cooperated genetically as overexpression of Pbx3 induced endogenous Meis1 transcription. These functional interactions translated into in vivo activity. Blocking Meis1/Pbx3 dimerization abrogated the ability to enhance proliferation and colony-forming cell numbers in primary cells transformed by Hoxa9. Furthermore, expression of Meis1 target genes Flt3 and Trib2 was dependent on Pbx3/Meis1 dimerization. This correlated with the requirement of Meis1 to bind Pbx3 in order to form high affinity DNA/Hoxa9/Meis1/Pbx3 complexes in vitro. Finally, kinetics and severity of disease in transplantation assays indicated that Pbx3/Meis1 dimers are rate-limiting factors for Hoxa9-induced leukemia.
Collapse
Affiliation(s)
| | - Julia Steger
- Department of Genetics, Friedrich-Alexander-University, Erlangen, Germany
| | - Elisa Füller
- Department of Genetics, Friedrich-Alexander-University, Erlangen, Germany
| | - Katrin Hetzner
- Department of Genetics, Friedrich-Alexander-University, Erlangen, Germany
| | - Robert K Slany
- Department of Genetics, Friedrich-Alexander-University, Erlangen, Germany
| |
Collapse
|
16
|
PU.1 is essential for MLL leukemia partially via crosstalk with the MEIS/HOX pathway. Leukemia 2013; 28:1436-48. [PMID: 24445817 DOI: 10.1038/leu.2013.384] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/22/2013] [Accepted: 12/12/2013] [Indexed: 01/07/2023]
Abstract
Mixed lineage leukemia (MLL) fusion proteins directly activate the expression of key downstream genes such as MEIS1, HOXA9 to drive an aggressive form of human leukemia. However, it is still poorly understood what additional transcriptional regulators, independent of the MLL fusion pathway, contribute to the development of MLL leukemia. Here we show that the transcription factor PU.1 is essential for MLL leukemia and is required for the growth of MLL leukemic cells via the promotion of cell-cycle progression and inhibition of apoptosis. Importantly, PU.1 expression is not under the control of MLL fusion proteins. We further identified a PU.1-governed 15-gene signature, which contains key regulators in the MEIS-HOX program (MEIS1, PBX3, FLT3, and c-KIT). PU.1 directly binds to the genomic loci of its target genes in vivo, and is required to maintain active expression of those genes in both normal hematopoietic stem and progenitor cells and in MLL leukemia. Finally, the clinical significance of the identified PU.1 signature was indicated by its ability to predict survival in acute myelogenous leukemia patients. Together, our findings demonstrate that PU.1 contributes to the development of MLL leukemia, partially via crosstalk with the MEIS/HOX pathway.
Collapse
|
17
|
Xiang P, Wei W, Lo C, Rosten P, Hou J, Hoodless PA, Bilenky M, Bonifer C, Cockerill PN, Kirkpatrick A, Gottgens B, Hirst M, Humphries KR. Delineating MEIS1 cis-regulatory elements active in hematopoietic cells. Leukemia 2013; 28:433-6. [PMID: 24097337 DOI: 10.1038/leu.2013.287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- P Xiang
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - W Wei
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - C Lo
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - P Rosten
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - J Hou
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - P A Hoodless
- 1] Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada [2] University of British Columbia, Medical Genetics, Vancouver, British Columbia, Canada
| | - M Bilenky
- BC Cancer Agency, Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - C Bonifer
- School of Cancer Sciences, College of Medical and Dental Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham, UK
| | - P N Cockerill
- School of Immunity and Infection, College of Medical and Dental Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham, UK
| | - A Kirkpatrick
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - B Gottgens
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - M Hirst
- BC Cancer Agency, Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - K R Humphries
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| |
Collapse
|