1
|
Sarkar H, Batta SR, Wadhwa N, Majumdar SS, Pradhan BS. Generation of a Transgenic Mouse Model for Investigating Mitochondria in Sperm. Cells 2025; 14:296. [PMID: 39996768 PMCID: PMC11854543 DOI: 10.3390/cells14040296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 02/15/2025] [Indexed: 02/26/2025] Open
Abstract
Mitochondria play a crucial role in sperm development; however, the mechanisms regulating their function in sperm remain poorly understood. Developing a method to regulate the expression of a target gene within the mitochondria of sperm is a vital step in this area of research. In this study, we aimed to create a system for expressing a transgene in the mitochondria of sperm. As a proof of concept, we generated transgenic mice that express green fluorescent protein (GFP) fused with a mitochondrial localization signal (MLS) driven by the phosphoglycerate kinase 2 (PGK2) promoter, which facilitates the transgene expression in the sperm. Although the PGK2 promoter has previously shown to drive gene expression in spermatocytes and spermatids, the novelty of our approach lies in the combination of PGK2-driven MLS-GFP expression to study mitochondria in vivo. We established two founder lines of transgenic mice through pronuclear microinjection, and MLS-GFP expression was confirmed in the mitochondria of sperm cells using fluorescence microscopy and flow cytometry. Consequently, we provide a novel platform for investigating mitochondrial function in sperm, where GFP can be substituted with other genes of interest to examine their effects on mitochondria. This system specifically targets sperm mitochondria, offering an innovative approach for studying mitochondrial function in vivo.
Collapse
Affiliation(s)
- Hironmoy Sarkar
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, JNU Complex, New Delhi 110067, India
- Cell Biology and Bacteriology Laboratory, Department of Microbiology, Raiganj University, Raiganj 733134, West Bengal, India
| | - Suryaprakash R. Batta
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, JNU Complex, New Delhi 110067, India
| | - Neerja Wadhwa
- Embryo Biotechnology Lab, National Institute of Immunology, New Delhi 110067, India;
| | - Subeer S. Majumdar
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, JNU Complex, New Delhi 110067, India
- National Institute of Animal Biotechnology, Miyapur, Hyderabad 500049, Telengana, India
- Gujarat Biotechnology University, GIFT City Campus, Gandhinagar 382355, Gujarat, India
| | - Bhola Shankar Pradhan
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, JNU Complex, New Delhi 110067, India
- Lukasiewicz PORT Polish Center for Technology Development, Stablowicka 147, 54066 Wroclaw, Poland
| |
Collapse
|
2
|
Rehder P, Packeiser EM, Körber H, Goericke-Pesch S. Chronic asymptomatic orchitis in dogs alters Sertoli cell number and maturation status. Front Vet Sci 2025; 12:1519105. [PMID: 39974168 PMCID: PMC11836828 DOI: 10.3389/fvets.2025.1519105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/08/2025] [Indexed: 02/21/2025] Open
Abstract
Infertility due to non-obstructive azoospermia is a common diagnosis in infertile male dogs. Chronic asymptomatic orchitis (CAO) has been postulated as a significant cause of non-obstructive azoospermia in acquired male canine infertility. Despite severe microenvironmental changes, some resilient spermatogonial stem cells persist in CAO-affected testes. As Sertoli cells play an essential role in spermatogenesis and the testicular micromilieu, they represent a new target for CAO potential treatment and consequently deserve further investigation. To investigate Sertoli cell number and maturational status, different markers [Vimentin, anti-Müllerian hormone (AMH), and cytokeratin-18 (CK18)] were evaluated in healthy and CAO-affected testes at mRNA and protein levels. Sertoli cell number was reduced in CAO-affected dogs. Sertoli cells also partly returned to an immature status, as indicated by the expression of AMH and CK18 at mRNA and protein levels. The degree of spermatogenesis disruption matched with the degree of Sertoli cell alterations. The investigation of CAO in this study is limited by the number of samples and the lack of testicular volume measurements, but this does not diminish its importance in new findings. In conclusion, this study identifies alterations in Sertoli cell number and maturation status as a cause or consequence of CAO. The results indicate the need to restore Sertoli cell function as a potential therapeutic target for a successful restart of spermatogenesis.
Collapse
Affiliation(s)
| | | | | | - Sandra Goericke-Pesch
- Reproductive Unit – Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
3
|
Amarilla MS, Glienke L, Munduruca Pires T, Sobarzo CM, Oxilia HG, Fulco MF, Rodríguez Peña M, Maio MB, Ferrer Viñals D, Lustig L, Jacobo PV, Theas MS. Impaired Spermatogenesis in Infertile Patients with Orchitis and Experimental Autoimmune Orchitis in Rats. BIOLOGY 2024; 13:278. [PMID: 38666890 PMCID: PMC11048156 DOI: 10.3390/biology13040278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
Experimental autoimmune orchitis (EAO) is a well-established rodent model of organ-specific autoimmunity associated with infertility in which the testis immunohistopathology has been extensively studied. In contrast, analysis of testis biopsies from infertile patients associated with inflammation has been more limited. In this work, testicular biopsies from patients with idiopathic non-obstructive azoospermia diagnosed with hypospermatogenesis (HypoSp) [mild: n = 9, and severe: n = 11], with obstructive azoospermia and complete Sp (spermatogenesis) (control group, C, n = 9), and from Sertoli cell-only syndrome (SCOS, n = 9) were analyzed for the presence of immune cells, spermatogonia and Sertoli cell (SCs) alterations, and reproductive hormones levels. These parameters were compared with those obtained in rats with EAO. The presence of increased CD45+ cells in the seminiferous tubules (STs) wall and lumen in severe HypoSp is associated with increased numbers of apoptotic meiotic germ cells and decreased populations of undifferentiated and differentiated spermatogonia. The SCs showed an immature profile with the highest expression of AMH in patients with SCOS and severe HypoSp. In SCOS patients, the amount of SCs/ST and Ki67+ SCs/ST increased and correlated with high serum FSH levels and CD45+ cells. In the severe phase of EAO, immune cell infiltration and apoptosis of meiotic germ cells increased and the number of undifferentiated and differentiated spermatogonia was lowest, as previously reported. Here, we found that orchitis leads to reduced sperm number, viability, and motility. SCs were mature (AMH-) but increased in number, with Ki67+ observed in severely damaged STs and associated with the highest levels of FSH and inflammatory cells. Our findings demonstrate that in a scenario where a chronic inflammatory process is underway, FSH levels, immune cell infiltration, and immature phenotypes of SCs are associated with severe changes in spermatogenesis, leading to azoospermia. Furthermore, AMH and Ki67 expression in SCs is a distinctive marker of severe alterations of STs in human orchitis.
Collapse
Affiliation(s)
- María Sofía Amarilla
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
| | - Leilane Glienke
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Buenos Aires, Cátedra II de Histología, Paraguay 2155, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina;
| | - Thaisy Munduruca Pires
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Buenos Aires, Cátedra II de Histología, Paraguay 2155, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina;
| | - Cristian Marcelo Sobarzo
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Buenos Aires, Cátedra II de Histología, Paraguay 2155, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina;
| | - Hernán Gustavo Oxilia
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Buenos Aires, Cátedra II de Histología, Paraguay 2155, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina;
- Anatomía Patológica, Hospital General de Agudos Parmenio Piñero, Varela 1301, Ciudad Autónoma de Buenos Aires C1406ELA, Argentina
| | - María Florencia Fulco
- Hospital de Clínicas General San Martín, Av. Córdoba 2351 (C1120AAR), Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (M.F.F.); (M.R.P.)
| | - Marcelo Rodríguez Peña
- Hospital de Clínicas General San Martín, Av. Córdoba 2351 (C1120AAR), Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (M.F.F.); (M.R.P.)
| | - María Belén Maio
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
| | - Denisse Ferrer Viñals
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
| | - Livia Lustig
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Buenos Aires, Cátedra II de Histología, Paraguay 2155, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina;
| | - Patricia Verónica Jacobo
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Buenos Aires, Cátedra II de Histología, Paraguay 2155, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina;
| | - María Susana Theas
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Buenos Aires, Cátedra II de Histología, Paraguay 2155, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina;
| |
Collapse
|
4
|
Yang R, Stendahl AM, Vigh-Conrad KA, Held M, Lima AC, Conrad DF. SATINN: an automated neural network-based classification of testicular sections allows for high-throughput histopathology of mouse mutants. Bioinformatics 2022; 38:5288-5298. [PMID: 36214638 PMCID: PMC9710558 DOI: 10.1093/bioinformatics/btac673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION The mammalian testis is a complex organ with a cellular composition that changes smoothly and cyclically in normal adults. While testis histology is already an invaluable tool for identifying and describing developmental differences in evolution and disease, methods for standardized, digital image analysis of testis are needed to expand the utility of this approach. RESULTS We developed SATINN (Software for Analysis of Testis Images with Neural Networks), a multi-level framework for automated analysis of multiplexed immunofluorescence images from mouse testis. This approach uses residual learning to train convolutional neural networks (CNNs) to classify nuclei from seminiferous tubules into seven distinct cell types with an accuracy of 81.7%. These cell classifications are then used in a second-level tubule CNN, which places seminiferous tubules into one of 12 distinct tubule stages with 57.3% direct accuracy and 94.9% within ±1 stage. We further describe numerous cell- and tubule-level statistics that can be derived from wild-type testis. Finally, we demonstrate how the classifiers and derived statistics can be used to rapidly and precisely describe pathology by applying our methods to image data from two mutant mouse lines. Our results demonstrate the feasibility and potential of using computer-assisted analysis for testis histology, an area poised to evolve rapidly on the back of emerging, spatially resolved genomic and proteomic technologies. AVAILABILITY AND IMPLEMENTATION The source code to reproduce the results described here and a SATINN standalone application with graphic-user interface are available from http://github.com/conradlab/SATINN. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ran Yang
- To whom correspondence should be addressed. or or
| | - Alexandra M Stendahl
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR 97006, USA
| | - Katinka A Vigh-Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR 97006, USA
| | - Madison Held
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR 97006, USA
| | - Ana C Lima
- To whom correspondence should be addressed. or or
| | | |
Collapse
|
5
|
Goericke-Pesch S, Reifarth L, Behrens Mathiesen C, Schuler G, Umbach AK, Körber H. Chronic Immune-Mediated Orchitis Is the Major Cause of Acquired Non-obstructive Azoospermia in Dogs. Front Vet Sci 2022; 9:865967. [PMID: 35433905 PMCID: PMC9010537 DOI: 10.3389/fvets.2022.865967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/21/2022] [Indexed: 12/26/2022] Open
Abstract
Azoospermia, the lack of spermatozoa in the ejaculate, is the most common finding in infertile but otherwise healthy male dogs and represents an increasing reproductive health issue in men, too. The diagnosis can be further classified as non-obstructive azoospermia and obstructive azoospermia due to an obstruction of the deferent ducts. Although non-obstructive azoospermia comprises more than half of azoospermic cases in men and is a common cause of infertility in the male dog, knowledge of the underlying etiology and pathophysiology is still strongly limited, and much uncertainty exists about the true incidence and possible treatment options. Therefore, this study aims to investigate and characterize infertile canine patients in detail by combining results of andrological examinations (clinical parameters, semen analysis, bacterial examination of semen, and Brucella canis serology), endocrine analysis (luteinizing hormone, testosterone, estradiol-17ß, and thyroid function), analysis of the alkaline phosphatase in seminal plasma, and histological assessment of testicular biopsies of 10 azoospermic dogs. Our results not only verify non-obstructive etiology for 9/10 cases of canine azoospermia but also further identified significant histopathological changes of the testicular tissue with severely disrupted spermatogenesis, including fibrotic remodeling, vacuolization, Sertoli-cell-only syndrome, tubular shadows, and an increase of the interstitial and vascular area. In addition, three dogs showed local and six dogs generalized immune-cell infiltration, indicating chronic immune-mediated orchitis. Only in one case (no. 1) that no immune cells were found, and obstructive azoospermia was suspected due to low alkaline phosphatase activity. Furthermore, the detection of anti-thyroideal antibodies in two dogs indicates an autoimmune thyroid disease and a correlation between the occurrence of thyroidal disorders and azoospermia. Our results confirm previous findings and contribute additional evidence suggesting that chronic immune-mediated orchitis is the major cause of infertility in dogs. Further studies should focus on uncovering underlying inflammatory processes behind spermatogenic failure in these cases and identify possible treatment options to (re-)initialize spermatogenesis.
Collapse
Affiliation(s)
- Sandra Goericke-Pesch
- Department of Veterinary Sciences, Section for Veterinary Reproduction and Obstetrics, Faculty of Health and Medical Sciences, University of Copenhagen, Tåstrup, Denmark
- Reproductive Unit – Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- *Correspondence: Sandra Goericke-Pesch
| | - Larena Reifarth
- Reproductive Unit – Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Christina Behrens Mathiesen
- Department of Veterinary Sciences, Section for Veterinary Reproduction and Obstetrics, Faculty of Health and Medical Sciences, University of Copenhagen, Tåstrup, Denmark
| | - Gerhard Schuler
- Clinic for Obstetrics, Gynecology and Andrology of Large and Small Animals, Giessen, Germany
| | | | - Hanna Körber
- Department of Veterinary Sciences, Section for Veterinary Reproduction and Obstetrics, Faculty of Health and Medical Sciences, University of Copenhagen, Tåstrup, Denmark
- Reproductive Unit – Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
6
|
Jensen CFS, Wang D, Mamsen LS, Giwercman A, Jørgensen N, Fode M, Ohl D, Dong L, Hildorf SE, Pors SE, Fedder J, Ntemou E, Andersen CY, Sønksen J. Sertoli and Germ Cells Within Atrophic Seminiferous Tubules of Men With Non-Obstructive Azoospermia. Front Endocrinol (Lausanne) 2022; 13:825904. [PMID: 35721721 PMCID: PMC9201000 DOI: 10.3389/fendo.2022.825904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Infertile men with non-obstructive azoospermia (NOA) have impaired spermatogenesis. Dilated and un-dilated atrophic seminiferous tubules are often present in the testes of these patients, with the highest likelihood of active spermatogenesis in the dilated tubules. Little is known about the un-dilated tubules, which in NOA patients constitute the majority. To advance therapeutic strategies for men with NOA who fail surgical sperm retrieval we aimed to characterize the spermatogonial stem cell microenvironment in atrophic un-dilated tubules. METHODS Testis biopsies approximately 3x3x3 mm3 were obtained from un-dilated areas from 34 patients. They were classified as hypospermatogenesis (HS) (n=5), maturation arrest (MA) (n=14), and Sertoli cell only (SCO) (n= 15). Testis samples from five fertile men were included as controls. Biopsies were used for histological analysis, RT-PCR analysis and immunofluorescence of germ and Sertoli cell markers. RESULTS Anti-Müllerian hormone mRNA and protein expression was increased in un-dilated tubules in all three NOA subtypes, compared to the control, showing an immature state of Sertoli cells (p<0.05). The GDNF mRNA expression was significantly increased in MA (P=0.0003). The BMP4 mRNA expression showed a significant increase in HS, MA, and SCO (P=0.02, P=0.0005, P=0.02, respectively). The thickness of the tubule wall was increased 2.2-fold in the SCO-NOA compared to the control (p<0.05). In germ cells, we found the DEAD-box helicase 4 (DDX4) and melanoma-associated antigen A4 (MAGE-A4) mRNA and protein expression reduced in NOA (MAGE-A: 46% decrease in HS, 53% decrease in MA, absent in SCO). In HS-NOA, the number of androgen receptor positive Sertoli cells was reduced 30% with a similar pattern in mRNA expression. The γH2AX expression was increased in SCO as compared to HS and MA. However, none of these differences reached statistical significance probably due to low number of samples. CONCLUSIONS Sertoli cells were shown to be immature in un-dilated tubules of three NOA subtypes. The increased DNA damage in Sertoli cells and thicker tubule wall in SCO suggested a different mechanism for the absence of spermatogenesis from SCO to HS and MA. These results expand insight into the differences in un-dilated tubules from the different types of NOA patients.
Collapse
Affiliation(s)
- Christian Fuglesang Skjødt Jensen
- Department of Urology, Herlev and Gentofte Hospital, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Danyang Wang
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Linn Salto Mamsen
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Aleksander Giwercman
- Department of Translational Medicine and Reproductive Medicine Centre, Lunds University and Skane University Hospital, Malmö, Sweden
| | - Niels Jørgensen
- Department of Growth and Reproduction, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Mikkel Fode
- Department of Urology, Herlev and Gentofte Hospital, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Dana Ohl
- Department of Urology, University of Michigan, Ann Arbor, MI, United States
| | - Lihua Dong
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Simone Engmann Hildorf
- Centre of Andrology & Fertility Clinic, Department D, Odense University Hospital, Odense C, Denmark
| | - Susanne Elisabeth Pors
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Jens Fedder
- Centre of Andrology & Fertility Clinic, Department D, Odense University Hospital, Odense C, Denmark
| | - Elissavet Ntemou
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
- *Correspondence: Elissavet Ntemou,
| | - Claus Yding Andersen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Jens Sønksen
- Department of Urology, Herlev and Gentofte Hospital, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Pradhan BS, Bhattacharya I, Sarkar R, Majumdar SS. Pubertal down-regulation of Tetraspanin 8 in testicular Sertoli cells is crucial for male fertility. Mol Hum Reprod 2021; 26:760-772. [PMID: 32687199 DOI: 10.1093/molehr/gaaa055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 05/28/2020] [Indexed: 12/23/2022] Open
Abstract
The alarming decline in sperm count has become a global concern in the recent decades. The division and differentiation of male germ cells (Gc) into sperm are governed by Sertoli cells (Sc) upon their functional maturation during puberty. However, the roles of genes regulating pubertal maturation of Sc have not been fully determined. We have observed that Tetraspanin 8 (Tspan8) is down-regulated in Sc during puberty in rats. However, there has been no in vivo evidence for a causal link between the down-regulation of Tspan8 expression and the onset of spermatogenesis as yet. To investigate this, we generated a novel transgenic (Tg) rat, in which the natural down-regulation of Tspan8 was prevented specifically in Sc from puberty up to adulthood. Adult Tg male rats showed around 98% reduction in sperm count despite having a similar level of serum testosterone (T) as the controls. Functional maturation of Sc was impaired as indicated by elevated levels of Amh and low levels of Kitlg and Claudin11 transcripts. The integrity of the blood testis barrier was compromised due to poor expression of Gja1 and Gc apoptosis was discernible. This effect was due to a significant rise in both Mmp7 and phospho P38 MAPK in Tg rat testis. Taken together, we demonstrated that the natural down-regulation of Tspan8 in Sc during puberty is a prerequisite for establishing male fertility. This study divulges one of the aetiologies of certain forms of idiopathic male infertility where somatic cell defect, but not hormonal deficiency, is responsible for impaired spermatogenesis.
Collapse
Affiliation(s)
- Bhola Shankar Pradhan
- Cellular Endocrinology Laboratory, National Institute of Immunology, New Delhi, India
| | - Indrashis Bhattacharya
- Cellular Endocrinology Laboratory, National Institute of Immunology, New Delhi, India.,Department of Zoology, Hemvati Nandan Bahuguna Garhwal University, Srinagar, Uttarakhand, India
| | - Rajesh Sarkar
- Cellular Endocrinology Laboratory, National Institute of Immunology, New Delhi, India
| | - Subeer S Majumdar
- Cellular Endocrinology Laboratory, National Institute of Immunology, New Delhi, India.,National Institute of Animal Biotechnology, Miyapur, Hyderabad 500049, Telengana, India
| |
Collapse
|
8
|
Abstract
Personalized medicine uses a patient's genotype, environment, and lifestyle choices to create a tailored diagnosis and therapy plan, with the goal of minimizing side effects, avoiding lost time with ineffective treatments, and guiding preventative strategies. Although most precision medicine strategies are still within the laboratory phase of development, this article reviews the promising technologies with the greatest potential to improve the diagnosis and treatment options for male infertility, including sperm cell transplantation, genomic editing, and new biomarker assays, based on the latest proteomic and epigenomic studies.
Collapse
Affiliation(s)
- Danielle Velez
- Division of Urology, Department of Surgery, Brown University, 2 Dudley Street Suite 185, Providence, RI, USA
| | - Kathleen Hwang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Retinoid-related orphan nuclear receptor alpha (RORα)-deficient mice display morphological testicular defects. J Transl Med 2019; 99:1835-1849. [PMID: 31409890 DOI: 10.1038/s41374-019-0299-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/22/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022] Open
Abstract
The role of retinoid-related orphan receptor, one of the transcription factors reported in testis, in testicular function is unclear, so this study was performed to evaluate the qualitative and quantitative changes in the testicular structure of RORα-deficient mice using light-, electron-microscopy, and immunohistochemistry. Among the most striking alterations observed in the testis of the mutant mice were hypospermatogenesis, marked reduction in volume proportions of interstitial tissues and number of Leydig cells, significant decrease in the diameter of seminiferous tubules and height of their epithelium, vacuolation in the epithelium of the seminiferous tubules with occurrence of mast cells, appearance of delay spermiation signs, and changes in sperm morphology. Moreover, the testis of mutant mice showed symplasts, in addition to appearance of multinucleated giant bromophenol-positive cells. ATPase activity was limited to spermatogonia and some primary spermatocytes, with higher alkaline phosphatase expression. Stronger vimentin reaction was immunolocalized to spermatogonia, spermatids, Leydig cells, and Sertoli cells. The expression of CD117 (C-kit, stem cell growth factor receptor) was limited to spermatogonia, primary spermatocytes, and Leydig cells. Seminiferous tubules showed overexpression of vascular endothelial growth factor (VEGF). Transmission electron microscopy examination of the mutant mice revealed abnormal Sertoli cells, hypertrophied spermatogonia, spermatocytes with degenerated mitochondria, and incompletely developed sperms. In conclusion, RORα is one of the essential proteins that regulate testicular structure.
Collapse
|
10
|
Ferreiro ME, Amarilla MS, Glienke L, Méndez CS, González C, Jacobo PV, Sobarzo CM, De Laurentiis A, Ferraris MJ, Theas MS. The inflammatory mediators TNFα and nitric oxide arrest spermatogonia GC-1 cell cycle. Reprod Biol 2019; 19:329-339. [PMID: 31757605 DOI: 10.1016/j.repbio.2019.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 10/08/2019] [Accepted: 11/02/2019] [Indexed: 01/01/2023]
Abstract
During an inflammatory process of the testis, the network of somatic, immune, and germ cell interactions is altered leading to organ dysfunction. In testicular biopsies of infertile men, spermatogenesis impairment is associated with reduced spermatogonia proliferation, increased number of immune cells, and content of pro-inflammatory cytokines. TNFα-TNFR and nitric oxide (NO)-NO synthase systems are up-regulated in models of testicular damage and in human testis with maturation arrest. The purpose of this study was to test the hypothesis that TNFα-TNFR system and NO alter the function of spermatogonia in the inflamed testis. We studied the effect of TNFα and NO on GC-1 spermatogonia cell cycle progression and death by flow cytometry. GC-1 cells expressed TNFR1 and TNFR2 (immunofluorescence). TNFα (10 and 50 ng/ml) and DETA-Nonoate (0.5 and 2 mM), a NO releaser, increased the percentage of cells in S-phase of the cell cycle and reduced the percentage in G1, inducing also cell apoptosis. TNFα effect was not mediated by oxidative stress unlike NO, since the presence of N-acetyl-l-cysteine (2.5 and 5.0 mM) prevented NO induced cell cycle arrest and death. GC-1 spermatogonia overpass NO induced cell cycle arrest but no TNFα, since after removal of NO, spermatogonia progressed through the cell cycle. We propose TNFα and NO might contribute to impairment of spermatogenesis by preventing adequate functioning of the spermatogonia population. Our results showed that TNFα and NO impaired spermatogonia cell cycle, inducing GC-1 arrest in the S phase.
Collapse
Affiliation(s)
- María Eugenia Ferreiro
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Cátedra II de Histología, Buenos Aires, Argentina, CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - María Sofía Amarilla
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Cátedra II de Histología, Buenos Aires, Argentina, CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Leilane Glienke
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Cátedra II de Histología, Buenos Aires, Argentina, CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Cinthia Soledad Méndez
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Cátedra II de Histología, Buenos Aires, Argentina, CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Candela González
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnósticos (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina
| | - Patricia Verónica Jacobo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Cátedra II de Histología, Buenos Aires, Argentina, CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Cristian Marcelo Sobarzo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Cátedra II de Histología, Buenos Aires, Argentina, CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Andrea De Laurentiis
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO) CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Jimena Ferraris
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Cátedra II de Histología, Buenos Aires, Argentina, CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - María Susana Theas
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Cátedra II de Histología, Buenos Aires, Argentina, CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina.
| |
Collapse
|
11
|
Downregulation of Sostdc1 in Testicular Sertoli Cells is Prerequisite for Onset of Robust Spermatogenesis at Puberty. Sci Rep 2019; 9:11458. [PMID: 31391487 PMCID: PMC6686024 DOI: 10.1038/s41598-019-47930-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 07/16/2019] [Indexed: 01/03/2023] Open
Abstract
An alarming decline in sperm count of men from several countries has become a major concern for the world community. Hormones act on testicular Sertoli cells (Sc) to regulate male fertility by governing the division and differentiation of germ cells (Gc). However, there is a limited knowledge about Sc specific gene(s) regulating the spermatogenic output of the testis. Sclerostin domain-containing 1 protein (Sostdc1) is a dual BMP/Wnt regulator is predominantly expressed in the Sc of infant testes which hardly show any sign of spermatogenesis. In order to investigate the role of Sostdc1 in spermatogenic regulation, we have generated transgenic (Tg) rats which induced persistent expression of Sostdc1 in mature Sc causing reduced sperm counts. Although Sc specific Sostdc1 did not affect the function of either Sc or Leydig cells (Lc) in the adult testis of Tg rat, we observed a selective augmentation of the BMP target genes via activated phospho smad 1/5/8 signaling in Gc leading to apoptosis. Here, for the first time, we have demonstrated that Sostdc1 is a negative regulator of spermatogenesis, and provided substantial evidence that down regulation of Sostdc1 during puberty is critically essential for quantitatively and qualitatively normal spermatogenesis governing male fertility.
Collapse
|
12
|
Pohl E, Höffken V, Schlatt S, Kliesch S, Gromoll J, Wistuba J. Ageing in men with normal spermatogenesis alters spermatogonial dynamics and nuclear morphology in Sertoli cells. Andrology 2019; 7:827-839. [PMID: 31250567 DOI: 10.1111/andr.12665] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/28/2019] [Accepted: 05/14/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Ageing in men is believed to be associated with fertility decline and elevated risk of congenital disorders for the offspring. The previous studies also reported reduced germ and Sertoli cell numbers in older men. However, it is not clear whether ageing in men with normal spermatogenesis affects the testis and germ cell population dynamics in a way sufficient for transmitting adverse age effects to the offspring. OBJECTIVES We examined men with normal spermatogenesis at different ages concerning effects on persisting testicular cell types, that is the germ line and Sertoli cells, as these cell populations are prone to be exposed to age effects. MATERIAL AND METHODS Ageing was assessed in testicular biopsies of 32 patients assigned to three age groups: (i) 28.8 ± 2.7 years; (ii) 48.1 ± 1 years; and (iii) 70.9 ± 6.2 years, n = 8 each, with normal spermatogenesis according to the Bergmann-Kliesch score, and in a group of meiotic arrest patients (29.9 ± 3.8 years, n = 8) to decipher potential links between different germ cell types. Besides morphometry of seminiferous tubules and Sertoli cell nuclei, we investigated spermatogenic output/efficiency, and dynamics of spermatogonial populations via immunohistochemistry for MAGE A4, PCNA, CREM and quantified A-pale/A-dark spermatogonia. RESULTS We found a constant spermatogenic output (CREM-positive round spermatids) in all age groups studied. In men beyond their mid-40s (group 2), we detected increased nuclear and nucleolar size in Sertoli cells, indirectly indicating an elevated protein turnover. From the 7th decade (group 3) of life onwards, testes showed increased proliferation of undifferentiated spermatogonia, decreased spermatogenic efficiency and elevated numbers of proliferating A-dark spermatogonia. DISCUSSION AND CONCLUSION Maintaining normal sperm output seems to be an intrinsic determinant of spermatogenesis. Ageing appears to affect this output and might provoke compensatory proliferation increase in A spermatogonia which, in turn, might hamper germ cell integrity.
Collapse
Affiliation(s)
- E Pohl
- Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - V Höffken
- Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - S Schlatt
- Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - S Kliesch
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - J Gromoll
- Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - J Wistuba
- Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| |
Collapse
|
13
|
Fu H, Zhou F, Yuan Q, Zhang W, Qiu Q, Yu X, He Z. miRNA-31-5p Mediates the Proliferation and Apoptosis of Human Spermatogonial Stem Cells via Targeting JAZF1 and Cyclin A2. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 14:90-100. [PMID: 30583099 PMCID: PMC6305686 DOI: 10.1016/j.omtn.2018.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/10/2018] [Accepted: 11/11/2018] [Indexed: 01/15/2023]
Abstract
Several lines of evidence highlight the important application of human spermatogonial stem cells (SSCs) in translational medicine. The fate decisions of SSCs are mainly mediated by genetic and epigenetic factors. We have recently demonstrated that PAK1 regulates the proliferation, DNA synthesis, and early apoptosis of human SSCs through the PDK1/KDR/ZNF367 and ERK1/2 and AKT pathway. However, the underlying epigenetic mechanism of PAK1 in human SSCs remains unknown. In this study, we found that the level of miRNA-31-5p was elevated by PAK1 knockdown. CCK-8, PCNA, and 5-ethynyl-2′-deoxyuridine (EDU) assays revealed that miRNA-31-5p mimics inhibited cell proliferation and DNA synthesis of human SSCs. Annexin V/propidium iodide (PI) staining and flow cytometry showed that miRNA-31-5p increased the early and late apoptosis of human SSCs. Furthermore, JAZF1 was predicted and verified as a target of miRNA-31-5p, and the three-dimensional (3D) structure model of JAZF1 protein was illustrated. JAZF1 silencing led to a reduction of cell proliferation and DNA synthesis as well as an enhancement of the early and late apoptosis of human SSCs. Finally, miRNA-31-5p mimics decreased the level of cyclin A2 rather than cyclin D1 or cyclin E1, and JAZF1 knockdown led to the reduction of cyclin A2 in human SSCs. Collectively, miRNA-31-5p regulates the proliferation, DNA synthesis, and apoptosis of human SSCs by the PAK1-JAZF1-cyclin A2 pathway. This study thus offers a novel insight into the molecular mechanisms underlying the fate determinations of human SSCs and might provide novel targets for molecular therapy of male infertility.
Collapse
Affiliation(s)
- Hongyong Fu
- Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai 200127, China; The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 127 Dongming Road, Zhengzhou, Henan 450008, China
| | - Fan Zhou
- Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai 200127, China
| | - Qingqing Yuan
- Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai 200127, China
| | - Wenhui Zhang
- Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai 200127, China
| | - Qianqian Qiu
- Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai 200127, China
| | - Xing Yu
- Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, Hunan 410013, China
| | - Zuping He
- Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, Hunan 410013, China; Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai 200127, China; Shanghai Key Laboratory of Assisted Reproduction and Reproductive Genetics, Shanghai 200127, China; Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China.
| |
Collapse
|
14
|
Adegoke EO, Wang X, Wang H, Wang C, Zhang H, Zhang G. Selenium (Na 2SeO 3) Upregulates Expression of Immune Genes and Blood-Testis Barrier Constituent Proteins of Bovine Sertoli Cell In Vitro. Biol Trace Elem Res 2018; 185:332-343. [PMID: 29383579 DOI: 10.1007/s12011-018-1248-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/11/2018] [Indexed: 01/03/2023]
Abstract
Sertoli cells were isolated from newborn calves and cultured in a medium supplemented with 0, 0.25, 0.50, 0.75, and 1.00 mg/L of sodium selenite to study their immune stimulatory effect, influence on cell's viability, and expression of blood-testis barrier proteins (occludin, connexin-43, zonula occluden, E-cadherin) using quantitative PCR and western blot analyses. Results showed that medium supplemented with 0.50 mg/L of selenium significantly (P < 0.05) promoted cell viability, upregulated toll-like receptor gene (TLR4), anti-inflammatory cytokines (IL-4, IL-10, TGFβ1), and expressions of blood-testis barrier proteins, and modulated expressions of pro-inflammatory cytokines (TNF-α, IL-1β, IFN-γ). Sertoli cells grown in culture medium supplemented with 0.25 mg/L of selenium significantly upregulated TLR4, IL-4, IL-10, TGFβ1, and blood-testis barrier proteins compared to the control group. Sodium selenite supplementation at 0.75 and 1.00 mg/L levels was cytotoxic and temporarily downregulated the expression of blood-testis barrier protein within 24 h after culture; however, commencing from 72 h post culture, increased cell viability and upregulation of expression of blood-testis barrier proteins were observed. In conclusion, the results of this study showed that selenium supplementation in the culture medium up to 0.50 mg/L concentration upregulates immune genes and blood-testis barrier constituent proteins of bovine Sertoli cells.
Collapse
Affiliation(s)
- E O Adegoke
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xue Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Hao Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Chen Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Han Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Guixue Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China.
| |
Collapse
|
15
|
Fu H, Zhang W, Yuan Q, Niu M, Zhou F, Qiu Q, Mao G, Wang H, Wen L, Sun M, Li Z, He Z. PAK1 Promotes the Proliferation and Inhibits Apoptosis of Human Spermatogonial Stem Cells via PDK1/KDR/ZNF367 and ERK1/2 and AKT Pathways. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:769-786. [PMID: 30141410 PMCID: PMC6111072 DOI: 10.1016/j.omtn.2018.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 06/08/2018] [Accepted: 06/18/2018] [Indexed: 01/15/2023]
Abstract
Spermatogonial stem cells (SSCs) have significant applications in reproductive and regenerative medicine. However, nothing is known about genes in mediating human SSCs. Here we have explored for the first time the function and mechanism of P21-activated kinase 1 (PAK1) in regulating the proliferation and apoptosis of the human SSC line. PAK1 level was upregulated by epidermal growth factor (EGF), but not glial cell line-derived neurotrophic factor (GDNF) or fibroblast growth factor 2 (FGF2). PAK1 promoted proliferation and DNA synthesis of the human SSC line, whereas PAK1 suppressed its apoptosis in vitro and in vivo. RNA sequencing identified that PDK1, ZNF367, and KDR levels were downregulated by PAK1 knockdown. Immunoprecipitation and Western blots demonstrated that PAK1 interacted with PDK1. PDK1 and KDR levels were decreased by ZNF367-small interfering RNAs (siRNAs). The proliferation of the human SSC line was reduced by PDK1-, KDR-, and ZNF367-siRNAs, whereas its apoptosis was enhanced by these siRNAs. The levels of phos-ERK1/2, phos-AKT, and cyclin A were decreased by PAK1-siRNAs. Tissue arrays showed that PAK1 level was low in non-obstructive azoospermia patients. Collectively, PAK1 was identified as the first molecule that controls proliferation and apoptosis of the human SSC line through PDK1/KDR/ZNF367 and the ERK1/2 and AKT pathways. This study provides data on novel gene regulation and networks underlying the fate of human SSCs, and it offers new molecular targets for human SSCs in translational medicine.
Collapse
Affiliation(s)
- Hongyong Fu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wenhui Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qingqing Yuan
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Minghui Niu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Zhou
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qianqian Qiu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Guoping Mao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hong Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Liping Wen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Min Sun
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zheng Li
- Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai 200080, China
| | - Zuping He
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Hunan Normal University School of Medicine, Changsha, Hunan 410013, China; Shanghai Key Laboratory of Assisted Reproduction and Reproductive Genetics, Shanghai 200127, China; Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China.
| |
Collapse
|
16
|
Li D, Meng L, Xu T, Su Y, Liu X, Zhang Z, Wang X. RIPK1-RIPK3-MLKL-dependent necrosis promotes the aging of mouse male reproductive system. eLife 2017; 6. [PMID: 28807105 PMCID: PMC5557593 DOI: 10.7554/elife.27692] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/23/2017] [Indexed: 12/12/2022] Open
Abstract
A pair of kinases, RIPK1 and RIPK3, as well as the RIPK3 substrate MLKL cause a form of programmed necrotic cell death in mammals termed necroptosis. We report here that male reproductive organs of both Ripk3- and Mlkl-knockout mice retain ‘youthful’ morphology and function into advanced age, while those of age-matched wild-type mice deteriorate. The RIPK3 phosphorylation of MLKL, the activation marker of necroptosis, is detected in spermatogonial stem cells in the testes of old but not in young wild-type mice. When the testes of young wild-type mice are given a local necroptotic stimulus, their reproductive organs showed accelerated aging. Feeding of wild-type mice with an RIPK1 inhibitor prior to the normal onset of age-related changes in their reproductive organs blocked the appearance of signs of aging. Thus, necroptosis in testes promotes the aging-associated deterioration of the male reproductive system in mice. DOI:http://dx.doi.org/10.7554/eLife.27692.001
Collapse
Affiliation(s)
- Dianrong Li
- National Institute of Biological Sciences, Beijing, China
| | - Lingjun Meng
- National Institute of Biological Sciences, Beijing, China
| | - Tao Xu
- National Institute of Biological Sciences, Beijing, China
| | - Yaning Su
- National Institute of Biological Sciences, Beijing, China
| | - Xiao Liu
- National Institute of Biological Sciences, Beijing, China
| | - Zhiyuan Zhang
- National Institute of Biological Sciences, Beijing, China
| | - Xiaodong Wang
- National Institute of Biological Sciences, Beijing, China
| |
Collapse
|
17
|
Cheng YS, Lu CW, Lin TY, Lin PY, Lin YM. Causes and Clinical Features of Infertile Men With Nonobstructive Azoospermia and Histopathologic Diagnosis of Hypospermatogenesis. Urology 2017; 105:62-68. [DOI: 10.1016/j.urology.2017.03.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/09/2017] [Accepted: 03/15/2017] [Indexed: 11/26/2022]
|
18
|
Nihi F, Gomes M, Carvalho F, Reis A, Martello R, Melo R, Almeida F, Chiarini-Garcia H. Revisiting the human seminiferous epithelium cycle. Hum Reprod 2017; 32:1170-1182. [DOI: 10.1093/humrep/dex064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/16/2017] [Indexed: 11/13/2022] Open
|
19
|
Stammler A, Lüftner BU, Kliesch S, Weidner W, Bergmann M, Middendorff R, Konrad L. Highly Conserved Testicular Localization of Claudin-11 in Normal and Impaired Spermatogenesis. PLoS One 2016; 11:e0160349. [PMID: 27486954 PMCID: PMC4972306 DOI: 10.1371/journal.pone.0160349] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/18/2016] [Indexed: 01/13/2023] Open
Abstract
In this study we tested expression of tight junction proteins in human, mouse and rat and analyzed the localization of claudin-11 in testis of patients with normal and impaired spermatogenesis. Recent concepts generated in mice suggest that the stage-specifically expressed claudin-3 acts as a basal barrier, sealing the seminiferous epithelium during migration of spermatocytes. Corresponding mechanisms have never been demonstrated in humans. Testicular biopsies (n = 103) from five distinct groups were analyzed: normal spermatogenesis (NSP, n = 28), hypospermatogenesis (Hyp, n = 24), maturation arrest at the level of primary spermatocytes (MA, n = 24), Sertoli cell only syndrome (SCO, n = 19), and spermatogonial arrest (SGA, n = 8). Protein expression of claudin-3, -11 and occludin was analyzed. Human, mice and rat testis robustly express claudin-11 protein. Occludin was detected in mouse and rat and claudin-3 was found only in mice. Thus, we selected claudin-11 for further analysis of localization. In NSP, claudin-11 is located at Sertoli-Sertoli junctions and in Sertoli cell contacts towards spermatogonia. Typically, claudin-11 patches do not reach the basal membrane, unless flanked by the Sertoli cell body or patches between two Sertoli cell bodies. The amount of basal claudin-11 patches was found to be increased in impaired spermatogenesis. Only claudin-11 is expressed in all three species examined. The claudin-11 pattern is robust in man with impaired spermatogenesis, but the proportion of localization is altered in SCO and MA. We conclude that claudin-11 might represent the essential component of the BTB in human.
Collapse
Affiliation(s)
- Angelika Stammler
- Justus-Liebig-University Giessen, Institute of Anatomy and Cell Biology, Aulweg 123, D-35392, Giessen, Germany
- Justus-Liebig-University Giessen, Department of Obstetrics and Gynecology, Feulgenstraße 12, D-35392, Giessen, Germany
| | - Benjamin Udo Lüftner
- Justus-Liebig-University Giessen, Department of Obstetrics and Gynecology, Feulgenstraße 12, D-35392, Giessen, Germany
| | - Sabine Kliesch
- University Hospital Münster, Department of Clinical Andrology, Centre of Reproductive Medicine and Andrology, Domagkstrasse 11, D-48129, Münster, Germany
| | - Wolfgang Weidner
- Justus-Liebig-University / UKGM Giessen, Department of Urology, Pediatric Urology and Andrology, D-35392 Giessen, Germany
| | - Martin Bergmann
- Justus-Liebig-University Giessen, Institute of Veterinary Anatomy, Histology and Embryology, Frankfurter Straße 98, D-35392, Giessen, Germany
| | - Ralf Middendorff
- Justus-Liebig-University Giessen, Institute of Anatomy and Cell Biology, Aulweg 123, D-35392, Giessen, Germany
| | - Lutz Konrad
- Justus-Liebig-University Giessen, Department of Obstetrics and Gynecology, Feulgenstraße 12, D-35392, Giessen, Germany
| |
Collapse
|
20
|
Mulder CL, Zheng Y, Jan SZ, Struijk RB, Repping S, Hamer G, van Pelt AMM. Spermatogonial stem cell autotransplantation and germline genomic editing: a future cure for spermatogenic failure and prevention of transmission of genomic diseases. Hum Reprod Update 2016; 22:561-73. [PMID: 27240817 PMCID: PMC5001497 DOI: 10.1093/humupd/dmw017] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/28/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Subfertility affects approximately 15% of all couples, and a severe male factor is identified in 17% of these couples. While the etiology of a severe male factor remains largely unknown, prior gonadotoxic treatment and genomic aberrations have been associated with this type of subfertility. Couples with a severe male factor can resort to ICSI, with either ejaculated spermatozoa (in case of oligozoospermia) or surgically retrieved testicular spermatozoa (in case of azoospermia) to generate their own biological children. Currently there is no direct treatment for azoospermia or oligozoospermia. Spermatogonial stem cell (SSC) autotransplantation (SSCT) is a promising novel clinical application currently under development to restore fertility in sterile childhood cancer survivors. Meanwhile, recent advances in genomic editing, especially the clustered regulatory interspaced short palindromic repeats-associated protein 9 (CRISPR-Cas9) system, are likely to enable genomic rectification of human SSCs in the near future. OBJECTIVE AND RATIONALE The objective of this review is to provide insights into the prospects of the potential clinical application of SSCT with or without genomic editing to cure spermatogenic failure and to prevent transmission of genetic diseases. SEARCH METHODS We performed a narrative review using the literature available on PubMed not restricted to any publishing year on topics of subfertility, fertility treatments, (molecular regulation of) spermatogenesis and SSCT, inherited (genetic) disorders, prenatal screening methods, genomic editing and germline editing. For germline editing, we focussed on the novel CRISPR-Cas9 system. We included papers written in English only. OUTCOMES Current techniques allow propagation of human SSCs in vitro, which is indispensable to successful transplantation. This technique is currently being developed in a preclinical setting for childhood cancer survivors who have stored a testis biopsy prior to cancer treatment. Similarly, SSCT could be used to restore fertility in sterile adult cancer survivors. In vitro propagation of SSCs might also be employed to enhance spermatogenesis in oligozoospermic men and in azoospermic men who still have functional SSCs albeit in insufficient numbers. The combination of SSCT with genomic editing techniques could potentially rectify defects in spermatogenesis caused by genomic mutations or, more broadly, prevent transmission of genomic diseases to the offspring. In spite of the promising prospects, SSCT and germline genomic editing are not yet clinically applicable and both techniques require optimization at various levels. WIDER IMPLICATIONS SSCT with or without genomic editing could potentially be used to restore fertility in cancer survivors to treat couples with a severe male factor and to prevent the paternal transmission of diseases. This will potentially allow these couples to have their own biological children. Technical development is progressing rapidly, and ethical reflection and societal debate on the use of SSCT with or without genomic editing is pressing.
Collapse
Affiliation(s)
- Callista L Mulder
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Yi Zheng
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Sabrina Z Jan
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Robert B Struijk
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Sjoerd Repping
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Geert Hamer
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Ans M M van Pelt
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
21
|
Rajak SK, Kumaresan A, Gaurav MK, Layek SS, Mohanty TK, Muhammad Aslam MK, Tripathi UK, Prasad S, De S. Testicular cell indices and peripheral blood testosterone concentrations in relation to age and semen quality in crossbred (holstein friesian×tharparkar) bulls. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:1554-61. [PMID: 25358314 PMCID: PMC4213699 DOI: 10.5713/ajas.2014.14139] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/23/2014] [Accepted: 05/19/2014] [Indexed: 11/29/2022]
Abstract
Present study analyzed the changes in peripheral blood testosterone concentrations and testicular cytogram in relation to age and semen quality in crossbred males. Three different age groups of crossbred males viz. bull calves (6 months, n = 5), young bulls (15 months, n = 5) and adult bulls (4 to 6 years, n = 8) were utilized for the study. Testicular fine needle aspiration cytology technique was used to quantify testicular cytology and their indices. Peripheral blood testosterone concentrations were measured using enzyme-linked immunosorbent assay method. Semen samples collected from adult bulls were microscopically evaluated for quality parameters. Mean peripheral blood testosterone concentrations in bull calves, young bulls and adult bulls were 2.28±0.09 ng/mL, 1.42±0.22 ng/mL and 5.66±1.08 ng/mL respectively, and that in adult bulls were significantly different (p<0.01) from young bulls and bull calves. There was no significant difference between the proportion of different testicular cells in bull calves and young bulls. Between young and adult bulls, significant differences (p<0.01) were observed in the proportion of spermatocytes, spermatozoa, and sperm: Sertoli cell ratio. The proportions of Sertoli cells showed a significant difference (p<0.01) between the three age groups. The number of primary spermatocytes had a positive correlation with peripheral blood testosterone concentrations in bull calves (r = 0.719, p<0.01). Number of Sertoli cells per 100 germ cells was negatively correlated with blood testosterone concentration in young bulls (r = −0.713, p<0.01). Among different semen parameters in adult bulls, ejaculate volume (r = 0.790, p<0.05) had positive relationship, and sperm motility had significant negative correlation (r = −0.711, p<0.05) with testosterone concentrations. The number of Sertoli cells and Sertoli cell index had a positive correlation with various semen quality parameters (p<0.001). Results of the present study conclude that number of Sertoli cells and Sertoli cell index are good indicators of semen quality, but peripheral blood testosterone concentrations may not have a direct relationship with various seminal attributes in crossbred bulls.
Collapse
Affiliation(s)
- S K Rajak
- Livestock Research Centre, National Dairy Research Institute, Karnal 132001, India
| | - A Kumaresan
- Livestock Research Centre, National Dairy Research Institute, Karnal 132001, India
| | - M K Gaurav
- Livestock Research Centre, National Dairy Research Institute, Karnal 132001, India
| | - S S Layek
- Livestock Research Centre, National Dairy Research Institute, Karnal 132001, India
| | - T K Mohanty
- Livestock Research Centre, National Dairy Research Institute, Karnal 132001, India
| | - M K Muhammad Aslam
- Livestock Research Centre, National Dairy Research Institute, Karnal 132001, India
| | - U K Tripathi
- Livestock Research Centre, National Dairy Research Institute, Karnal 132001, India
| | - Shiv Prasad
- Livestock Research Centre, National Dairy Research Institute, Karnal 132001, India
| | - S De
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, India
| |
Collapse
|
22
|
Borgers M, Wolter M, Hentrich A, Bergmann M, Stammler A, Konrad L. Role of compensatory meiosis mechanisms in human spermatogenesis. Reproduction 2014; 148:315-20. [PMID: 24987152 DOI: 10.1530/rep-14-0279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Disturbances of checkpoints in distinct stages of spermatogenesis (mitosis, meiosis, and spermiogenesis) contribute to impaired spermatogenesis; however, the efficiency of meiotic entry has not been investigated in more detail. In this study, we analyzed azoospermic patients with defined spermatogenic defects by the use of octamer-binding protein 2 for type A spermatogonia, sarcoma antigen 1 for mitosis-meiosis transition and SMAD3 for pachytene spermatocytes. Especially patients with maturation arrest (MA) at the level of primary spermatocytes showed significantly reduced numbers of spermatogonia compared with patients with histologically intact spermatogenesis or patients with hypospermatogenesis (Hyp). For a detailed individual classification of the patients, we distinguished between 'high efficiency of meiotic entry' (high numbers of pachytene spermatocytes) and 'low efficiency of meiotic entry' (low numbers of pachytene spermatocytes). Only patients with histologically normal spermatogenesis (Nsp) and patients with Hyp showed normal numbers of spermatogonia and a high efficiency of meiotic entry. Of note, only patients with histologically Nsp or patients with Hyp could compensate low numbers of spermatogonia with a high efficiency of meiotic entry. In contrast, patients with MA always showed a low efficiency of meiotic entry. This is the first report on patients with impaired spermatogenesis, showing that half of the patients with Hyp but all patients with MA cannot compensate reduced numbers in spermatogonia with a highly efficient meiosis. Thus, we suggest that compensatory meiosis mechanisms in human spermatogenesis exist.
Collapse
Affiliation(s)
- Mareike Borgers
- Department of Obstetrics and GynecologyMedical Faculty, Feulgenstraße 12, D-35392 Giessen, GermanyInstitute of Veterinary-Anatomy-Histology and -Embryology, Frankfurter Straße 98, D-35392 Giessen, Germany
| | - Martin Wolter
- Department of Obstetrics and GynecologyMedical Faculty, Feulgenstraße 12, D-35392 Giessen, GermanyInstitute of Veterinary-Anatomy-Histology and -Embryology, Frankfurter Straße 98, D-35392 Giessen, Germany
| | - Anna Hentrich
- Department of Obstetrics and GynecologyMedical Faculty, Feulgenstraße 12, D-35392 Giessen, GermanyInstitute of Veterinary-Anatomy-Histology and -Embryology, Frankfurter Straße 98, D-35392 Giessen, Germany
| | - Martin Bergmann
- Department of Obstetrics and GynecologyMedical Faculty, Feulgenstraße 12, D-35392 Giessen, GermanyInstitute of Veterinary-Anatomy-Histology and -Embryology, Frankfurter Straße 98, D-35392 Giessen, Germany
| | - Angelika Stammler
- Department of Obstetrics and GynecologyMedical Faculty, Feulgenstraße 12, D-35392 Giessen, GermanyInstitute of Veterinary-Anatomy-Histology and -Embryology, Frankfurter Straße 98, D-35392 Giessen, Germany
| | - Lutz Konrad
- Department of Obstetrics and GynecologyMedical Faculty, Feulgenstraße 12, D-35392 Giessen, GermanyInstitute of Veterinary-Anatomy-Histology and -Embryology, Frankfurter Straße 98, D-35392 Giessen, Germany
| |
Collapse
|
23
|
Rondanino C, Ouchchane L, Chauffour C, Marceau G, Déchelotte P, Sion B, Pons-Rejraji H, Janny L, Volle DH, Lobaccaro JMA, Brugnon F. Levels of liver X receptors in testicular biopsies of patients with azoospermia. Fertil Steril 2014; 102:361-371.e5. [PMID: 24842676 DOI: 10.1016/j.fertnstert.2014.04.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/12/2014] [Accepted: 04/18/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To determine whether the transcription factors liver X receptors (LXRs) and their downstream genes, which are involved in the regulation of several testicular functions in mouse models, are differentially expressed in testes of men with nonobstructive azoospermia (NOA) or obstructive azoospermia (OA). DESIGN Prospective study. SETTING University hospital. PATIENT(S) Patients with various types of NOA (n=22) and with OA (n=5). INTERVENTION(S) Human testicular biopsies. MAIN OUTCOME MEASURE(S) Transcript levels were measured in testicular biopsies with the use of quantitative polymerase chain reaction. Correlations of LXR mRNA levels with the number of germ cells, the expression of proliferation and apoptosis markers, and the amount of intratesticular lipids and testosterone were evaluated. The localization of LXRα was analyzed by immunofluorescence. RESULT(S) LXR mRNA levels were decreased by 49%-98% in NOA specimens and positively correlated with germ cell number. Accumulations of IDOL and SREBP1c (LXR targets involved in lipid homeostasis) were 1.8-2.1 times lower in NOA samples and mRNA levels of the SREBP1c target gene ELOVL6 were increased 1.9-2.4-fold. Interestingly, the amount of triglycerides and free fatty acids were higher in NOA testes (3.4-12.2-fold). LXRα was present in Leydig cells. Accumulations of LXR downstream genes encoding the steroidogenic proteins StAR and 3βHSD2 were higher in NOA testes (5.9-12.8-fold). CONCLUSION(S) Knowledge of changes in the transcript levels of LXRs and some of their downstream genes during altered spermatogenesis may help us to better understand the physiopathology of testicular failure in azoospermic patients.
Collapse
Affiliation(s)
- Christine Rondanino
- Génétique Reproduction et Développement, Clermont Université, Clermont-Ferrand, France; CNRS, UMR 6293, GReD, Aubière, France; INSERM, UMR 1103, GReD, Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France; AMP-CECOS, CHU Clermont-Ferrand, CHU Estaing, Clermont-Ferrand, France
| | - Lemlih Ouchchane
- Laboratoire ISIT, UMR 6284 Université d'Auvergne-CNRS, Clermont-Ferrand, France; Service de Biostatistiques, Clermont-Ferrand, France
| | - Candice Chauffour
- Génétique Reproduction et Développement, Clermont Université, Clermont-Ferrand, France; CNRS, UMR 6293, GReD, Aubière, France; INSERM, UMR 1103, GReD, Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France; AMP-CECOS, CHU Clermont-Ferrand, CHU Estaing, Clermont-Ferrand, France
| | - Geoffroy Marceau
- Laboratoire de Biochimie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Pierre Déchelotte
- Service d'Anatomie Pathologique, CHU Clermont-Ferrand, CHU Estaing, Clermont-Ferrand, France
| | - Benoît Sion
- Laboratoire NEURO-DOL, INSERM U 1107, Clermont-Ferrand, France; Laboratoire de Pharmacologie Fondamentale et Clinique de la Douleur, Université d'Auvergne, Clermont-Ferrand, France
| | - Hanae Pons-Rejraji
- Génétique Reproduction et Développement, Clermont Université, Clermont-Ferrand, France; CNRS, UMR 6293, GReD, Aubière, France; INSERM, UMR 1103, GReD, Aubière, France; AMP-CECOS, CHU Clermont-Ferrand, CHU Estaing, Clermont-Ferrand, France
| | - Laurent Janny
- Génétique Reproduction et Développement, Clermont Université, Clermont-Ferrand, France; CNRS, UMR 6293, GReD, Aubière, France; INSERM, UMR 1103, GReD, Aubière, France; AMP-CECOS, CHU Clermont-Ferrand, CHU Estaing, Clermont-Ferrand, France
| | - David H Volle
- Génétique Reproduction et Développement, Clermont Université, Clermont-Ferrand, France; CNRS, UMR 6293, GReD, Aubière, France; INSERM, UMR 1103, GReD, Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France
| | - Jean-Marc A Lobaccaro
- Génétique Reproduction et Développement, Clermont Université, Clermont-Ferrand, France; CNRS, UMR 6293, GReD, Aubière, France; INSERM, UMR 1103, GReD, Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France
| | - Florence Brugnon
- Génétique Reproduction et Développement, Clermont Université, Clermont-Ferrand, France; CNRS, UMR 6293, GReD, Aubière, France; INSERM, UMR 1103, GReD, Aubière, France; AMP-CECOS, CHU Clermont-Ferrand, CHU Estaing, Clermont-Ferrand, France.
| |
Collapse
|
24
|
Xie BG, Li J, Zhu WJ. Pathological changes of testicular tissue in normal adult mice: A retrospective analysis. Exp Ther Med 2014; 7:654-656. [PMID: 24520262 PMCID: PMC3919903 DOI: 10.3892/etm.2014.1481] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 01/07/2014] [Indexed: 12/21/2022] Open
Abstract
Mouse testicular experimental models are widely used in the study of andrology, reproductive toxicology and pharmacology. Under physiological conditions, a normal adult mouse is usually considered to have normal testes. However, whether normal adult mouse testes exhibit pathological changes has not been evaluated. The objective of this study was to investigate the pathological changes of testicular tissues in normal adult mice. A retrospective analysis of 720 adult male Kunming mice, used in previous studies as controls, was performed. Bilateral testicular tissues were stained with hematoxylin and eosin for pathological examinations. Among the 720 mice, nine had abnormal testes, an incidence of 1.3%. The nine mice with abnormal testes included two with microrchidia (22.2%) while the others had a normal testicular size. The observed pathological changes associated with microrchidia were seminiferous epithelial vacuolation, spermatogenesis arrest at the spermatocyte stage and the absence of sperm in all tubules. In other abnormal testes, pathological alterations included seminiferous epithelial vacuolation, severe hypospermatogenesis and symplasts composed of collapsed spermatids in tubules. The results demonstrate that normal adult male mice exhibit testicular pathological changes. Therefore, the possibility of abnormal testes in normal adult mice must be considered when using mice to establish a testicular experimental model.
Collapse
Affiliation(s)
- Bao-Guo Xie
- Department of Developmental and Regenerative Biology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Jing Li
- Department of Pathophysiology, Medical College, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Wei-Jie Zhu
- Department of Developmental and Regenerative Biology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
25
|
Giese S, Hossain H, Markmann M, Chakraborty T, Tchatalbachev S, Guillou F, Bergmann M, Failing K, Weider K, Brehm R. Sertoli-cell-specific knockout of connexin 43 leads to multiple alterations in testicular gene expression in prepubertal mice. Dis Model Mech 2012; 5:895-913. [PMID: 22699423 PMCID: PMC3484871 DOI: 10.1242/dmm.008649] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A significant decline in human male reproductive function has been reported for the past 20 years but the molecular mechanisms remain poorly understood. However, recent studies showed that the gap junction protein connexin-43 (CX43; also known as GJA1) might be involved. CX43 is the predominant testicular connexin (CX) in most species, including in humans. Alterations of its expression are associated with different forms of spermatogenic disorders and infertility. Men with impaired spermatogenesis often exhibit a reduction or loss of CX43 expression in germ cells (GCs) and Sertoli cells (SCs). Adult male transgenic mice with a conditional knockout (KO) of the Gja1 gene [referred to here as connexin-43 (Cx43)] in SCs (SCCx43KO) show a comparable testicular phenotype to humans and are infertile. To detect possible signaling pathways and molecular mechanisms leading to the testicular phenotype in adult SCCx43KO mice and to their failure to initiate spermatogenesis, the testicular gene expression of 8-day-old SCCx43KO and wild-type (WT) mice was compared. Microarray analysis revealed that 658 genes were significantly regulated in testes of SCCx43KO mice. Of these genes, 135 were upregulated, whereas 523 genes were downregulated. For selected genes the results of the microarray analysis were confirmed using quantitative real-time PCR and immunostaining. The majority of the downregulated genes are GC-specific and are essential for mitotic and meiotic progression of spermatogenesis, including Stra8, Dazl and members of the DM (dsx and map-3) gene family. Other altered genes can be associated with transcription, metabolism, cell migration and cytoskeleton organization. Our data show that deletion of Cx43 in SCs leads to multiple alterations of gene expression in prepubertal mice and primarily affects GCs. The candidate genes could represent helpful markers for investigators exploring human testicular biopsies from patients showing corresponding spermatogenic deficiencies and for studying the molecular mechanisms of human male sterility.
Collapse
Affiliation(s)
- Sarah Giese
- Institute of Veterinary Anatomy, Histology and Embryology, University of Giessen, 35392 Giessen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|