1
|
Zhang Q, Wu Q, Huan XJ, Song SS, Bao XB, Miao ZH, Wang YQ. Co-inhibition of BET and NAE enhances BIM-dependent apoptosis with augmented cancer therapeutic efficacy. Biochem Pharmacol 2024; 223:116198. [PMID: 38588830 DOI: 10.1016/j.bcp.2024.116198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Agents that inhibit bromodomain and extra-terminal domain (BET) proteins have been actively tested in the clinic as potential anticancer drugs. NEDD8-activating enzyme (NAE) inhibitors, represented by MLN4924, target the only activation enzyme in the neddylation pathway that has been identified as an attractive target for cancer therapy. In this study, we focus on the combination of BET inhibitors (BETis) and NAE inhibitors (NAEis) as a cancer therapeutic strategy and investigate its underlying mechanisms to explore and expand the application scope of both types of drugs. The results showed that this combination synergistically inhibited the proliferative activity of tumor cells from different tissues. Compared to a single drug, combination therapy had a weak effect on cycle arrest but significantly enhanced cell apoptosis. Furthermore, the growth of NCI-H1975 xenografts in nude mice was significantly inhibited by the combination without obvious body weight loss. Research on the synergistic mechanism demonstrated that combination therapy significantly increased the mRNA and protein levels of the proapoptotic gene BIM. The inhibition and knockout of BIM significantly attenuated the apoptosis induced by the combination, whereas the re-expression of BIM restored the synergistic effects, indicating that BIM induction plays a critical role in mediating the enhanced apoptosis induced by the co-inhibition of BET and NAE. Together, the enhanced transcription mediated by miR-17-92 cluster inhibition and reduced degradation promoted the increase in BIM levels, resulting in a synergistic effect. Collectively, these findings highlight the need for further clinical investigation into the combination of BETi and NAEi as a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Qian Wu
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xia-Juan Huan
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Shan-Shan Song
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Xu-Bin Bao
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Ze-Hong Miao
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Ying-Qing Wang
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
2
|
Letson CT, Balasis ME, Newman H, Binder M, Vedder A, Kinose F, Ball M, Kruer T, Quintana A, Lasho TL, Finke CM, Almada LL, Grants JM, Zhang G, Fernandez-Zapico ME, Gaspar-Maia A, Lancet J, Komrokji R, Haura E, Sallman DA, Reuther GW, Karsan A, Rix U, Patnaik MM, Padron E. Targeting BET Proteins Downregulates miR-33a To Promote Synergy with PIM Inhibitors in CMML. Clin Cancer Res 2023; 29:2919-2932. [PMID: 37223910 PMCID: PMC10524644 DOI: 10.1158/1078-0432.ccr-22-3929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/19/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023]
Abstract
PURPOSE Preclinical studies in myeloid neoplasms have demonstrated efficacy of bromodomain and extra-terminal protein inhibitors (BETi). However, BETi demonstrates poor single-agent activity in clinical trials. Several studies suggest that combination with other anticancer inhibitors may enhance the efficacy of BETi. EXPERIMENTAL DESIGN To nominate BETi combination therapies for myeloid neoplasms, we used a chemical screen with therapies currently in clinical cancer development and validated this screen using a panel of myeloid cell line, heterotopic cell line models, and patient-derived xenograft models of disease. We used standard protein and RNA assays to determine the mechanism responsible for synergy in our disease models. RESULTS We identified PIM inhibitors (PIMi) as therapeutically synergistic with BETi in myeloid leukemia models. Mechanistically, we show that PIM kinase is increased after BETi treatment, and that PIM kinase upregulation is sufficient to induce persistence to BETi and sensitize cells to PIMi. Furthermore, we demonstrate that miR-33a downregulation is the underlying mechanism driving PIM1 upregulation. We also show that GM-CSF hypersensitivity, a hallmark of chronic myelomonocytic leukemia (CMML), represents a molecular signature for sensitivity to combination therapy. CONCLUSIONS Inhibition of PIM kinases is a potential novel strategy for overcoming BETi persistence in myeloid neoplasms. Our data support further clinical investigation of this combination.
Collapse
Affiliation(s)
| | | | - Hannah Newman
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Moritz Binder
- Division of Hematology, Mayo Clinic, Rochester, MN
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alexis Vedder
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Fumi Kinose
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Markus Ball
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Traci Kruer
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Ariel Quintana
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Terra L. Lasho
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Christy M. Finke
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Luciana L. Almada
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN
| | | | - Guolin Zhang
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | | | - Alexandre Gaspar-Maia
- Division of Hematology, Mayo Clinic, Rochester, MN
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Jeffrey Lancet
- Malignant Hematology Department, Moffitt Cancer Center, Tampa, FL
| | - Rami Komrokji
- Malignant Hematology Department, Moffitt Cancer Center, Tampa, FL
| | - Eric Haura
- Department of Drug Discovery, H Lee Moffitt Cancer Center, Tampa, FL
| | - David A. Sallman
- Malignant Hematology Department, Moffitt Cancer Center, Tampa, FL
| | - Gary W. Reuther
- Department of Molecular Oncology, H Lee Moffitt Cancer Center, Tampa, FL
| | - Aly Karsan
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC
| | - Uwe Rix
- Department of Drug Discovery, H Lee Moffitt Cancer Center, Tampa, FL
| | - Mrinal M. Patnaik
- Division of Hematology, Mayo Clinic, Rochester, MN
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Eric Padron
- Malignant Hematology Department, Moffitt Cancer Center, Tampa, FL
| |
Collapse
|
3
|
Hu J, Pan D, Li G, Chen K, Hu X. Regulation of programmed cell death by Brd4. Cell Death Dis 2022; 13:1059. [PMID: 36539410 PMCID: PMC9767942 DOI: 10.1038/s41419-022-05505-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Epigenetic factor Brd4 has emerged as a key regulator of cancer cell proliferation. Targeted inhibition of Brd4 suppresses growth and induces apoptosis of various cancer cells. In addition to apoptosis, Brd4 has also been shown to regulate several other forms of programmed cell death (PCD), including autophagy, necroptosis, pyroptosis, and ferroptosis, with different biological outcomes. PCD plays key roles in development and tissue homeostasis by eliminating unnecessary or detrimental cells. Dysregulation of PCD is associated with various human diseases, including cancer, neurodegenerative and infectious diseases. In this review, we discussed some recent findings on how Brd4 actively regulates different forms of PCD and the therapeutic potentials of targeting Brd4 in PCD-related human diseases. A better understanding of PCD regulation would provide not only new insights into pathophysiological functions of PCD but also provide new avenues for therapy by targeting Brd4-regulated PCD.
Collapse
Affiliation(s)
- Jinfeng Hu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Dun Pan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Guo Li
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Kunqi Chen
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Xiangming Hu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
4
|
The miR-17-92 cluster: Yin and Yang in human cancers. Cancer Treat Res Commun 2022; 33:100647. [PMID: 36327576 DOI: 10.1016/j.ctarc.2022.100647] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 11/27/2022]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs which modulate gene expression via multiple post-transcriptional mechanisms. They are involved in a variety of biological processes, including cell proliferation, metastasis, metabolism, tumorigenesis, and apoptosis. Dysregulation of miRNA expression has been implicated in human cancers, and they may also serve as biomarkers of disease progression and prognosis. The miR-17-92 cluster is one of the most widely studied miRNA clusters, which was initially reported as an oncogene, but was later reported to exhibit tumour suppressive effects in some human cancers. This review summarizes the recent progress and context-dependant role of this cluster in various cancers. We summarize the known mechanisms which regulate miR-17-92 expression and molecular pathways that are in turn controlled by it. We discuss examples where it acts as an oncogene or a tumour suppressor along with key targets affecting hallmarks of cancer. We discuss how cellular contexts regulate the biological effects of miR-17-92. The plausible mechanisms of its paradoxical roles are explained, and mechanisms are described that may contribute to cell fate regulation by miR-17-92. Further, we discuss recently developed strategies to target miR-17-92 cluster in human cancers. MiR-17-92 may serve as a potential biomarker for prognosis and response to therapy as well as a target for cancer prevention and therapeutics.
Collapse
|
5
|
Mivebresib synergized with PZ703b, a novel Bcl-xl PROTAC degrader, induces apoptosis in bladder cancer cells via the mitochondrial pathway. Biochem Biophys Res Commun 2022; 623:120-126. [DOI: 10.1016/j.bbrc.2022.07.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022]
|
6
|
Minson A, Tam C, Dickinson M, Seymour JF. Targeted Agents in the Treatment of Indolent B-Cell Non-Hodgkin Lymphomas. Cancers (Basel) 2022; 14:1276. [PMID: 35267584 PMCID: PMC8908980 DOI: 10.3390/cancers14051276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 02/01/2023] Open
Abstract
Targeted therapies continue to change the landscape of lymphoma treatment, resulting in improved therapy options and patient outcomes. Numerous agents are now approved for use in the indolent lymphomas and many others under development demonstrate significant promise. In this article, we review the landscape of targeted agents that apply to the indolent lymphomas, predominantly follicular lymphoma, lymphoplasmacytic lymphoma/Waldenstrom macroglobulinaemia and marginal zone lymphoma. The review covers small molecule inhibitors, immunomodulators and targeted immunotherapies, as well as presenting emerging and promising combination therapies.
Collapse
Affiliation(s)
- Adrian Minson
- Peter MacCallum Cancer Centre & Royal Melbourne Hospital, Melbourne, VIC 3000, Australia; (C.T.); (M.D.); (J.F.S.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Constantine Tam
- Peter MacCallum Cancer Centre & Royal Melbourne Hospital, Melbourne, VIC 3000, Australia; (C.T.); (M.D.); (J.F.S.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael Dickinson
- Peter MacCallum Cancer Centre & Royal Melbourne Hospital, Melbourne, VIC 3000, Australia; (C.T.); (M.D.); (J.F.S.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - John F. Seymour
- Peter MacCallum Cancer Centre & Royal Melbourne Hospital, Melbourne, VIC 3000, Australia; (C.T.); (M.D.); (J.F.S.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
7
|
Xu Z, Vandenberg CJ, Lieschke E, Di Rago L, Scott CL, Majewski IJ. CHK2 Inhibition Provides a Strategy to Suppress Hematologic Toxicity from PARP Inhibitors. Mol Cancer Res 2021; 19:1350-1360. [PMID: 33863812 DOI: 10.1158/1541-7786.mcr-20-0791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/27/2021] [Accepted: 04/14/2021] [Indexed: 11/16/2022]
Abstract
Patients with cancer treated with PARP inhibitors (PARPi) experience various side effects, with hematologic toxicity being most common. Short-term treatment of mice with olaparib resulted in depletion of reticulocytes, B-cell progenitors, and immature thymocytes, whereas longer treatment induced broader myelosuppression. We performed a CRISPR/Cas9 screen that targeted DNA repair genes in Eμ-Myc pre-B lymphoma cell lines as a way to identify strategies to suppress hematologic toxicity from PARPi. The screen revealed that single-guide RNAs targeting the serine/threonine kinase checkpoint kinase 2 (CHK2) were enriched following olaparib treatment. Genetic or pharmacologic inhibition of CHK2-blunted PARPi response in lymphoid and myeloid cell lines, and in primary murine pre-B/pro-B cells. Using a Cas9 base editor, we found that blocking CHK2-mediated phosphorylation of p53 also impaired olaparib response. Our results identify the p53 pathway as a major determinant of the acute response to PARPi in normal blood cells and demonstrate that targeting CHK2 can short circuit this response. Cotreatment with a CHK2 inhibitor did not antagonize olaparib response in ovarian cancer cell lines. Selective inhibition of CHK2 may spare blood cells from the toxic influence of PARPi and broaden the utility of these drugs. IMPLICATIONS: We reveal that genetic or pharmacologic inhibition of CHK2 may offer a way to alleviate the toxic influence of PARPi in the hematologic system.
Collapse
Affiliation(s)
- Zhen Xu
- The Walter and Eliza Hall Institute of Medical Research, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Victoria, Australia
| | - Cassandra J Vandenberg
- The Walter and Eliza Hall Institute of Medical Research, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Victoria, Australia
| | - Elizabeth Lieschke
- The Walter and Eliza Hall Institute of Medical Research, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Victoria, Australia
| | - Ladina Di Rago
- The Walter and Eliza Hall Institute of Medical Research, Victoria, Australia
| | - Clare L Scott
- The Walter and Eliza Hall Institute of Medical Research, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, The Royal Women's Hospital, Victoria, Australia.,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Ian J Majewski
- The Walter and Eliza Hall Institute of Medical Research, Victoria, Australia. .,Department of Medical Biology, University of Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Fairlie WD, Lee EF. Co-Operativity between MYC and BCL-2 Pro-Survival Proteins in Cancer. Int J Mol Sci 2021; 22:2841. [PMID: 33799592 PMCID: PMC8000576 DOI: 10.3390/ijms22062841] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/30/2022] Open
Abstract
B-Cell Lymphoma 2 (BCL-2), c-MYC and related proteins are arguably amongst the most widely studied in all of biology. Every year there are thousands of papers reporting on different aspects of their biochemistry, cellular and physiological mechanisms and functions. This plethora of literature can be attributed to both proteins playing essential roles in the normal functioning of a cell, and by extension a whole organism, but also due to their central role in disease, most notably, cancer. Many cancers arise due to genetic lesions resulting in deregulation of both proteins, and indeed the development and survival of tumours is often dependent on co-operativity between these protein families. In this review we will discuss the individual roles of both proteins in cancer, describe cancers where co-operativity between them has been well-characterised and finally, some strategies to target these proteins therapeutically.
Collapse
Affiliation(s)
- Walter Douglas Fairlie
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia;
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3084, Australia
| | - Erinna F. Lee
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia;
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3084, Australia
| |
Collapse
|
9
|
Latif AL, Newcombe A, Li S, Gilroy K, Robertson NA, Lei X, Stewart HJS, Cole J, Terradas MT, Rishi L, McGarry L, McKeeve C, Reid C, Clark W, Campos J, Kirschner K, Davis A, Lopez J, Sakamaki JI, Morton JP, Ryan KM, Tait SWG, Abraham SA, Holyoake T, Higgins B, Huang X, Blyth K, Copland M, Chevassut TJT, Keeshan K, Adams PD. BRD4-mediated repression of p53 is a target for combination therapy in AML. Nat Commun 2021; 12:241. [PMID: 33431824 PMCID: PMC7801601 DOI: 10.1038/s41467-020-20378-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 11/25/2020] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is a typically lethal molecularly heterogeneous disease, with few broad-spectrum therapeutic targets. Unusually, most AML retain wild-type TP53, encoding the pro-apoptotic tumor suppressor p53. MDM2 inhibitors (MDM2i), which activate wild-type p53, and BET inhibitors (BETi), targeting the BET-family co-activator BRD4, both show encouraging pre-clinical activity, but limited clinical activity as single agents. Here, we report enhanced toxicity of combined MDM2i and BETi towards AML cell lines, primary human blasts and mouse models, resulting from BETi's ability to evict an unexpected repressive form of BRD4 from p53 target genes, and hence potentiate MDM2i-induced p53 activation. These results indicate that wild-type TP53 and a transcriptional repressor function of BRD4 together represent a potential broad-spectrum synthetic therapeutic vulnerability for AML.
Collapse
Affiliation(s)
| | - Ashley Newcombe
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Sha Li
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Kathryn Gilroy
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Neil A Robertson
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Xue Lei
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Helen J S Stewart
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - John Cole
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Loveena Rishi
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Lynn McGarry
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Claire McKeeve
- West of Scotland Genomics Services (Laboratories), Queen Elizabeth University Hospital, Glasgow, UK
| | - Claire Reid
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Joana Campos
- Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | - Andrew Davis
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Jonathan Lopez
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Jennifer P Morton
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Stephen W G Tait
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Sheela A Abraham
- Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department Of Biomedical And Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Tessa Holyoake
- Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Brian Higgins
- Pharma Research and Early Development, Roche Innovation Center-New York, New York, USA
| | - Xu Huang
- Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Karen Blyth
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Mhairi Copland
- Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | - Karen Keeshan
- Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Peter D Adams
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA.
| |
Collapse
|
10
|
Kong IY, Rimes JS, Light A, Todorovski I, Jones S, Morand E, Knight DA, Bergman YE, Hogg SJ, Falk H, Monahan BJ, Stupple PA, Street IP, Heinzel S, Bouillet P, Johnstone RW, Hodgkin PD, Vervoort SJ, Hawkins ED. Temporal Analysis of Brd4 Displacement in the Control of B Cell Survival, Proliferation, and Differentiation. Cell Rep 2020; 33:108290. [PMID: 33086063 DOI: 10.1016/j.celrep.2020.108290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/24/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022] Open
Abstract
JQ1 is a BET-bromodomain inhibitor that has immunomodulatory effects. However, the precise molecular mechanism that JQ1 targets to elicit changes in antibody production is not understood. Our results show that JQ1 induces apoptosis, reduces cell proliferation, and as a consequence, inhibits antibody-secreting cell differentiation. ChIP-sequencing reveals a selective displacement of Brd4 in response to acute JQ1 treatment (<2 h), resulting in specific transcriptional repression. After 8 h, subsequent alterations in gene expression arise as a result of the global loss of Brd4 occupancy. We demonstrate that apoptosis induced by JQ1 is solely attributed to the pro-apoptotic protein Bim (Bcl2l11). Conversely, cell-cycle regulation by JQ1 is associated with multiple Myc-associated gene targets. Our results demonstrate that JQ1 drives temporal changes in Brd4 displacement that results in a specific transcriptional profile that directly affects B cell survival and proliferation to modulate the humoral immune response.
Collapse
Affiliation(s)
- Isabella Y Kong
- Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Joel S Rimes
- Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Amanda Light
- Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Izabela Todorovski
- Cancer Therapeutics and Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Sarah Jones
- Centre for Inflammatory Diseases, School of Clinical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Eric Morand
- Centre for Inflammatory Diseases, School of Clinical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Deborah A Knight
- Cancer Therapeutics and Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Ylva E Bergman
- Cancer Therapeutics CRC (CTx), Melbourne, VIC 3000, Australia; Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Simon J Hogg
- Cancer Therapeutics and Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Hendrik Falk
- Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, 1G Royal Parade, Parkville, VIC 3052, Australia; Cancer Therapeutics CRC (CTx), Melbourne, VIC 3000, Australia
| | - Brendon J Monahan
- Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, 1G Royal Parade, Parkville, VIC 3052, Australia; Cancer Therapeutics CRC (CTx), Melbourne, VIC 3000, Australia
| | - Paul A Stupple
- Cancer Therapeutics CRC (CTx), Melbourne, VIC 3000, Australia; Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Ian P Street
- Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, 1G Royal Parade, Parkville, VIC 3052, Australia; Cancer Therapeutics CRC (CTx), Melbourne, VIC 3000, Australia
| | - Susanne Heinzel
- Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Philippe Bouillet
- Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ricky W Johnstone
- Cancer Therapeutics and Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Philip D Hodgkin
- Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Stephin J Vervoort
- Cancer Therapeutics and Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia.
| | - Edwin D Hawkins
- Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
11
|
Harnessing Natural Killer Immunity in Metastatic SCLC. J Thorac Oncol 2020; 15:1507-1521. [DOI: 10.1016/j.jtho.2020.05.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/31/2020] [Accepted: 05/07/2020] [Indexed: 12/21/2022]
|
12
|
Cummin TEC, Cox KL, Murray TD, Turaj AH, Dunning L, English VL, Fell R, Packham G, Ma Y, Powell B, Johnson PWM, Cragg MS, Carter MJ. BET inhibitors synergize with venetoclax to induce apoptosis in MYC-driven lymphomas with high BCL-2 expression. Blood Adv 2020; 4:3316-3328. [PMID: 32717030 PMCID: PMC7391160 DOI: 10.1182/bloodadvances.2020002231] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/13/2020] [Indexed: 12/12/2022] Open
Abstract
Although the MYC oncogenic network represents an attractive therapeutic target for lymphoma, MYC inhibitors have been difficult to develop. Alternatively, inhibitors of epigenetic/ transcriptional regulators, particularly the bromodomain and extraterminal (BET) family, have been used to modulate MYC. However, current benzodiazepine-derivative BET inhibitors (BETi) elicit disappointing responses and dose-limiting toxicity in relapsed/refractory lymphoma, potentially because of enrichment of high-risk molecular features and chemical backbone-associated toxicities. Consequently, novel nonbenzodiazepine BETi and improved mechanistic understanding are required. Here we characterize the responses of aggressive MYC-driven lymphomas to 2 nonbenzodiazepine BETi: PLX51107 and PLX2853. Both invoked BIM-dependent apoptosis and in vivo therapy, associated with miR-17∼92 repression, in murine Eµ-myc lymphomas, with PLX2853 exhibiting enhanced potency. Accordingly, exogenous BCL-2 expression abrogated these effects. Because high BCL-2 expression is common in diffuse large B-cell lymphoma (DLBCL), BETi were ineffective in driving apoptosis and in vivo therapy of DLBCL cell lines, mirroring clinical results. However, BETi-mediated BIM upregulation and miR-17∼92 repression remained intact. Consequently, coadministration of BETi and ABT199/venetoclax restored cell death and in vivo therapy. Collectively, these data identify BIM-dependent apoptosis as a critical mechanism of action for this class of BETi that, via coadministration of BH3 mimetics, can deliver effective tumor control in DLBCL.
Collapse
Affiliation(s)
| | - Kerry L Cox
- Antibody and Vaccine Group, Centre for Cancer Immunology
| | - Tom D Murray
- Antibody and Vaccine Group, Centre for Cancer Immunology
| | - Anna H Turaj
- Antibody and Vaccine Group, Centre for Cancer Immunology
| | - Lisa Dunning
- Preclinical Unit, Centre for Cancer Immunology, and
| | | | - Rachel Fell
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; and
| | - Graham Packham
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; and
| | - Yan Ma
- Plexxikon Inc., Berkeley, CA
| | | | - Peter W M Johnson
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; and
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology
| | | |
Collapse
|
13
|
Zong D, Gu J, Cavalcante GC, Yao W, Zhang G, Wang S, Owonikoko TK, He X, Sun SY. BRD4 Levels Determine the Response of Human Lung Cancer Cells to BET Degraders That Potently Induce Apoptosis through Suppression of Mcl-1. Cancer Res 2020; 80:2380-2393. [PMID: 32156781 DOI: 10.1158/0008-5472.can-19-3674] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/12/2020] [Accepted: 03/06/2020] [Indexed: 12/24/2022]
Abstract
Lung cancer consists of approximately 80% non-small cell lung cancer (NSCLC) and 20% small cell lung cancer (SCLC) and remains the leading cause of cancer-related deaths worldwide despite advances in early diagnosis, targeted therapy, and immunotherapy. Thus, novel therapies are still urgently needed. Bromodomain and extraterminal (BET) proteins, primarily comprised of BRD2, BRD3, and BRD4 proteins, function as epigenetic readers and master transcription coactivators and are now recognized cancer therapeutic targets. BET degraders such as ZBC260 and dBET represent a novel class of BET inhibitors that act by inducing BET degradation. The current study demonstrates the therapeutic efficacies of BET degraders, particularly ZBC260, against lung cancer, as well as understanding the underlying mechanisms and identifying molecular markers that determine cell sensitivity to BET degraders. A panel of NSCLC cell lines possessed similar response patterns to ZBC260 and dBET but different responses to BET inhibitor JQ-1. BRD levels, particularly BRD4, correlated positively with high sensitivity to BET degraders but not to JQ-1. BET degraders potently induced apoptosis in sensitive NSCLC cells and were accompanied by reduction of Mcl-1 and c-FLIP levels, which are critical for mediating induction of apoptosis and enhancement of TRAIL-induced apoptosis. Accordingly, ZBC260 exerted more potent activity than JQ-1 in vivo against the growth of NSCLC xenografts and patient-derived xenografts. These findings warrant future clinical validation of the efficacy of BET degraders in NSCLC, particularly those with high levels of BRD proteins, especially BRD4. SIGNIFICANCE: The current study demonstrates the potential of novel BET degraders in the treatment of lung cancer and warrants clinical validation of BET degraders in lung cancer with high levels of BRD4.
Collapse
Affiliation(s)
- Dan Zong
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, P. R. China
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| | - Jiajia Gu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, P. R. China
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| | - Giovanna C Cavalcante
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
- Laboratory of Human and Medical Genetics, Federal University of Pará, Belém, Pará, Brazil
| | - Weilong Yao
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Guojing Zhang
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| | - Shaomeng Wang
- Departments of Medicinal Chemistry, Pharmacology and Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Taofeek K Owonikoko
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| | - Xia He
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, P. R. China.
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia.
| |
Collapse
|
14
|
Letson C, Padron E. Non-canonical transcriptional consequences of BET inhibition in cancer. Pharmacol Res 2019; 150:104508. [PMID: 31698067 DOI: 10.1016/j.phrs.2019.104508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/12/2019] [Accepted: 10/21/2019] [Indexed: 01/01/2023]
Abstract
Inhibition of the bromo and extra-terminal domain (BET) protein family in preclinical studies has demonstrated that BET proteins are critical for cancer progression and important therapeutic targets. Downregulation of the MYC oncogene, CDK6, BCL2 and FOSL1 are just a few examples of the effects of BET inhibitors that can lead to cell cycle arrest and apoptosis in cancer cells. However, BET inhibitors have had little success in the clinic as a single agent, and there are an increasing number of reports of resistance to BET inhibition emerging after sustained treatment of cancer cells in vitro. Here we summarize the non-canonical consequences of BET inhibition in cancer, and discuss how these may both lead to resistance and inform rational combinations that could greatly enhance the clinical application of these inhibitors.
Collapse
Affiliation(s)
- Christopher Letson
- Moffitt Cancer Center: 12902 USF Magnolia Drive, Tampa, FL 33612, United States.
| | - Eric Padron
- Moffitt Cancer Center: 12902 USF Magnolia Drive, Tampa, FL 33612, United States.
| |
Collapse
|
15
|
Brinkmann K, Ng AP, de Graaf CA, Di Rago L, Hyland CD, Morelli E, Rautela J, Huntington ND, Strasser A, Alexander WS, Herold MJ. miR17~92 restrains pro-apoptotic BIM to ensure survival of haematopoietic stem and progenitor cells. Cell Death Differ 2019; 27:1475-1488. [PMID: 31591473 DOI: 10.1038/s41418-019-0430-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 01/07/2023] Open
Abstract
The miR17~92 cluster plays important roles in haematopoiesis. However, it is not clear at what stage of differentiation and through which targets miR17~92 exerts this function. Therefore, we generated miR17~92fl/fl; RosaCreERT2 mice for inducible deletion of miR17~92 in haematopoietic cells. Bone marrow reconstitution experiments revealed that miR17~92-deleted cells were not capable to contribute to mature haematopoietic lineages, which was due to defects in haematopoietic stem/progenitor cells (HSPCs). To identify the critical factor targeted by miR17~92 we performed gene expression analysis in HSPCs, demonstrating that mRNA levels of pro-apoptotic Bim inversely correlated with the expression of the miR17~92 cluster. Strikingly, loss of pro-apoptotic BIM completely prevented the loss of HSPCs caused by deletion of miR17~92. The BIM/miR17~92 interaction is conserved in human CD34+ HSPCs, as miR17~92 inhibition or blockade of its binding to the BIM 3'UTR reduced the survival and growth of these cells. Despite the prediction that miR17~92 functions by impacting a plethora of different targets, the absence of BIM alone is sufficient to prevent all defects caused by deletion of miR17~92 in haematopoietic cells.
Collapse
Affiliation(s)
- Kerstin Brinkmann
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Ashley P Ng
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Carolyn A de Graaf
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Ladina Di Rago
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Craig D Hyland
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Eugenio Morelli
- Jerome Lipper Multiple Myeloma Centre, Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Jai Rautela
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.,Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Nicholas D Huntington
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.,Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Warren S Alexander
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
16
|
Sui S, Zhang J, Xu S, Wang Q, Wang P, Pang D. Ferritinophagy is required for the induction of ferroptosis by the bromodomain protein BRD4 inhibitor (+)-JQ1 in cancer cells. Cell Death Dis 2019; 10:331. [PMID: 30988278 PMCID: PMC6465411 DOI: 10.1038/s41419-019-1564-7] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 03/07/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022]
Abstract
(+)-JQ1 is an inhibitor of the tumor-driver bromodomain protein BRD4 and produces satisfactory effects because it efficiently increases apoptosis. Ferroptosis is an oxidative cell death program differing from apoptosis. Ferroptosis is characterized by high levels of iron and reactive oxygen species and has been confirmed to suppress tumor growth. In this study, BRD4 expression in cancer and its influence on the prognosis of cancer patients were analyzed using data from public databases. In addition, the effect of the BRD4 inhibitor (+)-JQ1 on ferroptosis was investigated via a series of in vitro assays. A nude mouse model was used to evaluate the function of (+)-JQ1 in ferroptosis in vivo. The potential mechanisms by which (+)-JQ1 regulates ferroptosis were explored. The results showed that BRD4 expression levels were higher in cancer tissues than in normal tissues and were related to poor prognosis in cancer patients. Furthermore, ferroptosis was induced under (+)-JQ1 treatment and BRD4 knockdown, indicating that (+)-JQ1 induces ferroptosis via BRD4 inhibition. Moreover, the anticancer effect of (+)-JQ1 was enhanced by ferroptosis inducers. Further studies confirmed that (+)-JQ1 induced ferroptosis via ferritinophagy, which featured autophagy enhancement by (+)-JQ1 and increased iron levels. Subsequently, the reactive oxygen species levels were increased by iron via the Fenton reaction, leading to ferroptosis. In addition, expression of the ferroptosis-associated genes GPX4, SLC7A11, and SLC3A2 was downregulated under (+)-JQ1 treatment and BRD4 knockdown, indicating that (+)-JQ1 may regulate ferroptosis by controlling the expression of ferroptosis-associated genes regulated by BRD4. Finally, (+)-JQ1 regulated ferritinophagy and the expression of ferroptosis-associated genes via epigenetic inhibition of BRD4 by suppressing the expression of the histone methyltransferase G9a or enhancing the expression of the histone deacetylase SIRT1. In summary, the BRD4 inhibitor (+)-JQ1 induces ferroptosis via ferritinophagy or the regulation of ferroptosis-associated genes through epigenetic repression of BRD4.
Collapse
Affiliation(s)
- Shiyao Sui
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, 150081, Harbin, China
| | - Jian Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, 150081, Harbin, China
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, 150081, Harbin, China
| | - Qin Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, 150081, Harbin, China
| | - Peiyuan Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, 150081, Harbin, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, 150081, Harbin, China. .,Heilongjiang Academy of Medical Sciences, 157 Baojian Road, 150086, Harbin, China.
| |
Collapse
|
17
|
Qian G, Yao W, Zhang S, Bajpai R, Hall WD, Shanmugam M, Lonial S, Sun SY. Co-inhibition of BET and proteasome enhances ER stress and Bim-dependent apoptosis with augmented cancer therapeutic efficacy. Cancer Lett 2018; 435:44-54. [PMID: 30059709 DOI: 10.1016/j.canlet.2018.07.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 01/13/2023]
Abstract
Agents that inhibit bromodomain and extra-terminal domain (BET) protein have been actively tested in the clinic as potential anticancer drugs. Proteasome inhibitors such as carfilzomib (CFZ) are FDA-approved for the treatment of patients with advanced multiple myeloma and have been tested against other cancers. The current study focuses on the combination of a BET inhibitor (e.g., JQ1) and a proteasome inhibitor (e.g., CFZ) as a novel cancer therapeutic strategy and the underlying mechanisms. The tested combination (JQ1 with CFZ) synergistically decreased cell survival and enhanced apoptosis in vitro and inhibited tumor growth in vivo. The dramatic induction of apoptosis was accompanied by enhanced elevation of Bim and ER stress. Bim knockout significantly attenuated apoptosis induced by the combination, suggesting a critical role of Bim induction in mediating the enhanced induction of apoptosis by BET and proteasome co-inhibition. The combination significantly increased Bim mRNA levels with limited effect on Bim protein stability, suggesting a primary transcriptional regulation of enhanced Bim expression. Our findings warrant further investigation of this combinatorial strategy as an effective regimen against cancer in the clinic.
Collapse
Affiliation(s)
- Guoqing Qian
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Weilong Yao
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA; Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Shuo Zhang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA; Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Richa Bajpai
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - William D Hall
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
18
|
A miRaculous new therapy in myeloma? Blood 2018; 132:983-985. [DOI: 10.1182/blood-2018-07-864207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
19
|
Merino D, Whittle JR, Vaillant F, Serrano A, Gong JN, Giner G, Maragno AL, Chanrion M, Schneider E, Pal B, Li X, Dewson G, Gräsel J, Liu K, Lalaoui N, Segal D, Herold MJ, Huang DCS, Smyth GK, Geneste O, Lessene G, Visvader JE, Lindeman GJ. Synergistic action of the MCL-1 inhibitor S63845 with current therapies in preclinical models of triple-negative and HER2-amplified breast cancer. Sci Transl Med 2018; 9:9/401/eaam7049. [PMID: 28768804 DOI: 10.1126/scitranslmed.aam7049] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/13/2017] [Accepted: 06/29/2017] [Indexed: 12/15/2022]
Abstract
The development of BH3 mimetics, which antagonize prosurvival proteins of the BCL-2 family, represents a potential breakthrough in cancer therapy. Targeting the prosurvival member MCL-1 has been an area of intense interest because it is frequently deregulated in cancer. In breast cancer, MCL-1 is often amplified, and high expression predicts poor patient outcome. We tested the MCL-1 inhibitor S63845 in breast cancer cell lines and patient-derived xenografts with high expression of MCL-1. S63845 displayed synergistic activity with docetaxel in triple-negative breast cancer and with trastuzumab or lapatinib in HER2-amplified breast cancer. Using S63845-resistant cells combined with CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated 9) technology, we identified deletion of BAK and up-regulation of prosurvival proteins as potential mechanisms that confer resistance to S63845 in breast cancer. Collectively, our findings provide a strong rationale for the clinical evaluation of MCL-1 inhibitors in breast cancer.
Collapse
Affiliation(s)
- Delphine Merino
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - James R Whittle
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.,Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - François Vaillant
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Antonin Serrano
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jia-Nan Gong
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.,Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Goknur Giner
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.,Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Ana Leticia Maragno
- Institut de Recherches Servier Oncology R&D Unit, Croissy Sur Seine 78290, France
| | - Maïa Chanrion
- Institut de Recherches Servier Oncology R&D Unit, Croissy Sur Seine 78290, France
| | - Emilie Schneider
- Institut de Recherches Servier Oncology R&D Unit, Croissy Sur Seine 78290, France
| | - Bhupinder Pal
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Xiang Li
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.,Cell Signalling and Cell Death Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Grant Dewson
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.,Cell Signalling and Cell Death Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Julius Gräsel
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kevin Liu
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Najoua Lalaoui
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.,Cell Signalling and Cell Death Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - David Segal
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.,Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Marco J Herold
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.,Molecular Genetics of Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - David C S Huang
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.,Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Gordon K Smyth
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,School of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Olivier Geneste
- Institut de Recherches Servier Oncology R&D Unit, Croissy Sur Seine 78290, France
| | - Guillaume Lessene
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.,Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jane E Visvader
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Geoffrey J Lindeman
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia. .,Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,Department of Medicine, University of Melbourne, Parkville, Victoria 3010, Australia.,Parkville Familial Cancer Centre, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Parkville, Victoria 3050, Australia
| |
Collapse
|
20
|
Bogenberger J, Whatcott C, Hansen N, Delman D, Shi CX, Kim W, Haws H, Soh K, Lee YS, Peterson P, Siddiqui-Jain A, Weitman S, Stewart K, Bearss D, Mesa R, Warner S, Tibes R. Combined venetoclax and alvocidib in acute myeloid leukemia. Oncotarget 2017; 8:107206-107222. [PMID: 29291023 PMCID: PMC5739808 DOI: 10.18632/oncotarget.22284] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/10/2017] [Indexed: 11/25/2022] Open
Abstract
More effective treatment options for elderly acute myeloid leukemia (AML) patients are needed as only 25-50% of patients respond to standard-of-care therapies, response duration is typically short, and disease progression is inevitable even with some novel therapies and ongoing clinical trials. Anti-apoptotic BCL-2 family inhibitors, such as venetoclax, are promising therapies for AML. Nonetheless, resistance is emerging. We demonstrate that venetoclax combined with cyclin-dependent kinase (CDK) inhibitor alvocidib is potently synergistic in venetoclax-sensitive and -resistant AML models in vitro, ex vivo and in vivo. Alvocidib decreased MCL-1, and/or increased pro-apoptotic proteins such as BIM or NOXA, often synergistically with venetoclax. Over-expression of BCL-XL diminished synergy, while knock-down of BIM almost entirely abrogated synergy, demonstrating that the synergistic interaction between alvocidib and venetoclax is primarily dependent on intrinsic apoptosis. CDK9 inhibition predominantly mediated venetoclax sensitization, while CDK4/6 inhibition with palbociclib did not potentiate venetoclax activity. Combined, venetoclax and alvocidib modulate the balance of BCL-2 family proteins through complementary, yet variable mechanisms favoring apoptosis, highlighting this combination as a promising therapy for AML or high-risk MDS with the capacity to overcome intrinsic apoptosis mechanisms of resistance. These results support clinical testing of combined venetoclax and alvocidib for the treatment of AML and advanced MDS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Raoul Tibes
- Mayo Clinic, Scottsdale, AZ, USA.,NYU School of Medicine, New York, NY, USA
| |
Collapse
|
21
|
Shukla S, Saxena S, Singh BK, Kakkar P. BH3-only protein BIM: An emerging target in chemotherapy. Eur J Cell Biol 2017; 96:728-738. [PMID: 29100606 DOI: 10.1016/j.ejcb.2017.09.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/01/2017] [Accepted: 09/19/2017] [Indexed: 12/19/2022] Open
Abstract
BH3-only proteins constitute major proportion of pro-apoptotic members of B-cell lymphoma 2 (Bcl-2) family of apoptotic regulatory proteins and participate in embryonic development, tissue homeostasis and immunity. Absence of BH3-only proteins contributes to autoimmune disorders and tumorigenesis. Bim (Bcl-2 Interacting Mediator of cell death), most important member of BH3-only proteins, shares a BH3-only domain (9-16 aa) among 4 domains (BH1-BH4) of Bcl-2 family proteins and highly pro-apoptotic in nature. Bim initiates the intrinsic apoptotic pathway under both physiological and patho-physiological conditions. Reduction in Bim expression was found to be associated with tumor promotion and autoimmunity, while overexpression inhibited tumor growth and drug resistance as cancer cells suppress Bim expression and stability. Apart from its role in normal homeostasis, Bim has emerged as a central player in regulation of tumorigenesis, therefore gaining attention as a plausible target for chemotherapy. Regulation of Bim expression and stability is complicated and regulated at multiple levels viz. transcriptional, post-transcriptional, post-translational (preferably by phosphorylation and ubiquitination), epigenetic (by promoter acetylation or methylation) including miRNAs. Furthermore, control over Bim expression and stability may be exploited to enhance chemotherapeutic efficacy, overcome drug resistance and select anticancer drug regimen as various chemotherapeutic agents exploit Bim as an executioner of cell death. Owing to its potent anti-tumorigenic activity many BH3 mimetics e.g. ABT-737, ABT-263, obatoclax, AT-101and A-1210477 have been developed and entered in clinical trials. It is more likely that in near future strategies commanding Bim expression and stability ultimately lead to Bim based therapeutic regimen for cancer treatment.
Collapse
Affiliation(s)
- Shatrunajay Shukla
- Herbal Research Laboratory, Food Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Post Box No. 80, Mahatma Gandhi Marg, Lucknow 226001, India
| | - Sugandh Saxena
- Herbal Research Laboratory, Food Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Post Box No. 80, Mahatma Gandhi Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research, CSIR-IITR, Lucknow campus, India
| | - Brijesh Kumar Singh
- Laboratory of Hormonal Regulation, Duke-NUS Graduate Medical School, No 8 College Road, 169857, Singapore
| | - Poonam Kakkar
- Herbal Research Laboratory, Food Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Post Box No. 80, Mahatma Gandhi Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research, CSIR-IITR, Lucknow campus, India.
| |
Collapse
|
22
|
Bakshi A, Chaudhary SC, Rana M, Elmets CA, Athar M. Basal cell carcinoma pathogenesis and therapy involving hedgehog signaling and beyond. Mol Carcinog 2017; 56:2543-2557. [PMID: 28574612 DOI: 10.1002/mc.22690] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/23/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023]
Abstract
Basal cell carcinoma (BCC) of the skin is driven by aberrant hedgehog signaling. Thus blocking this signaling pathway by small molecules such as vismodegib inhibits tumor growth. Primary cilium in the epidermal cells plays an integral role in the processing of hedgehog signaling-related proteins. Recent genomic studies point to the involvement of additional genetic mutations that might be associated with the development of BCCs, suggesting significance of other signaling pathways, such as WNT, NOTCH, mTOR, and Hippo, aside from hedgehog in the pathogenesis of this human neoplasm. Some of these pathways could be regulated by noncoding microRNA. Altered microRNA expression profile is recognized with the progression of these lesions. Stopping treatment with Smoothened (SMO) inhibitors often leads to tumor reoccurrence in the patients with basal cell nevus syndrome, who develop 10-100 of BCCs. In addition, the initial effectiveness of these SMO inhibitors is impaired due to the onset of mutations in the drug-binding domain of SMO. These data point to a need to develop strategies to overcome tumor recurrence and resistance and to enhance efficacy by developing novel single agent-based or multiple agents-based combinatorial approaches. Immunotherapy and photodynamic therapy could be additional successful approaches particularly if developed in combination with chemotherapy for inoperable and metastatic BCCs.
Collapse
Affiliation(s)
- Anshika Bakshi
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, Alabama.,Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey
| | - Sandeep C Chaudhary
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mehtab Rana
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Craig A Elmets
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mohammad Athar
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
23
|
Brumatti G, Lalaoui N, Wei AH, Silke J. 'Did He Who Made the Lamb Make Thee?' New Developments in Treating the 'Fearful Symmetry' of Acute Myeloid Leukemia. Trends Mol Med 2017; 23:264-281. [PMID: 28196625 DOI: 10.1016/j.molmed.2017.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/12/2017] [Accepted: 01/12/2017] [Indexed: 12/17/2022]
Abstract
Malignant cells must circumvent endogenous cell death pathways to survive and develop into cancers. Acquired cell death resistance also sets up malignant cells to survive anticancer therapies. Acute Myeloid Leukemia (AML) is an aggressive blood cancer characterized by high relapse rate and resistance to cytotoxic therapies. Recent collaborative profiling projects have led to a greater understanding of the 'fearful symmetry' of the genomic landscape of AML, and point to the development of novel potential therapies that can overcome factors linked to chemoresistance. We review here the most recent research in the genetics of AML and how these discoveries have led, or might lead, to therapies that specifically activate cell death pathways to substantially challenge this 'fearful' disease.
Collapse
Affiliation(s)
- Gabriela Brumatti
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Najoua Lalaoui
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Andrew H Wei
- Alfred Hospital and Monash University, Melbourne, Australia
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
24
|
Targeting BET proteins improves the therapeutic efficacy of BCL-2 inhibition in T-cell acute lymphoblastic leukemia. Leukemia 2017; 31:2037-2047. [PMID: 28074072 DOI: 10.1038/leu.2017.10] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 12/02/2016] [Accepted: 12/12/2016] [Indexed: 01/02/2023]
Abstract
Inhibition of anti-apoptotic BCL-2 (B-cell lymphoma 2) has recently emerged as a promising new therapeutic strategy for the treatment of a variety of human cancers, including leukemia. Here, we used T-cell acute lymphoblastic leukemia (T-ALL) as a model system to identify novel synergistic drug combinations with the BH3 mimetic venetoclax (ABT-199). In vitro drug screening in primary leukemia specimens that were derived from patients with high risk of relapse or relapse and cell lines revealed synergistic activity between venetoclax and the BET (bromodomain and extraterminal) bromodomain inhibitor JQ1. Notably, this drug synergism was confirmed in vivo using T-ALL cell line and patient-derived xenograft models. Moreover, the therapeutic benefit of this drug combination might, at least in part, be mediated by an acute induction of the pro-apoptotic factor BCL2L11 and concomitant reduction of BCL-2 upon BET bromodomain inhibition, ultimately resulting in an enhanced binding of BIM (encoded by BCL2L11) to BCL-2. Altogether, our work provides a rationale to develop a new type of targeted combination therapy for selected subgroups of high-risk leukemia patients.
Collapse
|
25
|
Xing Z, Yu L, Li X, Su X. Anticancer bioactive peptide-3 inhibits human gastric cancer growth by targeting miR-338-5p. Cell Biosci 2016; 6:53. [PMID: 27688872 PMCID: PMC5034486 DOI: 10.1186/s13578-016-0112-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/30/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Cancer incidence and mortality have been increasing in China, making cancer the leading cause of death since 2010 and a major public health concern in the country. Cancer stem cells have been studied in relation to the treatment of different malignancies, including gastric cancer. Anticancer bioactive peptide-3 (ACBP-3) can induce the apoptosis of gastric cancer stem cells (GCSCs) and reduce their tumorigenicity. In the present study, for the first time, we used a miRNA microarray and bioinformatics analysis to identify differentially expressed miRNAs in ACBP-3-treated GCSCs and GCSC-derived tumors in a xenograft model and functionally verified the identified miRNAs. miR-338-5p was selected based on its significant upregulation by ACBP-3 both in cultured GCSCs and in tumor tissues. RESULTS miR-338-5p was downregulated in GCSCs compared with normal gastric epithelial cells, and the ectopic restoration of miR-338-5p expression in GCSCs inhibited cell proliferation and induced apoptosis, which correlated with the upregulation of the pro-apoptotic Bcl-2 proteins BAK and BIM. We also found that ACBP-3-treated GCSCs could respond to lower effective doses of cisplatin (DDP) or 5-fluorouracil (5-FU), possibly because ACBP-3 induced the expression of miR-338-5p and the BAK and BIM proteins and promoted GCSC apoptosis. CONCLUSIONS Our data indicate that miR-338-5p is part of an important pathway for the inhibition of human gastric cancer stem cell proliferation by ACBP-3 combined with chemotherapeutics. ACBP-3 could suppress GCSC proliferation and lower the required effective dose of cisplatin or 5-fluorouracil. Therefore, this study provides not only further evidence for the remarkable anti-tumor effect of ACBP-3 but also a possible new approach for the development of GCSC-targeting therapies.
Collapse
Affiliation(s)
- Zhiwei Xing
- Department of Cell Biology, Capital Medical University, Beijing, China
| | - Lan Yu
- The Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia China
| | - Xian Li
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia China
| | - Xiulan Su
- Department of Cell Biology, Capital Medical University, Beijing, China
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia China
| |
Collapse
|
26
|
Klingbeil O, Lesche R, Gelato KA, Haendler B, Lejeune P. Inhibition of BET bromodomain-dependent XIAP and FLIP expression sensitizes KRAS-mutated NSCLC to pro-apoptotic agents. Cell Death Dis 2016; 7:e2365. [PMID: 27607580 PMCID: PMC5059870 DOI: 10.1038/cddis.2016.271] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/29/2016] [Accepted: 08/03/2016] [Indexed: 12/13/2022]
Abstract
Non-small cell lung cancer (NSCLC) has the highest incidence of cancer-related death worldwide and a high medical need for more effective therapies. Small-molecule inhibitors of the bromodomain and extra terminal domain (BET) family such as JQ1, I-BET762 and OTX-015 are active in a wide range of different cancer types, including lung cancer. Although their activity on oncogene expression such as c-Myc has been addressed in many studies, the effects of BET inhibition on the apoptotic pathway remain largely unknown. Here we evaluated the activity of BET bromodomain inhibitors on cell cycle distribution and on components of the apoptosis response. Using a panel of 12 KRAS-mutated NSCLC models, we found that cell lines responsive to BET inhibitors underwent apoptosis and reduced their S-phase population, concomitant with downregulation of c-Myc expression. Conversely, ectopic c-Myc overexpression rescued the anti-proliferative effect of JQ1. In the H1373 xenograft model, treatment with JQ1 significantly reduced tumor growth and downregulated the expression of c-Myc. The effects of BET inhibition on the expression of 370 genes involved in apoptosis were compared in sensitive and resistant cells and we found the expression of the two key apoptosis regulators FLIP and XIAP to be highly BET dependent. Consistent with this, combination treatment of JQ1 with the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or the pro-apoptotic chemotherapeutic agent cisplatin enhanced induction of apoptosis in both BET inhibitor sensitive and resistant cells. Further we showed that combination of JQ1 with cisplatin led to significantly improved anti-tumor efficacy in A549 tumor-bearing mice. Altogether, these results show that the identification of BET-dependent genes provides guidance for the choice of drug combinations in cancer treatment. They also demonstrate that BET inhibition primes NSCLC cells for induction of apoptosis and that a combination with pro-apoptotic compounds represents a valuable strategy to overcome treatment resistance.
Collapse
Affiliation(s)
- Olaf Klingbeil
- Drug Discovery, Bayer Pharma AG, Berlin, Germany.,Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ralf Lesche
- Drug Discovery, Bayer Pharma AG, Berlin, Germany
| | | | | | | |
Collapse
|