1
|
Peng X, Chinwe Oluchi-Amaka I, Kwak-Kim J, Yang X. A comprehensive review of the roles of T-cell immunity in preeclampsia. Front Immunol 2025; 16:1476123. [PMID: 39981257 PMCID: PMC11841438 DOI: 10.3389/fimmu.2025.1476123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/22/2025] [Indexed: 02/22/2025] Open
Abstract
Preeclampsia (PE) is an obstetrical disorder that occurs after the 20th week of gestation. It is recognized as one of the "Great Obstetrical Syndromes" and principally contributes to maternal morbidity and mortality. PE has been associated with a range of immune disorders, including a preponderance of T helper (Th) 1 over Th2 cells and imbalanced levels of Th17 and T regulatory cells (Tregs). During pregnancy, T cells safeguard the placenta against immune rejection and aid embryo implantation while involved in pregnancy complications, such as PE. Promoting alloantigen-specific Treg cells is a potential preventive and therapeutic strategy for PE. However, ensuring the safety of mothers and infants is of the utmost importance since the risk-benefit ratio of reproductive and obstetric conditions differs significantly from that of immune diseases that pose a life-threatening risk. In this review, we systematically summarize the roles of T-cell immunity in the peripheral blood, reproductive tissues, and at the maternal-fetal interface of PE patients. Furthermore, the recent therapeutic approaches centered on targeting T cell immunity in PE are critically appraised.
Collapse
Affiliation(s)
- Xu Peng
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, China
| | | | - Joanne Kwak-Kim
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Clinical Immunology Laboratory, Foundational Sciences and Humanities, Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Xiuhua Yang
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Qin Y, Qian Y, Liu S, Chen R. A double-edged sword role of IFN-γ-producing iNKT cells in sepsis: Persistent suppression of Treg cell formation in an Nr4a1-dependent manner. iScience 2024; 27:111462. [PMID: 39720538 PMCID: PMC11667017 DOI: 10.1016/j.isci.2024.111462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/17/2024] [Accepted: 11/20/2024] [Indexed: 12/26/2024] Open
Abstract
Sepsis, a leading cause of mortality in intensive care units worldwide, lacks effective treatments for advanced-stage sepsis. Therefore, understanding the underlying mechanisms of this disease is crucial. This study reveals that invariant natural killer T (iNKT) cells have an opposing role in the progression of sepsis by suppressing regulatory T (Treg) cell differentiation and function. The activation of iNKT cells by α-Galcer enhances interferon (IFN)-γ production. Blocking antibodies or transferring IFN-γ-deficient iNKT cells demonstrates that iNKT cells inhibit Treg differentiation through IFN-γ production. Additionally, iNKT cell-mediated Treg inhibition prevents secondary infection caused by Listeria monocytogenes during the post-septic phase. The transcriptomic analysis of Treg cells further reveals that the suppressive function of Tregs is impaired by iNKT cells. Finally, we demonstrate that iNKT cells inhibit Treg differentiation in an Nr4a1-dependent manner. Our data uncover the dual function of iNKT cells in sepsis progression and provide a potential treatment target for this adverse long-term outcome induced by sepsis.
Collapse
Affiliation(s)
- Yingyu Qin
- Department of Pathogenic Biology and Immunology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yilin Qian
- Department of Pathogenic Biology and Immunology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Shengqiu Liu
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Rong Chen
- The Affiliated Zhongda Hospital, Clinical Medical College, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Peng D, Zhong W, Wang Y, Fu Y, Shang W. The Causal Relationship Between Immune Cells and Infertility: A Mendelian Randomisation Study. Am J Reprod Immunol 2024; 92:e13932. [PMID: 39320012 DOI: 10.1111/aji.13932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/20/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024] Open
Abstract
OBJECTIVE Infertility has emerged as a significant global public health concern, with a multitude of complex underlying causes. Epidemiological evidence indicates that immunological factors are significant contributors to the aetiology of infertility. However, previous studies on the relationship between immune inflammation and infertility have yielded inconclusive results. METHODS Mendelian randomisation (MR) is an emerging statistical method that employs exposure-related genetic variation as an instrumental variable (IV) to infer causal relationships between immune cells and infertility by modelling the principle of random assignment in Mendelian genetics. In this study, MR was employed to assess the causal relationship between 731 immune cell signatures and infertility. The data utilized in this study were obtained from publicly available genome-wide association studies (GWAS) and validated IVs, which were employed to fulfil the essential assumptions of MR analysis. RESULTS The Mendelian randomisation analysis revealed a total of 27 statistically significant immune cell phenotypes out of 731. The risk factor with the largest odds ratio (OR) was CD28- CD25++ CD8+ %T cell [OR, 1.21; 95% confidence interval (CI), 1.04-1.42], while the protective factor with the largest OR was activated and resting Treg AC (OR, 0.89; 95% CI, 0.82-0.97). CONCLUSION The present study has demonstrated a correlation between certain characteristics of immune cells and female infertility. These results provide clues for further research into the immune mechanisms of infertility and may inform the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Dingchuan Peng
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Obstetrics and Gynecology, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Wei Zhong
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Obstetrics and Gynecology, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Yiran Wang
- Department of Obstetrics and Gynecology, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Yiyao Fu
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China
| | - Wei Shang
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Obstetrics and Gynecology, The Sixth Medical Center of PLA General Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
Li QH, Zhao QY, Yang WJ, Jiang AF, Ren CE, Meng YH. Beyond Immune Balance: The Pivotal Role of Decidual Regulatory T Cells in Unexplained Recurrent Spontaneous Abortion. J Inflamm Res 2024; 17:2697-2710. [PMID: 38707955 PMCID: PMC11070170 DOI: 10.2147/jir.s459263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
Recurrent spontaneous abortion (RSA) is defined as two or more consecutive pregnancy failures, which brings tremendous stress to women of childbearing age and seriously affects family well-being. However, the reason in about 50% of cases remains unknown and is defined as unexplained recurrent spontaneous abortion (URSA). The immunological perspective in URSA has attracted widespread attention in recent years. The embryo is regarded as a semi-allogeneic graft to the mother. A successful pregnancy requires transition to an immune environment conducive to embryo survival at the maternal-fetal interface. As an important member of regulatory immunity, regulatory T (Treg) cells play a key role in regulating immune tolerance at the maternal-fetal interface. This review will focus on the phenotypic plasticity and lineage stability of Treg cells to illustrate its relationship with URSA.
Collapse
Affiliation(s)
- Qing-Hui Li
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261021, People’s Republic of China
- Center of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Qiu-Yan Zhao
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261021, People’s Republic of China
| | - Wei-Jing Yang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261021, People’s Republic of China
| | - Ai-Fang Jiang
- Center of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Chun-E Ren
- Center of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Yu-Han Meng
- Center of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| |
Collapse
|
5
|
Ou Q, Power R, Griffin MD. Revisiting regulatory T cells as modulators of innate immune response and inflammatory diseases. Front Immunol 2023; 14:1287465. [PMID: 37928540 PMCID: PMC10623442 DOI: 10.3389/fimmu.2023.1287465] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Regulatory T cells (Treg) are known to be critical for the maintenance of immune homeostasis by suppressing the activation of auto- or allo-reactive effector T cells through a diverse repertoire of molecular mechanisms. Accordingly, therapeutic strategies aimed at enhancing Treg numbers or potency in the setting of autoimmunity and allogeneic transplants have been energetically pursued and are beginning to yield some encouraging outcomes in early phase clinical trials. Less well recognized from a translational perspective, however, has been the mounting body of evidence that Treg directly modulate most aspects of innate immune response under a range of different acute and chronic disease conditions. Recognizing this aspect of Treg immune modulatory function provides a bridge for the application of Treg-based therapies to common medical conditions in which organ and tissue damage is mediated primarily by inflammation involving myeloid cells (mononuclear phagocytes, granulocytes) and innate lymphocytes (NK cells, NKT cells, γδ T cells and ILCs). In this review, we comprehensively summarize pre-clinical and human research that has revealed diverse modulatory effects of Treg and specific Treg subpopulations on the range of innate immune cell types. In each case, we emphasize the key mechanistic insights and the evidence that Treg interactions with innate immune effectors can have significant impacts on disease severity or treatment. Finally, we discuss the opportunities and challenges that exist for the application of Treg-based therapeutic interventions to three globally impactful, inflammatory conditions: type 2 diabetes and its end-organ complications, ischemia reperfusion injury and atherosclerosis.
Collapse
Affiliation(s)
- Qifeng Ou
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Rachael Power
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Matthew D. Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- Nephrology Department, Galway University Hospitals, Saolta University Healthcare Group, Galway, Ireland
| |
Collapse
|
6
|
Rezayat F, Esmaeil N, Rezaei A, Sherkat R. Contradictory Effect of Lymphocyte Therapy and Prednisolone Therapy on CD3 +CD8 +CD56 + Natural Killer T Population in Women with Recurrent Spontaneous Abortion. J Hum Reprod Sci 2023; 16:246-256. [PMID: 38045499 PMCID: PMC10688285 DOI: 10.4103/jhrs.jhrs_8_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 12/05/2023] Open
Abstract
Background Natural killer T (NKT) cells are influential immune cells in pregnancy failures, including recurrent spontaneous abortion (RSA). Different approaches are used for these disorders due to their effects on maternal immunomodulation. Aims In the present study, we compared the effects of two typical immunotherapies (lymphocyte immunotherapy [LIT] and low-dose prednisolone) on CD3+CD56+CD16+ and CD3+CD56+CD8+ cells as two distinct subsets of NKT cells in Women with RSA. Settings and Design This study was a comparative cohort study conducted from 2021 to 2022. One hundred and five women with RSA were distributed into three treatment groups randomly. Materials and Methods Fifty women in the group of low-dose prednisolone therapy, fifty women in the LIT group and five women without any treatment as the control group were included in the study. NK and NKT cell subsets were assessed using flow cytometry. Furthermore, the concentration of interferon-gamma (IFN-γ), transforming growth factor-beta (TGF-β) and interleukin-10 (IL-10) was measured quantitatively using the enzyme-linked immunosorbent assay technique. Statistical Analysis Used Normality and comparisons between study groups were performed by non-parametric unpaired Mann-Whitney, Kruskal-Wallis rank sum test, and one-way ANOVA. Results The percentage of CD56dim NK cells was increased after prednisolone therapy, while this population significantly decreased in the LIT group. In contrast to the LIT group, the administration of prednisolone increased CD3+CD8+CD56+ NKT cells (P < 0.0001), which is helpful for pregnancy. The effect of the investigated treatment approaches on the population of peripheral CD3+CD56+CD16+ NKT cells of women with RSA was not adequately significant. The same situation was also observed regarding the serum level of IFN-γ. However, a significant decrease in serum levels of IL-10 and TGF-β was observed after prednisolone therapy. Conclusion The lower capability of LIT in changing the population of NKT cells compared to prednisolone therapy may be due to its mechanism of action, which is related to the production of blocking antibodies. These treatment approaches had different effects on NKT cells, indicating that NKT cell population and function can be affected using LIT and prednisolone therapy distinctly. In addition, prednisolone therapy and LIT in women with normal serum levels of IFN-γ have no harmful effects in changing the production of this critical cytokine.
Collapse
Affiliation(s)
- Fatemeh Rezayat
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafiseh Esmaeil
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Rezaei
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Sherkat
- Immunodeficiency Diseases Research Center, Isfahan, Iran
| |
Collapse
|
7
|
Zhang Y, Liu Z, Sun H. Fetal-maternal interactions during pregnancy: a 'three-in-one' perspective. Front Immunol 2023; 14:1198430. [PMID: 37350956 PMCID: PMC10282753 DOI: 10.3389/fimmu.2023.1198430] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023] Open
Abstract
A successful human pregnancy requires the maternal immune system to recognize and tolerate the semi-allogeneic fetus, allowing for appropriate trophoblasts invasion and protecting the fetus from invading pathogens. Therefore, maternal immunity is critical for the establishment and maintenance of pregnancy, especially at the maternal-fetal interface. Anatomically, the maternal-fetal interface has both maternally- and fetally- derived cells, including fetal originated trophoblasts and maternal derived immune cells and stromal cells. Besides, a commensal microbiota in the uterus was supposed to aid the unique immunity in pregnancy. The appropriate crosstalk between fetal derived and maternal originated cells and uterine microbiota are critical for normal pregnancy. Dysfunctional maternal-fetal interactions might be associated with the development of pregnancy complications. This review elaborates the latest knowledge on the interactions between trophoblasts and decidual immune cells, highlighting their critical roles in maternal-fetal tolerance and pregnancy development. We also characterize the role of commensal bacteria in promoting pregnancy progression. Furthermore, this review may provide new thought on future basic research and the development of clinical applications for pregnancy complications.
Collapse
Affiliation(s)
- Yonghong Zhang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhaozhao Liu
- Reproduction Center, The Third Affiliated Hospital of ZhengZhou University, ZhengZhou, China
| | - Haixiang Sun
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
8
|
Genest G, Banjar S, Almasri W, Beauchamp C, Benoit J, Buckett W, Dzineku F, Gold P, Dahan MH, Jamal W, Jacques Kadoch I, Kadour-Peero E, Lapensée L, Miron P, Shaulov T, Sylvestre C, Tulandi T, Mazer BD, Laskin CA, Mahutte N. Immunomodulation for unexplained recurrent implantation failure: where are we now? Reproduction 2023; 165:R39-R60. [PMID: 36322478 DOI: 10.1530/rep-22-0150] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 11/02/2022] [Indexed: 11/05/2022]
Abstract
In brief Immune dysfunction may contribute to or cause recurrent implantation failure. This article summarizes normal and pathologic immune responses at implantation and critically appraises currently used immunomodulatory therapies. Abstract Recurrent implantation failure (RIF) may be defined as the absence of pregnancy despite the transfer of ≥3 good-quality blastocysts and is unexplained in up to 50% of cases. There are currently no effective treatments for patients with unexplained RIF. Since the maternal immune system is intricately involved in mediating endometrial receptivity and embryo implantation, both insufficient and excessive endometrial inflammatory responses during the window of implantation are proposed to lead to implantation failure. Recent strategies to improve conception rates in RIF patients have focused on modulating maternal immune responses at implantation, through either promoting or suppressing inflammation. Unfortunately, there are no validated, readily available diagnostic tests to confirm immune-mediated RIF. As such, immune therapies are often started empirically without robust evidence as to their efficacy. Like other chronic diseases, patient selection for immunomodulatory therapy is crucial, and personalized medicine for RIF patients is emerging. As the literature on the subject is heterogenous and rapidly evolving, we aim to summarize the potential efficacy, mechanisms of actions and side effects of select therapies for the practicing clinician.
Collapse
Affiliation(s)
- Geneviève Genest
- Department of Allergy and Immunology, McGill University, Montreal Quebec, Canada
| | - Shorooq Banjar
- Department of Allergy and Immunology, McGill University, Montreal Quebec, Canada
| | - Walaa Almasri
- Department of Allergy and Immunology, McGill University, Montreal Quebec, Canada
| | - Coralie Beauchamp
- Department of Gynaecology, University of Montreal, Montreal, Quebec, Canada
| | - Joanne Benoit
- Department of Gynaecology, University of Montreal, Montreal, Quebec, Canada
| | - William Buckett
- McGill University Health Centre Reproductive Centre, Montreal, Quebec, Canada
| | | | - Phil Gold
- Department of Allergy and Immunology, McGill University, Montreal Quebec, Canada
| | - Michael H Dahan
- Department of Obstetrics and Gynecology, McGill University, McGill University Health Centre, Montreal, Quebec, Canada
| | - Wael Jamal
- Department of Gynaecology, University of Montreal, Montreal, Quebec, Canada
| | | | - Einav Kadour-Peero
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, McGill University, Montréal, Quebec, Canada
| | - Louise Lapensée
- Department of Gynaecology, University of Montreal, Montreal, Quebec, Canada
| | - Pierre Miron
- Fertilys Reproductive Center, Laval, Quebec, Canada
| | - Talya Shaulov
- Department of Obstetrics and Gynecology, McGill University, McGill University Health Centre, Montreal, Quebec, Canada
| | - Camille Sylvestre
- Division of Reproductive Endocrinology and Infertility, University of Montreal, Montreal, Quebec, Canada
| | - Togas Tulandi
- Department of Obstetrics and Gynecology, McGill University, McGill University Health Centre, Montreal, Quebec, Canada
| | - Bruce D Mazer
- Department of Pediatrics, McGill University, Division of Allergy Immunology and Clinical Dermatology, Montreal Children's Hospital, McGill University, Montréal, Quebec, Canada
| | - Carl A Laskin
- Deptartments of Medicine and Obstetrics & Gynecology University of Toronto, Toronto, Ontario, Canada
| | - Neal Mahutte
- The Montreal Fertility Centre, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Robertson SA, Moldenhauer LM, Green ES, Care AS, Hull ML. Immune determinants of endometrial receptivity: a biological perspective. Fertil Steril 2022; 117:1107-1120. [PMID: 35618356 DOI: 10.1016/j.fertnstert.2022.04.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/04/2022]
Abstract
Immune cells are essential for endometrial receptivity to embryo implantation and early placental development. They exert tissue-remodeling and immune regulatory roles-acting to promote epithelial attachment competence, regulate the differentiation of decidual cells, remodel the uterine vasculature, control and resolve inflammatory activation, and suppress destructive immunity to paternally inherited alloantigens. From a biological perspective, the endometrial immune response exerts a form of "quality control"-it promotes implantation success when conditions are favorable but constrains receptivity when physiological circumstances are not ideal. Women with recurrent implantation failure and recurrent miscarriage may exhibit altered numbers or disturbed function of certain uterine immune cell populations-most notably uterine natural killer cells and regulatory T cells. Preclinical and animal studies indicate that deficiencies or aberrant activation states in these cells can be causal in the pathophysiological mechanisms of infertility. Immune cells are, therefore, targets for diagnostic evaluation and therapeutic intervention. However, current diagnostic tests are overly simplistic and have limited clinical utility. To be more informative, they need to account for the full complexity and reflect the range of perturbations that can occur in uterine immune cell phenotypes and networks. Moreover, safe and effective interventions to modulate these cells are in their infancy, and personalized approaches matched to specific diagnostic criteria will be needed. Here we summarize current biological understanding and identify knowledge gaps to be resolved before the promise of therapies to target the uterine immune response can be fully realized.
Collapse
Affiliation(s)
- Sarah A Robertson
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Lachlan M Moldenhauer
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ella S Green
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Alison S Care
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - M Louise Hull
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
10
|
Rees A, Richards O, Allen-Kormylo A, Jones N, Thornton CA. Maternal body mass index is associated with an altered immunological profile at 28 weeks of gestation. Clin Exp Immunol 2022; 208:114-128. [PMID: 35304898 PMCID: PMC9113395 DOI: 10.1093/cei/uxac023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/31/2022] [Accepted: 03/18/2022] [Indexed: 01/12/2023] Open
Abstract
Healthy pregnancy is accompanied by various immunological and metabolic adaptations. Maternal obesity has been implicated in adverse pregnancy outcomes such as miscarriage, preeclampsia, and gestational diabetes mellitus (GDM), while posing a risk to the neonate. There is a lack of knowledge surrounding obesity and the maternal immune system. The objective of this study was to consider if immunological changes in pregnancy are influenced by maternal obesity. Peripheral blood was collected from fasted GDM-negative pregnant women at 26-28 weeks of gestation. Analysis was done using immunoassay, flow cytometry, bioenergetics analysis, and cell culture. The plasma profile was significantly altered with increasing BMI, specifically leptin (r = 0.7635), MCP-1 (r = 0.3024), and IL-6 (r = 0.4985). Circulating leukocyte populations were also affected with changes in the relative abundance of intermediate monocytes (r = -0.2394), CD4:CD8 T-cell ratios (r = 0.2789), and NKT cells (r = -0.2842). Monocytes analysed in more detail revealed elevated CCR2 expression and decreased mitochondrial content with increased BMI. However, LPS-stimulated cytokine production and bioenergetic profile of PBMCs were not affected by maternal BMI. The Th profile skews towards Th17 with increasing BMI; Th2 (r = -0.3202) and Th9 (r = -0.3205) cells were diminished in maternal obesity, and CytoStim™-stimulation exacerbates IL-6 (r = 0.4166), IL-17A (r = 0.2753), IL-17F (r = 0.2973), and IL-22 (r = 0.2257) production with BMI, while decreasing IL-4 (r = -0.2806). Maternal obesity during pregnancy creates an inflammatory microenvironment. Successful pregnancy requires Th2-biased responses yet increasing maternal BMI favours a Th17 response that could be detrimental to pregnancy. Further research should investigate key populations of cells identified here to further understand the immunological challenges that beset pregnant women with obesity.
Collapse
Affiliation(s)
- April Rees
- Institute of Life Science, Swansea University Medical School, Swansea, UK
| | - Oliver Richards
- Institute of Life Science, Swansea University Medical School, Swansea, UK
| | - Anastasia Allen-Kormylo
- Maternity and Child Health, Singleton Hospital, Swansea Bay University Health Board, Swansea, UK
| | - Nicholas Jones
- Institute of Life Science, Swansea University Medical School, Swansea, UK
| | | |
Collapse
|
11
|
Muralidhara P, Sood V, Vinayak Ashok V, Bansal K. Pregnancy and Tumour: The Parallels and Differences in Regulatory T Cells. Front Immunol 2022; 13:866937. [PMID: 35493450 PMCID: PMC9043683 DOI: 10.3389/fimmu.2022.866937] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/15/2022] [Indexed: 11/21/2022] Open
Abstract
Immunological tolerance plays a critical role during pregnancy as semi-allogeneic fetus must be protected from immune responses during the gestational period. Regulatory T cells (Tregs), a subpopulation of CD4+ T cells that express transcription factor Foxp3, are central to the maintenance of immunological tolerance and prevention of autoimmunity. Tregs are also known to accumulate at placenta in uterus during pregnancy, and they confer immunological tolerance at maternal-fetal interface by controlling the immune responses against alloantigens. Thus, uterine Tregs help in maintaining an environment conducive for survival of the fetus during gestation, and low frequency or dysfunction of Tregs is associated with recurrent spontaneous abortions and other pregnancy-related complications such as preeclampsia. Interestingly, there are many parallels in the development of placenta and solid tumours, and the tumour microenvironment is considered to be somewhat similar to that at maternal-fetal interface. Moreover, Tregs play a largely similar role in tumour immunity as they do at placenta- they create a tolerogenic system and suppress the immune responses against the cells within tumour and at maternal-fetal interface. In this review, we discuss the role of Tregs in supporting the proper growth of the embryo during pregnancy. We also highlight the similarities and differences between Tregs at maternal-fetal interface and tumour Tregs, in an attempt to draw a comparison between their roles in these two physiologic and pathologic states.
Collapse
Affiliation(s)
| | | | | | - Kushagra Bansal
- Molecular Biology and Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, India
| |
Collapse
|
12
|
Miko E, Barakonyi A, Meggyes M, Szereday L. The Role of Type I and Type II NKT Cells in Materno-Fetal Immunity. Biomedicines 2021; 9:1901. [PMID: 34944717 PMCID: PMC8698984 DOI: 10.3390/biomedicines9121901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 12/25/2022] Open
Abstract
NKT cells represent a small but significant immune cell population as being a part of and bridging innate and adaptive immunity. Their ability to exert strong immune responses via cytotoxicity and cytokine secretion makes them significant immune effectors. Since pregnancy requires unconventional maternal immunity with a tolerogenic phenotype, investigation of the possible role of NKT cells in materno-fetal immune tolerance mechanisms is of particular importance. This review aims to summarize and organize the findings of previous studies in this field. Data and information about NKT cells from mice and humans will be presented, focusing on NKT cells characteristics during normal pregnancy in the periphery and at the materno-fetal interface and their possible involvement in female reproductive failure and pregnancy complications with an immunological background.
Collapse
Affiliation(s)
- Eva Miko
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 12 Szigeti Street, 7624 Pécs, Hungary; (A.B.); (M.M.); (L.S.)
- Janos Szentagothai Research Centre, 20 Ifjusag Street, 7624 Pécs, Hungary
- National Laboratory for Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Aliz Barakonyi
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 12 Szigeti Street, 7624 Pécs, Hungary; (A.B.); (M.M.); (L.S.)
- Janos Szentagothai Research Centre, 20 Ifjusag Street, 7624 Pécs, Hungary
- National Laboratory for Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Matyas Meggyes
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 12 Szigeti Street, 7624 Pécs, Hungary; (A.B.); (M.M.); (L.S.)
- Janos Szentagothai Research Centre, 20 Ifjusag Street, 7624 Pécs, Hungary
| | - Laszlo Szereday
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 12 Szigeti Street, 7624 Pécs, Hungary; (A.B.); (M.M.); (L.S.)
- Janos Szentagothai Research Centre, 20 Ifjusag Street, 7624 Pécs, Hungary
| |
Collapse
|
13
|
Shao Q, Gu J, Zhou J, Wang Q, Li X, Deng Z, Lu L. Tissue Tregs and Maintenance of Tissue Homeostasis. Front Cell Dev Biol 2021; 9:717903. [PMID: 34490267 PMCID: PMC8418123 DOI: 10.3389/fcell.2021.717903] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/28/2021] [Indexed: 12/21/2022] Open
Abstract
Regulatory T cells (Tregs) specifically expressing Forkhead box P3 (Foxp3) play roles in suppressing the immune response and maintaining immune homeostasis. After maturation in the thymus, Tregs leave the thymus and migrate to lymphoid tissues or non-lymphoid tissues. Increasing evidence indicates that Tregs with unique characteristics also have significant effects on non-lymphoid peripheral tissues. Tissue-resident Tregs, also called tissue Tregs, do not recirculate in the blood or lymphatics and attain a unique phenotype distinct from common Tregs in circulation. This review first summarizes the phenotype, function, and cytokine expression of these Tregs in visceral adipose tissue, skin, muscle, and other tissues. Then, how Tregs are generated, home, and are attracted to and remain resident in the tissue are discussed. Finally, how an increased understanding of these tissue Tregs might guide clinical treatment is discussed.
Collapse
Affiliation(s)
- Qing Shao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jian Gu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jinren Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Qi Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Xiangyu Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zhenhua Deng
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Ling Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Gu H, Li L, Du M, Xu H, Gao M, Liu X, Wei X, Zhong X. Key Gene and Functional Pathways Identified in Unexplained Recurrent Spontaneous Abortion Using Targeted RNA Sequencing and Clinical Analysis. Front Immunol 2021; 12:717832. [PMID: 34421922 PMCID: PMC8375436 DOI: 10.3389/fimmu.2021.717832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/15/2021] [Indexed: 01/13/2023] Open
Abstract
Identifying the mechanisms underlying unexplained recurrent spontaneous abortion (URSA) can help develop effective treatments. This study provides novel insights into the biological characteristics and related pathways of differentially expressed genes (DEGs) in URSA. Nineteen patients with URSA and three healthy fertile women with regular menstruation (control group) were recruited. RNA was extracted from the two groups to determine the differential expression of immunoregulatory gene sequences. Gene ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analyses were used to identify the biological functions and pathways of the identified DEGs. A protein-protein interaction (PPI) network was constructed using the STRING database. Furthermore, qRT-PCR and ELISA were performed to validate the differential expression of the hub genes. We also explored the regulatory mechanism of Th1/Th2 imbalance. A total of 99 DEGs were identified, comprising 94 upregulated and five downregulated genes. Through GO analysis, nine immune cell function-related clusters were selected, and genes with significant differential expression were primarily enriched in eight immune regulatory functions related to the KEGG signalling pathway. Subsequently, five hub genes (TLR2, CXCL8, IFNG, IL2RA, and ITGAX) were identified using Cytoscape software; qRT-PCR confirmed the differential expression among the hub genes, whereas ELISA revealed a significant difference in extracellular IFN-γ and IL-8 levels. The levels of Th1 (IFN-γ) and the Th1/Th2 ratio were higher in the peripheral blood of URSA patients than in control group patients. These findings suggest that the occurrence of URSA may be associated with the abnormal expression of some specific immunoregulatory genes involved in T-cell activation and differentiation. Among the identified DEGs, IFNG may play a key role in regulating maternal immune response. Although further validation is required, our data provide an important theoretical basis for elucidating the pathogenesis of recurrent spontaneous abortion.
Collapse
Affiliation(s)
- Heng Gu
- Key Laboratory of Male Reproduction and Genetics of National Health Council, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - Longyu Li
- Dongguan Institute of Reproduction and Genetics, Dongguan Maternal and Children Health Hospital, Dongguan, China
| | - Mengxuan Du
- Key Laboratory of Male Reproduction and Genetics of National Health Council, Family Planning Research Institute of Guangdong Province, Guangzhou, China.,Department of Public Health and Preventive Medicine, Jinan University, Guangzhou, China
| | - Hang Xu
- Key Laboratory of Male Reproduction and Genetics of National Health Council, Family Planning Research Institute of Guangdong Province, Guangzhou, China.,Department of Public Health and Preventive Medicine, Jinan University, Guangzhou, China
| | - Mengge Gao
- Key Laboratory of Male Reproduction and Genetics of National Health Council, Family Planning Research Institute of Guangdong Province, Guangzhou, China.,Department of Public Health and Preventive Medicine, Jinan University, Guangzhou, China
| | - Xiaohua Liu
- Key Laboratory of Male Reproduction and Genetics of National Health Council, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - Xiangcai Wei
- Department of Public Health and Preventive Medicine, Jinan University, Guangzhou, China.,Department of Reproductive Immunity, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xingming Zhong
- Key Laboratory of Male Reproduction and Genetics of National Health Council, Family Planning Research Institute of Guangdong Province, Guangzhou, China.,Department of Public Health and Preventive Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
15
|
Li D, Zheng L, Zhao D, Xu Y, Wang Y. The Role of Immune Cells in Recurrent Spontaneous Abortion. Reprod Sci 2021; 28:3303-3315. [PMID: 34101149 PMCID: PMC8186021 DOI: 10.1007/s43032-021-00599-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
Recurrent spontaneous abortion affects approximately 1–2% of women of childbearing, and describes a condition in which women suffer from three or more continuous spontaneous miscarriages. However, the origin of recurrent spontaneous abortion (RSA) remains unknown, preventing effective treatment and placing stress upon patients. It has been acknowledged that successful pregnancy necessitates balanced immune responses. Therefore, immunological aberrancy may be considered a root cause of poor pregnancy outcomes. Considerable published studies have investigated the relationship between various immune cells and RSA. Here, we review current knowledge on this area, and discuss the five main categories of immune cells involved in RSA; these include innate lymphocytes (ILC), macrophages, decidual dendritic cells (DCs), and T cells. Furthermore, we sought to summarize the impact of the multiple interactions of various immune cells on the emergence of RSA. A good understanding of pregnancy-induced immunological alterations could reveal new therapeutic strategies for favorable pregnancy outcomes.
Collapse
Affiliation(s)
- Dan Li
- Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Lianwen Zheng
- Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, China
| | | | - Ying Xu
- Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Yeling Wang
- Departments of Cardiovascular Medicine, First Hospital, Jilin University, Changchun, 130000, China.
| |
Collapse
|
16
|
Liao AH, Liu H. The epigenetic regulation of the immune system during pregnancy. REPRODUCTIVE IMMUNOLOGY 2021:365-385. [DOI: 10.1016/b978-0-12-818508-7.00005-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Eikmans M, van der Zwan A, Claas FHJ, van der Hoorn ML, Heidt S. Got your mother in a whirl: The role of maternal T cells and myeloid cells in pregnancy. HLA 2020; 96:561-579. [PMID: 32841539 DOI: 10.1111/tan.14055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/09/2020] [Accepted: 07/29/2020] [Indexed: 12/22/2022]
Abstract
Appropriate development of the placenta is required for healthy pregnancy to occur. After implantation of the fertilized blastocyst, fetal trophoblasts invade the endometrium and myometrium of the mother's uterus to establish placentation. In this process, fetal trophoblasts encounter maternal immune cells. In this review, we focus on the role of maternal T cells and myeloid cells (macrophages, dendritic cells) in pregnancy and their interaction with trophoblasts. To retain immunologic tolerization, trophoblasts evade immune recognition by T cells and produce factors that modulate their phenotype and function. On top of that, the local environment at the maternal-fetal interface favors expansion of regulatory T cells. Macrophages and dendritic cells are essential in maintaining a healthy pregnancy. They produce soluble factors and act as antigen-presenting cells, thereby interacting with T cells. Herein, M2 macrophages, immature dendritic cells, CD4+ Th2 cells, and regulatory T cells represent an axis that maintains a local immune tolerant environment. We consider outstanding issues concerning these cell types and their pathways, which need to be addressed in future investigations. Data from recent single-cell sequencing experiments of the placental bed, to study heterogeneity of maternal immune cells and to predict cell-cell interactions, are discussed. Novel ways for long-term culturing of primary trophoblasts allow for cell-cell interaction studies in a functional way. Future directions should include study of the functionality of currently known and newly identified decidual immune cell subsets in healthy and complicated pregnancies, and their interaction with and modulation by trophoblast cells.
Collapse
Affiliation(s)
- Michael Eikmans
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anita van der Zwan
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frans H J Claas
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
18
|
Kato M, Negishi Y, Shima Y, Kuwabara Y, Morita R, Takeshita T. Inappropriate activation of invariant natural killer T cells and antigen-presenting cells with the elevation of HMGB1 in preterm births without acute chorioamnionitis. Am J Reprod Immunol 2020; 85:e13330. [PMID: 32852122 DOI: 10.1111/aji.13330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/18/2020] [Indexed: 11/28/2022] Open
Abstract
PROBLEM Acute chorioamnionitis (aCAM) associated with microbial infection is a primary cause of preterm birth (PB). However, recent studies have demonstrated that innate immunity and sterile inflammation are causes of PB in the absence of aCAM. Therefore, we analyzed immune cells in the decidua of early to moderate PB without aCAM. METHOD OF STUDY Deciduas were obtained from patients with PB at a gestational age of 24+0 to 33+6 weeks without aCAM in pathological diagnosis. The patients were divided into two groups as follows: patients with labor and/or rupture of membrane (ROM) (no aCAM with labor and/or ROM: nCAM-w-LR), and patients without labor and/or ROM (no aCAM without labor and/or ROM: nCAM-w/o-LR). The immune cells and high mobility group box 1 (HMGB1) levels in the decidua were analyzed using flow cytometry. Co-culture of CD56+ cells with dendritic cells (DCs) and macrophages obtained from the decidua was also performed in the presence of HMGB1. RESULTS The nCAM-w-LR group demonstrated an accumulation of iNKT cells, and increased expression of HMGB1, TLR4, receptors for advanced glycation end products, and CD1d on DCs and macrophages. HMGB1 facilitated the proliferation of iNKT cells co-cultured with DCs and macrophages, which was found to be inhibited by heparin. CONCLUSIONS Inappropriate activation of innate immune cells and increased HMGB1 expression may represent parturition signs in human pregnancy. Therefore, control of these cells and HMGB1 antigenicity may be represent a potential therapeutic target for the prevention of PB.
Collapse
Affiliation(s)
- Masahiko Kato
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan.,Department of Obstetrics and Gynecology, Nippon Medical School Musashikosugi Hospital, Kanagawa, Japan
| | - Yasuyuki Negishi
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan.,Department of Microbiology and immunology, Nippon Medical School, Tokyo, Japan
| | - Yoshio Shima
- Department of Pediatrics, Nippon Medical School Musashikosugi Hospital, Kanagawa, Japan
| | - Yoshimitsu Kuwabara
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan
| | - Rimpei Morita
- Department of Microbiology and immunology, Nippon Medical School, Tokyo, Japan
| | - Toshiyuki Takeshita
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
19
|
Jafarpour R, Pashangzadeh S, Mehdizadeh S, Bayatipoor H, Shojaei Z, Motallebnezhad M. Functional significance of lymphocytes in pregnancy and lymphocyte immunotherapy in infertility: A comprehensive review and update. Int Immunopharmacol 2020; 87:106776. [PMID: 32682255 DOI: 10.1016/j.intimp.2020.106776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
During pregnancy, the fetal-maternal interface underlies several dynamic alterations to permit the fetus to be cultivated and developed in the uterus, in spite of being identifies by the maternal immune system. A large variety of decidual leukocyte populations, including natural killer cells, NKT cells, innate lymphoid cells, dendritic cells, B cells, T cells, subpopulations of helper T cells play a vital role in controlling the trophoblast invasion, angiogenesis as well as vascular remodeling. In contrast, several regulatory immunosuppressive mechanisms, including regulatory T cells, regulatory B cells, several cytokines and mediators are involved in maintain the homeostasis of immune system in the fetal-maternal interface. Nonetheless, aberrant alterations in the balance of immune inflammatory or immunosuppressive arms have been associated with various pregnancy losses and infertilities. As a result, numerous strategies have been developed to revers dysregulated balance of immune players to increase the chance of successful pregnancy. Lymphocyte immunotherapy has been developed through utilization of peripheral white blood cells of the husband or others and administered into the mother to confer an immune tolerance for embryo's antigens. However, the results have not always been promising, implying to further investigations to improve the approach. This review attempts to clarify the involvement of lymphocytes in contributing to the pregnancy outcome and the potential of lymphocyte immunotherapy in treatment of infertilities with dysregulated immune system basis.
Collapse
Affiliation(s)
- Roghayeh Jafarpour
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Salar Pashangzadeh
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saber Mehdizadeh
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hashem Bayatipoor
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Shojaei
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Motallebnezhad
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran; Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
St-Germain LE, Castellana B, Baltayeva J, Beristain AG. Maternal Obesity and the Uterine Immune Cell Landscape: The Shaping Role of Inflammation. Int J Mol Sci 2020; 21:E3776. [PMID: 32471078 PMCID: PMC7312391 DOI: 10.3390/ijms21113776] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammation is often equated to the physiological response to injury or infection. Inflammatory responses defined by cytokine storms control cellular mechanisms that can either resolve quickly (i.e., acute inflammation) or remain prolonged and unabated (i.e., chronic inflammation). Perhaps less well-appreciated is the importance of inflammatory processes central to healthy pregnancy, including implantation, early stages of placentation, and parturition. Pregnancy juxtaposed with disease can lead to the perpetuation of aberrant inflammation that likely contributes to or potentiates maternal morbidity and poor fetal outcome. Maternal obesity, a prevalent condition within women of reproductive age, associates with increased risk of developing multiple pregnancy disorders. Importantly, chronic low-grade inflammation is thought to underlie the development of obesity-related obstetric and perinatal complications. While diverse subsets of uterine immune cells play central roles in initiating and maintaining healthy pregnancy, uterine leukocyte dysfunction as a result of maternal obesity may underpin the development of pregnancy disorders. In this review we discuss the current knowledge related to the impact of maternal obesity and obesity-associated inflammation on uterine immune cell function, utero-placental establishment, and pregnancy health.
Collapse
Affiliation(s)
- Lauren E. St-Germain
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| | - Barbara Castellana
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| | - Jennet Baltayeva
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| | - Alexander G. Beristain
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| |
Collapse
|
21
|
Robertson SA, Green ES, Care AS, Moldenhauer LM, Prins JR, Hull ML, Barry SC, Dekker G. Therapeutic Potential of Regulatory T Cells in Preeclampsia-Opportunities and Challenges. Front Immunol 2019; 10:478. [PMID: 30984163 PMCID: PMC6448013 DOI: 10.3389/fimmu.2019.00478] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/21/2019] [Indexed: 12/26/2022] Open
Abstract
Inflammation is a central feature and is implicated as a causal factor in preeclampsia and other hypertensive disorders of pregnancy. Inflammatory mediators and leukocytes, which are elevated in peripheral blood and gestational tissues, contribute to the uterine vascular anomalies and compromised placental function that characterize particularly the severe, early onset form of disease. Regulatory T (Treg) cells are central mediators of pregnancy tolerance and direct other immune cells to counteract inflammation and promote robust placentation. Treg cells are commonly perturbed in preeclampsia, and there is evidence Treg cell insufficiency predates onset of symptoms. A causal role is implied by mouse studies showing sufficient numbers of functionally competent Treg cells must be present in the uterus from conception, to support maternal vascular adaptation and prevent later placental inflammatory pathology. Treg cells may therefore provide a tractable target for both preventative strategies and treatment interventions in preeclampsia. Steps to boost Treg cell activity require investigation and could be incorporated into pregnancy planning and preconception care. Pharmacological interventions developed to target Treg cells in autoimmune conditions warrant consideration for evaluation, utilizing rigorous clinical trial methodology, and ensuring safety is paramount. Emerging cell therapy tools involving in vitro Treg cell generation and/or expansion may in time become relevant. The success of preventative and therapeutic approaches will depend on resolving several challenges including developing informative diagnostic tests for Treg cell activity applicable before conception or during early pregnancy, selection of relevant patient subgroups, and identification of appropriate windows of gestation for intervention.
Collapse
Affiliation(s)
- Sarah A. Robertson
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Ella S. Green
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Alison S. Care
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Lachlan M. Moldenhauer
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | | | - M. Louise Hull
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Women's and Children's Hospital, Adelaide, SA, Australia
| | - Simon C. Barry
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Gustaaf Dekker
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
22
|
Ding H, Dai Y, Lei Y, Wang Z, Liu D, Li R, Shen L, Gu N, Zheng M, Zhu X, Zhao G, Hu Y. Upregulation of CD81 in trophoblasts induces an imbalance of Treg/Th17 cells by promoting IL-6 expression in preeclampsia. Cell Mol Immunol 2018; 16:302-312. [PMID: 30487550 DOI: 10.1038/s41423-018-0186-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 12/27/2022] Open
Abstract
The disturbance of maternal immune tolerance to a semiallogeneic fetus is recognized as one of the key pathologies of preeclampsia (PE), in which an imbalance between the inflammation-limiting regulatory T cells (Tregs) and the inflammation-mediating Th17 cells plays an essential role. Previously, we reported that the abnormal upregulation of tetraspannin CD81 in trophoblast cells (fetal component) participated in the pathogenesis of PE. However, as one of the potential immune regulatory molecules, whether CD81 induces PE by interfering with the balance of the maternal immune system has not yet been clarified. Thus, we investigated the relationship between the upregulation of CD81 in trophoblast cells and the imbalance of Treg and Th17 cells in mothers. Here, we demonstrated that upregulation of CD81 in trophoblast cells was accompanied by a decrease in Treg cells and an increase in Th17 cells in both the basal plate (placental maternal side) and peripheral blood of patients with PE. In vitro culture of naïve T cells with medium from the CD81-overexpressing trophoblast cell line HTR-8 resulted in enhanced differentiation of T cells into Th17 cells and decreased the formation of Tregs, which was dependent on the paracrine signaling of IL-6 in trophocytes, induced by CD81. In a CD81-induced PE rat model, we found a significant shift of T cell differentiation towards Th17 cells, and administration of IL-6 antibody mitigated the PE phenotype and the imbalance of the Treg/Th17 cells. These results define a vital regulatory cascade involving trophocyte-derived CD81, IL-6, and maternal Treg/Th17 cells in the pathogenesis of PE and suggests new therapeutic approaches based on CD81 and IL-6 downregulation to prevent human PE.
Collapse
Affiliation(s)
- Hailin Ding
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, 210008, Nanjing, China
| | - Yimin Dai
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, 210008, Nanjing, China
| | - Yi Lei
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, 210008, Nanjing, China
| | - Zhiyin Wang
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, 210008, Nanjing, China
| | - Dan Liu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, 210008, Nanjing, China
| | - Ruotian Li
- Department of Laboratory Medicine, Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, 210008, Nanjing, China
| | - Li Shen
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, 210008, Nanjing, China
| | - Ning Gu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, 210008, Nanjing, China
| | - Mingming Zheng
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, 210008, Nanjing, China
| | - Xiangyu Zhu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, 210008, Nanjing, China
| | - Guangfeng Zhao
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, 210008, Nanjing, China.
| | - Yali Hu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, 210008, Nanjing, China.
| |
Collapse
|
23
|
Robertson SA, Care AS, Moldenhauer LM. Regulatory T cells in embryo implantation and the immune response to pregnancy. J Clin Invest 2018; 128:4224-4235. [PMID: 30272581 DOI: 10.1172/jci122182] [Citation(s) in RCA: 291] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
At implantation, the embryo expresses paternally derived alloantigens and evokes inflammation that can threaten reproductive success. To ensure a robust placenta and sustainable pregnancy, an active state of maternal immune tolerance mediated by CD4+ regulatory T cells (Tregs) is essential. Tregs operate to inhibit effector immunity, contain inflammation, and support maternal vascular adaptations, thereby facilitating trophoblast invasion and placental access to the maternal blood supply. Insufficient Treg numbers or inadequate functional competence are implicated in idiopathic infertility and recurrent miscarriage as well as later-onset pregnancy complications stemming from placental insufficiency, including preeclampsia and fetal growth restriction. In this Review, we summarize the mechanisms acting in the conception environment to drive the Treg response and discuss prospects for targeting the T cell compartment to alleviate immune-based reproductive disorders.
Collapse
|
24
|
Negishi Y, Takahashi H, Kuwabara Y, Takeshita T. Innate immune cells in reproduction. J Obstet Gynaecol Res 2018; 44:2025-2036. [DOI: 10.1111/jog.13759] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/23/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Yasuyuki Negishi
- Department of Microbiology and Immunology; Nippon Medical School; Tokyo Japan
- Department of Obstetrics and Gynecology; Nippon Medical School; Tokyo Japan
| | - Hidemi Takahashi
- Department of Microbiology and Immunology; Nippon Medical School; Tokyo Japan
| | | | | |
Collapse
|
25
|
Lymphocytes in Placental Tissues: Immune Regulation and Translational Possibilities for Immunotherapy. Stem Cells Int 2017; 2017:5738371. [PMID: 29348758 PMCID: PMC5733952 DOI: 10.1155/2017/5738371] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/11/2017] [Indexed: 02/07/2023] Open
Abstract
Immune modulation at the fetomaternal interface is crucial to ensure that the fetal allograft is not rejected. In the present review, the focus is to describe basic functions of lymphocyte populations and how they may contribute to fetomaternal immune regulation, as well as determining what proportions and effector functions of these cells are reported to be present in placental tissues in humans. Also explored is the possibility that unique cell populations at the fetomaternal interface may be targets for adoptive cell therapy. Increasing the understanding of immune modulation during pregnancy can give valuable insight into other established fields such as allogeneic hematopoietic stem cell transplantation and solid organ transplantation. In these settings, lymphocytes are key components that contribute to inflammation and rejection of either patient or donor tissues following transplantation. In contrast, an allogeneic fetus eludes rejection by the maternal immune system.
Collapse
|
26
|
Roles of Interferons in Pregnant Women with Dengue Infection: Protective or Dangerous Factors. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2017; 2017:1671607. [PMID: 29081814 PMCID: PMC5610849 DOI: 10.1155/2017/1671607] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/01/2017] [Accepted: 08/06/2017] [Indexed: 01/13/2023]
Abstract
Dengue infection is a serious public health problem in tropical and subtropical areas. With the recent outbreaks of Zika disease and its reported correlation with microcephaly, the large number of pregnancies with dengue infection has become a serious concern. This review describes the epidemiological characteristics of pregnancy with dengue and the initial immune response to dengue infection, especially in IFNs production in this group of patients. Dengue is much more prevalent in pregnant women compared with other populations. The severity of dengue is correlated with the level of IFNs, while the serum IFN level must be sufficiently high to maintain the pregnancy and to inhibit virus replication.
Collapse
|