1
|
Jin W, Dai Y, Chen L, Zhu H, Dong F, Zhu H, Meng G, Li J, Chen S, Chen Z, Fang H, Wang K. Cellular hierarchy insights reveal leukemic stem-like cells and early death risk in acute promyelocytic leukemia. Nat Commun 2024; 15:1423. [PMID: 38365836 PMCID: PMC10873341 DOI: 10.1038/s41467-024-45737-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 02/02/2024] [Indexed: 02/18/2024] Open
Abstract
Acute promyelocytic leukemia (APL) represents a paradigm for targeted differentiation therapy, with a minority of patients experiencing treatment failure and even early death. We here report a comprehensive single-cell analysis of 16 APL patients, uncovering cellular compositions and their impact on all-trans retinoic acid (ATRA) response in vivo and early death. We unveil a cellular differentiation hierarchy within APL blasts, rooted in leukemic stem-like cells. The oncogenic PML/RARα fusion protein exerts branch-specific regulation in the APL trajectory, including stem-like cells. APL cohort analysis establishes an association of leukemic stemness with elevated white blood cell counts and FLT3-ITD mutations. Furthermore, we construct an APL-specific stemness score, which proves effective in assessing early death risk. Finally, we show that ATRA induces differentiation of primitive blasts and patients with early death exhibit distinct stemness-associated transcriptional programs. Our work provides a thorough survey of APL cellular hierarchies, offering insights into cellular dynamics during targeted therapy.
Collapse
Affiliation(s)
- Wen Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Honghu Zhu
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Fangyi Dong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongming Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guoyu Meng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Junmin Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Saijuan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Kankan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
2
|
Abolhasani S, Hejazian SS, Karpisheh V, Khodakarami A, Mohammadi H, Gholizadeh Navashenaq J, Hojjat-Farsangi M, Jadidi-Niaragh F. The role of SF3B1 and NOTCH1 in the pathogenesis of leukemia. IUBMB Life 2023; 75:257-278. [PMID: 35848163 DOI: 10.1002/iub.2660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/18/2022] [Indexed: 11/09/2022]
Abstract
The discovery of new genes/pathways improves our knowledge of cancer pathogenesis and presents novel potential therapeutic options. For instance, splicing factor 3b subunit 1 (SF3B1) and NOTCH1 genetic alterations have been identified at a high frequency in hematological malignancies, such as leukemia, and may be related to the prognosis of involved patients because they change the nature of malignancies in different ways like mediating therapeutic resistance; therefore, studying these gene/pathways is essential. This review aims to discuss SF3B1 and NOTCH1 roles in the pathogenesis of various types of leukemia and the therapeutic potential of targeting these genes or their mutations to provide a foundation for leukemia treatment.
Collapse
Affiliation(s)
- Shiva Abolhasani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Vahid Karpisheh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Khodakarami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.,The Persian Gulf Marine Biotechnology Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
A Bioinformatics View on Acute Myeloid Leukemia Surface Molecules by Combined Bayesian and ABC Analysis. Bioengineering (Basel) 2022; 9:bioengineering9110642. [DOI: 10.3390/bioengineering9110642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
“Big omics data” provoke the challenge of extracting meaningful information with clinical benefit. Here, we propose a two-step approach, an initial unsupervised inspection of the structure of the high dimensional data followed by supervised analysis of gene expression levels, to reconstruct the surface patterns on different subtypes of acute myeloid leukemia (AML). First, Bayesian methodology was used, focusing on surface molecules encoded by cluster of differentiation (CD) genes to assess whether AML is a homogeneous group or segregates into clusters. Gene expressions of 390 patient samples measured using microarray technology and 150 samples measured via RNA-Seq were compared. Beyond acute promyelocytic leukemia (APL), a well-known AML subentity, the remaining AML samples were separated into two distinct subgroups. Next, we investigated which CD molecules would best distinguish each AML subgroup against APL, and validated discriminative molecules of both datasets by searching the scientific literature. Surprisingly, a comparison of both omics analyses revealed that CD339 was the only overlapping gene differentially regulated in APL and other AML subtypes. In summary, our two-step approach for gene expression analysis revealed two previously unknown subgroup distinctions in AML based on surface molecule expression, which may guide the differentiation of subentities in a given clinical–diagnostic context.
Collapse
|
4
|
Gasic V, Karan-Djurasevic T, Pavlovic D, Zukic B, Pavlovic S, Tosic N. Diagnostic and Therapeutic Implications of Long Non-Coding RNAs in Leukemia. Life (Basel) 2022; 12:1770. [PMID: 36362925 PMCID: PMC9695865 DOI: 10.3390/life12111770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 08/26/2023] Open
Abstract
Leukemia is a heterogenous group of hematological malignancies categorized in four main types (acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic myeloid leukemia (CML) and chronic lymphocytic leukemia (CLL). Several cytogenetic and molecular markers have become a part of routine analysis for leukemia patients. These markers have been used in diagnosis, risk-stratification and targeted therapy application. Recent studies have indicated that numerous regulatory RNAs, such as long non-coding RNAs (lncRNAs), have a role in tumor initiation and progression. When it comes to leukemia, data for lncRNA involvement in its etiology, progression, diagnosis, treatment and prognosis is limited. The aim of this review is to summarize research data on lncRNAs in different types of leukemia, on their expression pattern, their role in leukemic transformation and disease progression. The usefulness of this information in the clinical setting, i.e., for diagnostic and prognostic purposes, will be emphasized. Finally, how particular lncRNAs could be used as potential targets for the application of targeted therapy will be considered.
Collapse
Affiliation(s)
- Vladimir Gasic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
5
|
Rodrigues ACBDC, Costa RGA, Silva SLR, Dias IRSB, Dias RB, Bezerra DP. Cell signaling pathways as molecular targets to eliminate AML stem cells. Crit Rev Oncol Hematol 2021; 160:103277. [PMID: 33716201 DOI: 10.1016/j.critrevonc.2021.103277] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/25/2021] [Accepted: 02/27/2021] [Indexed: 02/08/2023] Open
Abstract
Acute myeloid leukemia (AML) remains the most lethal of leukemias and a small population of cells called leukemic stem cells (LSCs) has been associated with disease relapses. Some cell signaling pathways play an important role in AML survival, proliferation and self-renewal properties and are abnormally activated or suppressed in LSCs. This includes the NF-κB, Wnt/β-catenin, Hedgehog, Notch, EGFR, JAK/STAT, PI3K/AKT/mTOR, TGF/SMAD and PPAR pathways. This review aimed to discuss these pathways as molecular targets for eliminating AML LSCs. Herein, inhibitors/activators of these pathways were summarized as a potential new anti-AML therapy capable of eliminating LSCs to guide future researches. The clinical use of cell signaling pathways data can be useful to enhance the anti-AML therapy.
Collapse
Affiliation(s)
| | - Rafaela G A Costa
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Suellen L R Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Ingrid R S B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Rosane B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil.
| |
Collapse
|
6
|
Takam Kamga P, Bazzoni R, Dal Collo G, Cassaro A, Tanasi I, Russignan A, Tecchio C, Krampera M. The Role of Notch and Wnt Signaling in MSC Communication in Normal and Leukemic Bone Marrow Niche. Front Cell Dev Biol 2021; 8:599276. [PMID: 33490067 PMCID: PMC7820188 DOI: 10.3389/fcell.2020.599276] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
Notch and Wnt signaling are highly conserved intercellular communication pathways involved in developmental processes, such as hematopoiesis. Even though data from literature support a role for these two pathways in both physiological hematopoiesis and leukemia, there are still many controversies concerning the nature of their contribution. Early studies, strengthened by findings from T-cell acute lymphoblastic leukemia (T-ALL), have focused their investigation on the mutations in genes encoding for components of the pathways, with limited results except for B-cell chronic lymphocytic leukemia (CLL); in because in other leukemia the two pathways could be hyper-expressed without genetic abnormalities. As normal and malignant hematopoiesis require close and complex interactions between hematopoietic cells and specialized bone marrow (BM) niche cells, recent studies have focused on the role of Notch and Wnt signaling in the context of normal crosstalk between hematopoietic/leukemia cells and stromal components. Amongst the latter, mesenchymal stromal/stem cells (MSCs) play a pivotal role as multipotent non-hematopoietic cells capable of giving rise to most of the BM niche stromal cells, including fibroblasts, adipocytes, and osteocytes. Indeed, MSCs express and secrete a broad pattern of bioactive molecules, including Notch and Wnt molecules, that support all the phases of the hematopoiesis, including self-renewal, proliferation and differentiation. Herein, we provide an overview on recent advances on the contribution of MSC-derived Notch and Wnt signaling to hematopoiesis and leukemia development.
Collapse
Affiliation(s)
- Paul Takam Kamga
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
- EA4340-BCOH, Biomarker in Cancerology and Onco-Haematology, UVSQ, Université Paris Saclay, Boulogne-Billancourt, France
| | - Riccardo Bazzoni
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Giada Dal Collo
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Adriana Cassaro
- Hematology Unit, Department of Oncology, Niguarda Hospital, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Ilaria Tanasi
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Anna Russignan
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Cristina Tecchio
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Mauro Krampera
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
7
|
Oncogenic role of lncRNA CRNDE in acute promyelocytic leukemia and NPM1-mutant acute myeloid leukemia. Cell Death Discov 2020; 6:121. [PMID: 33298855 PMCID: PMC7658230 DOI: 10.1038/s41420-020-00359-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/13/2020] [Indexed: 12/22/2022] Open
Abstract
The PML/RARα fusion protein acts in concert with cooperative genetic events in the development of acute promyelocytic leukemia (APL). However, oncogenic long non-coding RNAs (lncRNAs) cooperating with PML/RARα remain under-explored. Here, we first identified a set of pathogenesis-related lncRNAs, aberrantly expressed in APL using RNA-seq data from a large cohort of acute myeloid leukemia (AML) patients and normal counterparts. Among the pathogenesis-related lncRNAs, one of the evolutionarily conservative lncRNAs CRNDE (Colorectal Neoplasia Differentially Expressed) drew our attention. We found that CRNDE was highly expressed in the disease state but not in the preleukemic stage of APL, suggesting that CRNDE might be a secondary event coordinating with PML/RARα to promote APL development. Functional analysis showed that CRNDE knockdown induced differentiation and inhibited proliferation of APL cells, and prolonged survival of APL mice. Further mechanistic studies showed that CRNDE elicited its oncogenic effects through binding the miR-181 family and thereby regulating NOTCH2. Finally, we found that high CRNDE expression was also significantly correlated with NPM1 mutations and contributed to the differentiation block in NPM1-mutant AML. Collectively, our findings shed light on the importance of oncogenic lncRNAs in the development of AML and provide a promising target for AML therapy.
Collapse
|
8
|
Takam Kamga P, Dal Collo G, Cassaro A, Bazzoni R, Delfino P, Adamo A, Bonato A, Carbone C, Tanasi I, Bonifacio M, Krampera M. Small Molecule Inhibitors of Microenvironmental Wnt/β-Catenin Signaling Enhance the Chemosensitivity of Acute Myeloid Leukemia. Cancers (Basel) 2020; 12:cancers12092696. [PMID: 32967262 PMCID: PMC7565567 DOI: 10.3390/cancers12092696] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 09/17/2020] [Indexed: 01/03/2023] Open
Abstract
Wnt/β-catenin signaling has been reported in Acute Myeloid leukemia, but little is known about its significance as a prognostic biomarker and drug target. In this study, we first evaluated the correlation between expression levels of Wnt molecules and clinical outcome. Then, we studied-in vitro and in vivo-the anti-leukemic value of combinatorial treatment between Wnt inhibitors and classic anti-leukemia drugs. Higher levels of β-catenin, Ser675-phospho-β-catenin and GSK-3α (total and Ser 9) were found in AML cells from intermediate or poor risk patients; nevertheless, patients presenting high activity of Wnt/β-catenin displayed shorter progression-free survival (PFS) according to univariate analysis. In vitro, many pharmacological inhibitors of Wnt signalling, i.e., LRP6 (Niclosamide), GSK-3 (LiCl, AR-A014418), and TCF/LEF (PNU-74654) but not Porcupine (IWP-2), significantly reduced proliferation and improved the drug sensitivity of AML cells cultured alone or in the presence of bone marrow stromal cells. In vivo, PNU-74654, Niclosamide and LiCl administration significantly reduced the bone marrow leukemic burden acting synergistically with Ara-C, thus improving mouse survival. Overall, our study demonstrates the antileukemic role of Wnt/β-catenin inhibition that may represent a potential new therapeutics strategy in AML.
Collapse
Affiliation(s)
- Paul Takam Kamga
- Section of Hematology, Stem Cell Research Laboratory, Department of Medicine, University of Verona, 37134 Verona, Italy; (P.T.K.); (G.D.C.); (R.B.); (A.A.); (A.B.); (I.T.); (M.B.)
- EA4340-BCOH, Biomarker in Cancerology and Onco-Haematology, Université de Versailles-Saint-Quentin-En-Yvelines, Université Paris Saclay, 92100 Boulogne-Billancourt, France
| | - Giada Dal Collo
- Section of Hematology, Stem Cell Research Laboratory, Department of Medicine, University of Verona, 37134 Verona, Italy; (P.T.K.); (G.D.C.); (R.B.); (A.A.); (A.B.); (I.T.); (M.B.)
- Department of Immunology, Erasmus University Medical Center, Doctor Molenwaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Adriana Cassaro
- Department of Oncology, Hematology Unit, Niguarda Hospital, 20162 Milan, Italy;
- Department of Health Sciences, University of Milan, 20146 Milan, Italy
| | - Riccardo Bazzoni
- Section of Hematology, Stem Cell Research Laboratory, Department of Medicine, University of Verona, 37134 Verona, Italy; (P.T.K.); (G.D.C.); (R.B.); (A.A.); (A.B.); (I.T.); (M.B.)
| | - Pietro Delfino
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, 37134 Verona, Italy;
| | - Annalisa Adamo
- Section of Hematology, Stem Cell Research Laboratory, Department of Medicine, University of Verona, 37134 Verona, Italy; (P.T.K.); (G.D.C.); (R.B.); (A.A.); (A.B.); (I.T.); (M.B.)
| | - Alice Bonato
- Section of Hematology, Stem Cell Research Laboratory, Department of Medicine, University of Verona, 37134 Verona, Italy; (P.T.K.); (G.D.C.); (R.B.); (A.A.); (A.B.); (I.T.); (M.B.)
| | - Carmine Carbone
- Fondazione Policlinico Universitario Gemelli, IRCCS, 00168 Roma, Italy;
| | - Ilaria Tanasi
- Section of Hematology, Stem Cell Research Laboratory, Department of Medicine, University of Verona, 37134 Verona, Italy; (P.T.K.); (G.D.C.); (R.B.); (A.A.); (A.B.); (I.T.); (M.B.)
| | - Massimiliano Bonifacio
- Section of Hematology, Stem Cell Research Laboratory, Department of Medicine, University of Verona, 37134 Verona, Italy; (P.T.K.); (G.D.C.); (R.B.); (A.A.); (A.B.); (I.T.); (M.B.)
| | - Mauro Krampera
- Section of Hematology, Stem Cell Research Laboratory, Department of Medicine, University of Verona, 37134 Verona, Italy; (P.T.K.); (G.D.C.); (R.B.); (A.A.); (A.B.); (I.T.); (M.B.)
- Correspondence: ; Tel.: +45-045-812-4420; Fax: +45-045-802-7488
| |
Collapse
|
9
|
Meisel CT, Porcheri C, Mitsiadis TA. Cancer Stem Cells, Quo Vadis? The Notch Signaling Pathway in Tumor Initiation and Progression. Cells 2020; 9:cells9081879. [PMID: 32796631 PMCID: PMC7463613 DOI: 10.3390/cells9081879] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
The Notch signaling pathway regulates cell proliferation, cytodifferentiation and cell fate decisions in both embryonic and adult life. Several aspects of stem cell maintenance are dependent from the functionality and fine tuning of the Notch pathway. In cancer, Notch is specifically involved in preserving self-renewal and amplification of cancer stem cells, supporting the formation, spread and recurrence of the tumor. As the function of Notch signaling is context dependent, we here provide an overview of its activity in a variety of tumors, focusing mostly on its role in the maintenance of the undifferentiated subset of cancer cells. Finally, we analyze the potential of molecules of the Notch pathway as diagnostic and therapeutic tools against the various cancers.
Collapse
|
10
|
Qin J, Wang R, Zhao C, Wen J, Dong H, Wang S, Li Y, Zhao Y, Li J, Yang Y, He X, Wang D. Notch signaling regulates osteosarcoma proliferation and migration through Erk phosphorylation. Tissue Cell 2019; 59:51-61. [PMID: 31383289 DOI: 10.1016/j.tice.2019.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 12/26/2022]
Abstract
We used a murine spontaneous osteosarcoma cell line with high metastatic potential, the K7M2 cell line to study the role of Notch signaling in the biological manifestations of osteosarcoma, to understand its underlying mechanism in the regulation of cell proliferation and migration, and to improve patient prognosis in cases of osteosarcoma through the discovery of novel therapeutic targets, First, Notch expression in K7M2 was determined by immunostaining, and the γ-secretase inhibitor N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) was used to inhibit proteolytic cleavage of the Notch intracellular domain (NICD), resulting in the inhibition of Notch activation. By using the Sulforhodamine B assay, colony-forming units assay, Brdu and Ki67 staining, and flow cytometry assays of apoptosis and cell cycle stage, DAPT was found to inhibit K7M2 proliferation in a dose-dependent manner. By using wound healing and transwell migration assays, DAPT was found to inhibit K7M2 migration in a dose-dependent manner as well. By using a combination of micro-Raman spectroscopy and K-means clustering analysis, we found that DAPT inhibit a variety of important cell metabolism-related components in most K7M2 cell structures. Then, DAPT was found to inhibit Notch1ICD expression in a concentration-dependent manner, and this expression was directly correlated with Phospho-Erk1/2 (p-Erk) by using Western blotting. To confirm this finding, we used the Notch signaling ligand Jagged1 to activate the Notch signaling pathway, which in turn up-regulated p-Erk, resulting in increased proliferation and migration of K7M2. Using the Erk pathway inhibitor U0126, we showed that p-Erk was downregulated and the proliferation and migration of K7M2 decreased along with it. Finally, we constructed a K7M2 mouse para-tibial tumor model and lung metastatic model. We found DAPT inhibits p-Erk in vivo, effectively controls tumor growth, reduces angiogenesis, reduces metastasis to the lungs, and improves overall survival. In summary, Notch signaling plays an oncogene role and promotes metastasis in osteosarcoma through p-Erk. DAPT effectively inhibits osteosarcoma proliferation and metastasis in vivo and in vitro by inhibiting Erk phosphorylation. Therefore, the inhibition of Notch activation resulted the down-regulation of phosphorylation of Erk pathway can be used as potential therapeutic targets in clinical treatment to improve osteosarcoma prognosis.
Collapse
Affiliation(s)
- Jie Qin
- The Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, PR China
| | - Rui Wang
- The Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, PR China
| | - Chenguang Zhao
- The Department of Rehabilitation, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, PR China
| | - Junxiang Wen
- The Department of Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Hui Dong
- The Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, PR China
| | - Shuang Wang
- Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi Province, PR China
| | - Yuhuan Li
- The Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, PR China
| | - Yonglin Zhao
- The Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, PR China
| | - Jianjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, PR China
| | - Yiting Yang
- The Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, PR China
| | - Xijing He
- The Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, PR China.
| | - Dong Wang
- The Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, PR China.
| |
Collapse
|
11
|
Takam Kamga P, Dal Collo G, Midolo M, Adamo A, Delfino P, Mercuri A, Cesaro S, Mimiola E, Bonifacio M, Andreini A, Chilosi M, Krampera M. Inhibition of Notch Signaling Enhances Chemosensitivity in B-cell Precursor Acute Lymphoblastic Leukemia. Cancer Res 2018; 79:639-649. [PMID: 30563887 DOI: 10.1158/0008-5472.can-18-1617] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 10/23/2018] [Accepted: 12/14/2018] [Indexed: 11/16/2022]
Abstract
Notch3 and Notch4 support survival of primary B-cell acute lymphoblastic leukemia (B-ALL) cells, suggesting a role for Notch signaling in drug response. Here we used in vitro, in silico, and in vivo mouse xenograft model-based approaches to define the role of the Notch pathway in B-ALL chemosensitivity. We observed significant Notch receptor and ligand expression in B-ALL primary cells and cell lines. Primary leukemia cells from high-risk patients overexpressed Notch3, Notch4, and Jagged2 while displaying a reduction in expression levels of Notch1-4 following chemotherapy. We then analyzed in vitro cell survival of B-ALL cells treated with conventional chemotherapeutic agents alone or in combination with Notch signaling inhibitors. Gamma-secretase inhibitors (GSI) and anti-Notch4 were all capable of potentiating drug-induced cell death in B-ALL cells by upregulating intracellular levels of reactive oxygen species, which in turn modulated mTOR, NF-κB, and ERK expression. In NOG-mouse-based xenograft models of B-ALL, co-administration of the Notch inhibitor GSI-XII with the chemotherapeutic agent Ara-C lowered bone marrow leukemic burden compared with DMSO or Ara-C alone, thus prolonging mouse survival. Overall, our results support the potential effectiveness of Notch inhibitors in patients with B-ALL.Significance: Inhibition of Notch signaling enhances the chemosensitivity of B-ALL cells, suggesting Notch inhibition as a potential therapeutic strategy to improve the outcome of patients with B-ALL.
Collapse
Affiliation(s)
- Paul Takam Kamga
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy.,EA4340-BCOH: Biomarker in Cancerology and Onco-Hematology, Université de Versailles Saint-Quentin-en-Yvelines, Versailles, France
| | - Giada Dal Collo
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Martina Midolo
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Annalisa Adamo
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Pietro Delfino
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Angela Mercuri
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy.,Pediatric Onco-Hematology Unit, University of Verona, Verona, Italy
| | - Simone Cesaro
- Pediatric Onco-Hematology Unit, University of Verona, Verona, Italy
| | - Elda Mimiola
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Massimiliano Bonifacio
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Angelo Andreini
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Marco Chilosi
- Section of Pathology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Mauro Krampera
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy.
| |
Collapse
|
12
|
Kong G, You X, Wen Z, Chang YI, Qian S, Ranheim EA, Letson C, Zhang X, Zhou Y, Liu Y, Rajagopalan A, Zhang J, Stieglitz E, Loh M, Hofmann I, Yang D, Zhong X, Padron E, Zhou L, Pear WS, Zhang J. Downregulating Notch counteracts Kras G12D-induced ERK activation and oxidative phosphorylation in myeloproliferative neoplasm. Leukemia 2018; 33:671-685. [PMID: 30206308 PMCID: PMC6405304 DOI: 10.1038/s41375-018-0248-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 07/16/2018] [Accepted: 08/07/2018] [Indexed: 12/21/2022]
Abstract
The Notch signaling pathway contributes to the pathogenesis of a wide spectrum of human cancers, including hematopoietic malignancies. Its functions are highly dependent on the specific cellular context. Gain-of-function NOTCH1 mutations are prevalent in human T cell leukemia, while loss of Notch signaling is reported in myeloid leukemias. Here, we report a novel oncogenic function of Notch signaling in oncogenic Kras-induced myeloproliferative neoplasm (MPN). We find that downregulation of Notch signaling in hematopoietic cells via DNMAML expression or Pofut1 deletion significantly blocks MPN development in KrasG12D mice in a cell-autonomous manner. Further mechanistic studies indicate that inhibition of Notch signaling significantly upregulates Dusp1, a dual phosphatase that inactivates p-ERK, and downregulates cytokine-evoked ERK activation in KrasG12D cells. Moreover, mitochondrial metabolism is greatly enhanced in KrasG12D cells but significantly reprogrammed by DNMAML close to that in control cells. Consequently, cell proliferation and expanded myeloid compartment in KrasG12D mice are significantly reduced. Consistent with these findings, combined inhibition of the MEK/ERK pathway and mitochondrial oxidative phosphorylation effectively inhibited the growth of human and mouse leukemia cells in vitro. Our study provides a strong rational to target both ERK signaling and aberrant metabolism in oncogenic Ras-driven myeloid leukemia.
Collapse
Affiliation(s)
- Guangyao Kong
- National Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xian Jiaotong University, Xian, China. .,McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA.
| | - Xiaona You
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhi Wen
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Yuan-I Chang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA.,Institute of Physiology, National Yang-Ming University, Taipei City, Taiwan
| | - Shuiming Qian
- Wisconsin Institute for Discovery and Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Erik A Ranheim
- Department of Pathology & Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | | | | | - Yun Zhou
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Yangang Liu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Adhithi Rajagopalan
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Jingfang Zhang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Elliot Stieglitz
- Department of Pediatrics, Benioff Children's Hospital, University of California-San Francisco, San Francisco, CA, USA
| | - Mignon Loh
- Department of Pediatrics, Benioff Children's Hospital, University of California-San Francisco, San Francisco, CA, USA
| | - Inga Hofmann
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - David Yang
- Department of Pathology & Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Xuehua Zhong
- Wisconsin Institute for Discovery and Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Eric Padron
- Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Warren S Pear
- Department of Pathology and Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Jing Zhang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
13
|
Abstract
Notch is commonly activated in lymphoid malignancies through ligand-independent and ligand-dependent mechanisms. In T-cell acute lymphoblastic leukemia/lymphoma (T-ALL), ligand-independent activation predominates. Negative Regulatory Region (NRR) mutations trigger supraphysiological Notch1 activation by exposing the S2 site to proteolytic cleavage in the absence of ligand. Subsequently, cleavage at the S3 site generates the activated form of Notch, intracellular Notch (ICN). In contrast to T-ALL, in mature lymphoid neoplasms such as chronic lymphocytic leukemia (CLL), the S2 cleavage site is exposed through ligand-receptor interactions. Thus, agents that disrupt ligand-receptor interactions might be useful for treating these malignancies. Notch activation can be enhanced by mutations that delete the C-terminal proline (P), glutamic acid (E), serine (S), and threonine (T) (PEST) domain. These mutations do not activate the Notch pathway per se, but rather impair degradation of ICN. In this chapter, we review the mechanisms of Notch activation and the importance of Notch for the genesis and maintenance of lymphoid malignancies. Unfortunately, targeting the Notch pathway with pan-Notch inhibitors in clinical trials has proven challenging. These clinical trials have encountered dose-limiting on-target toxicities and primary resistance. Strategies to overcome these challenges have emerged from the identification and improved understanding of direct oncogenic Notch target genes. Other strategies have arisen from new insights into the "nuclear context" that selectively directs Notch functions in lymphoid cancers. This nuclear context is created by factors that co-bind ICN at cell-type specific transcriptional regulatory elements. Disrupting the functions of these proteins or inhibiting downstream oncogenic pathways might combat cancer without the intolerable side effects of pan-Notch inhibition.
Collapse
|
14
|
The genomic landscape of pediatric myelodysplastic syndromes. Nat Commun 2017; 8:1557. [PMID: 29146900 PMCID: PMC5691144 DOI: 10.1038/s41467-017-01590-5] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/29/2017] [Indexed: 01/19/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are uncommon in children and have a poor prognosis. In contrast to adult MDS, little is known about the genomic landscape of pediatric MDS. Here, we describe the somatic and germline changes of pediatric MDS using whole exome sequencing, targeted amplicon sequencing, and/or RNA-sequencing of 46 pediatric primary MDS patients. Our data show that, in contrast to adult MDS, Ras/MAPK pathway mutations are common in pediatric MDS (45% of primary cohort), while mutations in RNA splicing genes are rare (2% of primary cohort). Surprisingly, germline variants in SAMD9 or SAMD9L were present in 17% of primary MDS patients, and these variants were routinely lost in the tumor cells by chromosomal deletions (e.g., monosomy 7) or copy number neutral loss of heterozygosity (CN-LOH). Our data confirm that adult and pediatric MDS are separate diseases with disparate mechanisms, and that SAMD9/SAMD9L mutations represent a new class of MDS predisposition. Myelodysplastic syndromes (MDS) are uncommon in children and have poor prognosis. Here, the authors interrogate the genomic landscape of MDS, confirming adult and paediatric MDS are separate diseases with disparate mechanisms, and highlighting that SAMD9/SAMD9L mutations represent a new class of MDS predisposition.
Collapse
|
15
|
|
16
|
Genomic architecture and treatment outcome in pediatric acute myeloid leukemia: a Children's Oncology Group report. Blood 2017; 129:3051-3058. [PMID: 28411282 DOI: 10.1182/blood-2017-03-772384] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/04/2017] [Indexed: 02/06/2023] Open
Abstract
Childhood acute myeloid leukemia (AML) is frequently characterized by chromosomal instability. Approximately 50% of patients have disease relapse, and novel prognostic markers are needed to improve risk stratification. We performed genome-wide genotyping in 446 pediatric patients with de novo AML enrolled in Children's Oncology Group (COG) studies AAML0531, AAML03P1, and CCG2961. Affymetrix and Illumina Omni 2.5 platforms were used to evaluate copy-number alterations (CNAs) and determine their associations with treatment outcome. Data from Affymetrix and Illumina studies were jointly analyzed with ASCAT and GISTIC software. An average of 1.14 somatically acquired CNAs per patient were observed. Novel reoccurring altered genomic regions were identified, and the presence of CNAs was found to be associated with decreased 3-year overall survival (OS), event-free survival (EFS), and relapse risk from the end of induction 1 (hazard ratio [HR], 1.7; 95% confidence interval [CI], 1.2-2.4; HR, 1.4; 95% CI, 1.0-1.8; and HR, 1.4; 95% CI, 1.0-2.0, respectively). Analyses by risk group demonstrated decreased OS and EFS in the standard-risk group only (HR, 1.9; 95% CI, 1.1-3.3 and HR, 1.7; 95% CI, 1.1-2.6, respectively). Additional studies are required to test the prognostic significance of CNA presence in disease relapse in patients with AML. COG studies AAML0531, AAML03P1, and CCG2961 were registered at www.clinicaltrials.gov as #NCT01407757, #NCT00070174, and #NCT00003790, respectively.
Collapse
|
17
|
Li Y, Li G, Wang K, Xie YY, Zhou RP, Meng Y, Ding R, Ge JF, Chen FH. Autophagy contributes to 4-Amino-2-Trifluoromethyl-Phenyl Retinate-induced differentiation in human acute promyelocytic leukemia NB4 cells. Toxicol Appl Pharmacol 2017; 319:1-11. [PMID: 28130038 DOI: 10.1016/j.taap.2017.01.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 01/22/2017] [Accepted: 01/23/2017] [Indexed: 12/18/2022]
Abstract
As a classic differentiation agent, all-trans retinoic acid (ATRA) has been widely used in treatment of acute promyelocytic leukemia (APL). However, clinical application of ATRA has limitations. Our previous studies suggested that 4-Amino-2-Trifluoromethyl-Phenyl Retinate (ATPR), a novel all-trans retinoic acid (ATRA) derivative designed and synthesized by our team, could induce differentiation of APL cells in vivo and in vitro. To explore the underlying mechanism of ATPR, the effect of ATPR on autophagy of APL cells was observed in the present study. The results showed that the differentiation effect of ATPR on APL cells was accompanied with autophagy induction and PML-RARα degradation via activating Notch1 signaling pathway. Moreover, inhibition of autophagy using 3-methyladenine (3-MA) or small interfering RNA (siRNA) that targets essential autophagy gene ATG5 abrogated the ATPR-induced cell differentiation. Furthermore, when pretreated with DAPT, a γ-secretase inhibitor, the Notch1 signaling pathway was blocked in APL cells, followed by the reduction of ATPR-induced autophagy and differentiation. Taken together, these results suggested that autophagy play an important role in ATPR-induced cell differentiation, which may provide a novel approach to cure APL patients.
Collapse
Affiliation(s)
- Yue Li
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Ge Li
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Ke Wang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Ya-Ya Xie
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Ren-Peng Zhou
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Yao Meng
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Ran Ding
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Jin-Fang Ge
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Fei-Hu Chen
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, China.
| |
Collapse
|
18
|
Laranjeira ABA, Yang SX. Therapeutic target discovery and drug development in cancer stem cells for leukemia and lymphoma: from bench to the clinic. Expert Opin Drug Discov 2016; 11:1071-1080. [PMID: 27626707 DOI: 10.1080/17460441.2016.1236785] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Cancer stem cells (CSCs), also known as tumor initialing cells, have self-renewal capacity and are believed to play an important role in residual disease or tumor relapse. CSCs exhibit characteristic slow growth rate and are resistant to conventional chemotherapy/radiotherapy in experimental models. The type of cells commonly employs aberrant activity of the embryonic signal transduction pathways - Notch, Hedgehog (Hh), and Wnt - for uncontrolled proliferation and survival. Areas covered: The following article discusses key genetic and molecular alterations in Notch, Hh and Wnt pathways and drugs targeting the alterations for the treatment of leukemia and lymphoma. Expert opinion: Early signs of signal agent activity have been observed in certain types of leukemia and lymphoma with experimental therapeutics targeting the embryonic pathways in the CSC signaling network. However, clinical development of agents that inhibit the Wnt/β-catenin, Notch and Hh signaling appear to be more complex in relapsed or refractory malignancies. A strategy to effectively target signaling may rely on early application of biomarkers representative of the active signaling nodes companion to the molecularly targeted agents. Biomarkers for efficacy could potentially guide selective treatment of hematological malignancies or cancer with drugs that target the embryonic pathways.
Collapse
Affiliation(s)
- Angelo B A Laranjeira
- a National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Sherry X Yang
- a National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
19
|
Kamga PT, Bassi G, Cassaro A, Midolo M, Di Trapani M, Gatti A, Carusone R, Resci F, Perbellini O, Gottardi M, Bonifacio M, Kamdje AHN, Ambrosetti A, Krampera M. Notch signalling drives bone marrow stromal cell-mediated chemoresistance in acute myeloid leukemia. Oncotarget 2016; 7:21713-21727. [PMID: 26967055 PMCID: PMC5008317 DOI: 10.18632/oncotarget.7964] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 02/25/2016] [Indexed: 12/12/2022] Open
Abstract
Both preclinical and clinical investigations suggest that Notch signalling is critical for the development of many cancers and for their response to chemotherapy. We previously showed that Notch inhibition abrogates stromal-induced chemoresistance in lymphoid neoplasms. However, the role of Notch in acute myeloid leukemia (AML) and its contribution to the crosstalk between leukemia cells and bone marrow stromal cells remain controversial. Thus, we evaluated the role of the Notch pathway in the proliferation, survival and chemoresistance of AML cells in co-culture with bone marrow mesenchymal stromal cells expanded from both healthy donors (hBM-MSCs) and AML patients (hBM-MSCs*). As compared to hBM-MSCs, hBM-MSCs* showed higher level of Notch1, Jagged1 as well as the main Notch target gene HES1. Notably, hBM-MSCs* induced expression and activation of Notch signalling in AML cells, supporting AML proliferation and being more efficientin inducing AML chemoresistance than hBM-MSCs*. Pharmacological inhibition of Notch using combinations of Notch receptor-blocking antibodies or gamma-secretase inhibitors (GSIs), in presence of chemotherapeutic agents, significant lowered the supportive effect of hBM-MSCs and hBM-MSCs* towards AML cells, by activating apoptotic cascade and reducing protein level of STAT3, AKT and NF-κB.These results suggest that Notch signalling inhibition, by overcoming the stromal-mediated promotion of chemoresistance,may represent a potential therapeutic targetnot only for lymphoid neoplasms, but also for AML.
Collapse
Affiliation(s)
- Paul Takam Kamga
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Giulio Bassi
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Adriana Cassaro
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Martina Midolo
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Mariano Di Trapani
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Alessandro Gatti
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Roberta Carusone
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Federica Resci
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Omar Perbellini
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | | | - Massimiliano Bonifacio
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | | | - Achille Ambrosetti
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Mauro Krampera
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
20
|
Cao Y, Cai J, Zhang S, Yuan N, Fang Y, Wang Z, Li X, Cao D, Xu F, Lin W, Song L, Wang Z, Wang J, Xu X, Zhang Y, Zhao W, Hu S, Zhang X, Wang J. Autophagy Sustains Hematopoiesis Through Targeting Notch. Stem Cells Dev 2015; 24:2660-73. [PMID: 26178296 DOI: 10.1089/scd.2015.0176] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Yan Cao
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Jiangsu Key Laboratory for Stem Cell Research, Collaborative Innovation Center of Hematology, Affiliated Children's Hospital, First Affiliated Hospital, Soochow University School of Medicine, Suzhou, China
| | - Jinyang Cai
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Jiangsu Key Laboratory for Stem Cell Research, Collaborative Innovation Center of Hematology, Affiliated Children's Hospital, First Affiliated Hospital, Soochow University School of Medicine, Suzhou, China
| | - Suping Zhang
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Jiangsu Key Laboratory for Stem Cell Research, Collaborative Innovation Center of Hematology, Affiliated Children's Hospital, First Affiliated Hospital, Soochow University School of Medicine, Suzhou, China
| | - Na Yuan
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Jiangsu Key Laboratory for Stem Cell Research, Collaborative Innovation Center of Hematology, Affiliated Children's Hospital, First Affiliated Hospital, Soochow University School of Medicine, Suzhou, China
| | - Yixuan Fang
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Jiangsu Key Laboratory for Stem Cell Research, Collaborative Innovation Center of Hematology, Affiliated Children's Hospital, First Affiliated Hospital, Soochow University School of Medicine, Suzhou, China
| | - Zhijian Wang
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Jiangsu Key Laboratory for Stem Cell Research, Collaborative Innovation Center of Hematology, Affiliated Children's Hospital, First Affiliated Hospital, Soochow University School of Medicine, Suzhou, China
| | - Xin Li
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Jiangsu Key Laboratory for Stem Cell Research, Collaborative Innovation Center of Hematology, Affiliated Children's Hospital, First Affiliated Hospital, Soochow University School of Medicine, Suzhou, China
| | - Dan Cao
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Jiangsu Key Laboratory for Stem Cell Research, Collaborative Innovation Center of Hematology, Affiliated Children's Hospital, First Affiliated Hospital, Soochow University School of Medicine, Suzhou, China
| | - Fei Xu
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Jiangsu Key Laboratory for Stem Cell Research, Collaborative Innovation Center of Hematology, Affiliated Children's Hospital, First Affiliated Hospital, Soochow University School of Medicine, Suzhou, China
| | - Weiwei Lin
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Jiangsu Key Laboratory for Stem Cell Research, Collaborative Innovation Center of Hematology, Affiliated Children's Hospital, First Affiliated Hospital, Soochow University School of Medicine, Suzhou, China
| | - Lin Song
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Jiangsu Key Laboratory for Stem Cell Research, Collaborative Innovation Center of Hematology, Affiliated Children's Hospital, First Affiliated Hospital, Soochow University School of Medicine, Suzhou, China
| | - Zhen Wang
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Jiangsu Key Laboratory for Stem Cell Research, Collaborative Innovation Center of Hematology, Affiliated Children's Hospital, First Affiliated Hospital, Soochow University School of Medicine, Suzhou, China
| | - Jian Wang
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Jiangsu Key Laboratory for Stem Cell Research, Collaborative Innovation Center of Hematology, Affiliated Children's Hospital, First Affiliated Hospital, Soochow University School of Medicine, Suzhou, China
| | - Xiaoxiao Xu
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Jiangsu Key Laboratory for Stem Cell Research, Collaborative Innovation Center of Hematology, Affiliated Children's Hospital, First Affiliated Hospital, Soochow University School of Medicine, Suzhou, China
| | - Yi Zhang
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Jiangsu Key Laboratory for Stem Cell Research, Collaborative Innovation Center of Hematology, Affiliated Children's Hospital, First Affiliated Hospital, Soochow University School of Medicine, Suzhou, China
| | - Wenli Zhao
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Jiangsu Key Laboratory for Stem Cell Research, Collaborative Innovation Center of Hematology, Affiliated Children's Hospital, First Affiliated Hospital, Soochow University School of Medicine, Suzhou, China
| | - Shaoyan Hu
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Jiangsu Key Laboratory for Stem Cell Research, Collaborative Innovation Center of Hematology, Affiliated Children's Hospital, First Affiliated Hospital, Soochow University School of Medicine, Suzhou, China
| | - Xueguang Zhang
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Jiangsu Key Laboratory for Stem Cell Research, Collaborative Innovation Center of Hematology, Affiliated Children's Hospital, First Affiliated Hospital, Soochow University School of Medicine, Suzhou, China
| | - Jianrong Wang
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Jiangsu Key Laboratory for Stem Cell Research, Collaborative Innovation Center of Hematology, Affiliated Children's Hospital, First Affiliated Hospital, Soochow University School of Medicine, Suzhou, China
| |
Collapse
|
21
|
Albano F, Zagaria A, Anelli L, Orsini P, Minervini CF, Impera L, Casieri P, Coccaro N, Tota G, Brunetti C, Minervini A, Pastore D, Carluccio P, Mestice A, Cellamare A, Specchia G. Lymphoid enhancer binding factor-1 (LEF1) expression as a prognostic factor in adult acute promyelocytic leukemia. Oncotarget 2015; 5:649-58. [PMID: 24378360 PMCID: PMC3996670 DOI: 10.18632/oncotarget.1619] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Lymphoid enhancer-binding factor 1 (LEF1) is a downstream effector of the Wnt/ β-catenin signaling pathway. High LEF1 expression has been reported as a prognostic marker in hematologic malignancies. We evaluated the prognostic significance of LEF1 expression in 78 adult acute promyelocytic leukemia (APL) patients. APL samples were dichotomized at the median value and divided into: LEF1low and LEF1high. LEF1high patients had lower WBC counts at baseline and were less likely to carry a FLT3 -ITD than LEF1low patients. Early death occurred only in the LEF1low group. Moreover, LEF1low expression was associated with a high Sanz score. Survival analysis of 61 APL patients < 60 years revealed that the LEF1high group had a significantly longer overall survival (OS). Cox analysis for OS confirmed only LEF1 expression as an independent prognostic factor. Of the 17 patients over the age of 60, those in the LEF1high group showed a higher median survival. In silico analysis identified 9 differentially expressed, up-modulated genes associated with a high expression of LEF1; the majority of these genes is involved in the regulation of apoptosis. Our study provides evidence that LEF1 expression is an independent prognostic factor in APL, and could be used in patients risk stratification.
Collapse
Affiliation(s)
- Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The Notch signalling pathway is evolutionarily conserved and is crucial for the development and homeostasis of most tissues. Deregulated Notch signalling leads to various diseases, such as T cell leukaemia, Alagille syndrome and a stroke and dementia syndrome known as CADASIL, and so strategies to therapeutically modulate Notch signalling are of interest. Clinical trials of Notch pathway inhibitors in patients with solid tumours have been reported, and several approaches are under preclinical evaluation. In this Review, we focus on aspects of the pathway that are amenable to therapeutic intervention, diseases that could be targeted and the various Notch pathway modulation strategies that are currently being explored.
Collapse
|
23
|
Abstract
The Notch signaling pathway is a regulator of self-renewal and differentiation in several tissues and cell types. Notch is a binary cell-fate determinant, and its hyperactivation has been implicated as oncogenic in several cancers including breast cancer and T-cell acute lymphoblastic leukemia (T-ALL). Recently, several studies also unraveled tumor-suppressor roles for Notch signaling in different tissues, including tissues where it was before recognized as an oncogene in specific lineages. Whereas involvement of Notch as an oncogene in several lymphoid malignancies (T-ALL, B-chronic lymphocytic leukemia, splenic marginal zone lymphoma) is well characterized, there is growing evidence involving Notch signaling as a tumor suppressor in myeloid malignancies. It therefore appears that Notch signaling pathway's oncogenic or tumor-suppressor abilities are highly context dependent. In this review, we summarize and discuss latest advances in the understanding of this dual role in hematopoiesis and the possible consequences for the treatment of hematologic malignancies.
Collapse
|
24
|
Liu N, Zhang J, Ji C. The emerging roles of Notch signaling in leukemia and stem cells. Biomark Res 2013; 1:23. [PMID: 24252593 PMCID: PMC4177577 DOI: 10.1186/2050-7771-1-23] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 07/15/2013] [Indexed: 12/16/2022] Open
Abstract
The Notch signaling pathway plays a critical role in maintaining the balance between cell proliferation, differentiation and apoptosis, and is a highly conserved signaling pathway that regulates normal development in a context- and dose-dependent manner. Dysregulation of Notch signaling has been suggested to be key events in a variety of hematological malignancies. Notch1 signaling appears to be the central oncogenic trigger in T cell acute lymphoblastic leukemia (T-ALL), in which the majority of human malignancies have acquired mutations that lead to constitutive activation of Notch1 signaling. However, emerging evidence unexpectedly demonstrates that Notch signaling can function as a potent tumor suppressor in other forms of leukemia. This minireview will summarize recent advances related to the roles of activated Notch signaling in human lymphocytic leukemia, myeloid leukemia, stem cells and stromal microenvironment, and we will discuss the perspectives of Notch signaling as a potential therapeutic target as well.
Collapse
Affiliation(s)
- Na Liu
- Department of Hematology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Jinan, Shandong 250012, P, R, China.
| | | | | |
Collapse
|