1
|
Shadid A, Rich HE, DeVaughn H, Domozhirov A, Doursout MF, Weng-Mills T, Eckel-Mahan KL, Karmouty-Quintana H, Restrepo MI, Shivshankar P. Persistent microbial infections and idiopathic pulmonary fibrosis - an insight into non-typeable Haemophilus influenza pathogenesis. Front Cell Infect Microbiol 2024; 14:1479801. [PMID: 39760094 PMCID: PMC11695292 DOI: 10.3389/fcimb.2024.1479801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025] Open
Abstract
Interstitial lung disease (ILD) is characterized by chronic inflammation and scarring of the lungs, of which idiopathic pulmonary fibrosis (IPF) is the most devastating pathologic form. Idiopathic pulmonary fibrosis pathogenesis leads to loss of lung function and eventual death in 50% of patients, making it the leading cause of ILD-associated mortality worldwide. Persistent and subclinical microbial infections are implicated in the acute exacerbation of chronic lung diseases. However, while epidemiological studies have highlighted pollutants, gastric aspirate, and microbial infections as major causes for the progression and exacerbation of IPF, the role of persistent microbial infections in the pathogenesis of IPF remains unclear. In this review, we have focused on the role of persistent microbial infections, including viral, bacterial, and fungal infections, and their mechanisms of action in the pathogenesis of IPF. In particular, the mechanisms and pathogenesis of the Gram-negative bacteria Non-typeable Haemophilus influenzae (NTHi) in ILDs are discussed, along with growing evidence of its role in IPF, given its unique ability to establish persistent intracellular infections by leveraging its non-capsulated nature to evade host defenses. While antibiotic treatments are presumably beneficial to target the extracellular, interstitial, and systemic burden of pathogens, their effects are significantly reduced in combating pathogens that reside in the intracellular compartments. The review also includes recent clinical trials, which center on combinatorial treatments involving antimicrobials and immunosuppressants, along with antifibrotic drugs that help mitigate disease progression in IPF patients. Finally, future directions focus on mRNA-based therapeutics, given their demonstrated effectiveness across a wide range of clinical applications and feasibility in targeting intracellular pathogens.
Collapse
Affiliation(s)
- Anthony Shadid
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX, United States
- Department of Biochemistry and Molecular Biology, UTHealth-McGovern Medical School, Houston, TX, United States
| | - Haydn E. Rich
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX, United States
| | - Hunter DeVaughn
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX, United States
| | - Aleksey Domozhirov
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX, United States
| | - Marie- Françoise Doursout
- Department of Anesthesiology, Critical Care and Pain Medicine, UTHealth-McGovern Medical School, Houston, TX, United States
| | - Tingting Weng-Mills
- Department of Biochemistry and Molecular Biology, UTHealth-McGovern Medical School, Houston, TX, United States
| | - Kristin L. Eckel-Mahan
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX, United States
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, UTHealth-McGovern Medical School, Houston, TX, United States
| | - Marcos I. Restrepo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, South Texas Veterans Health Care System and the University of Texas Health San Antonio, San Antonio, TX, United States
| | - Pooja Shivshankar
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX, United States
| |
Collapse
|
2
|
Rasaei R, Tyagi A, Rasaei S, Lee SJ, Yang SR, Kim KS, Ramakrishna S, Hong SH. Human pluripotent stem cell-derived macrophages and macrophage-derived exosomes: therapeutic potential in pulmonary fibrosis. Stem Cell Res Ther 2022; 13:433. [PMID: 36056418 PMCID: PMC9438152 DOI: 10.1186/s13287-022-03136-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/14/2022] [Indexed: 11/10/2022] Open
Abstract
Pulmonary fibrosis (PF) is a fatal chronic disease characterized by accumulation of extracellular matrix and thickening of the alveolar wall, ultimately leading to respiratory failure. PF is thought to be initiated by the dysfunction and aberrant activation of a variety of cell types in the lung. In particular, several studies have demonstrated that macrophages play a pivotal role in the development and progression of PF through secretion of inflammatory cytokines, growth factors, and chemokines, suggesting that they could be an alternative therapeutic source as well as therapeutic target for PF. In this review, we describe the characteristics, functions, and origins of subsets of macrophages involved in PF and summarize current data on the generation and therapeutic application of macrophages derived from pluripotent stem cells for the treatment of fibrotic diseases. Additionally, we discuss the use of macrophage-derived exosomes to repair fibrotic lung tissue.
Collapse
Affiliation(s)
- Roya Rasaei
- Department of Internal Medicine, School of Medicine, Kangwon National University, 1 Kangwondaehakgil, Chuncheon, Gangwon-do, 24431, South Korea
| | - Apoorvi Tyagi
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Shima Rasaei
- Department of Cellular and Molecular Science, Falavarjan Branch, Islamic Azad University, Falavarjan, Iran
| | - Seung-Joon Lee
- Department of Internal Medicine, School of Medicine, Kangwon National University, 1 Kangwondaehakgil, Chuncheon, Gangwon-do, 24431, South Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiology, School of Medicine, Kangwon National University, Chuncheon, 24341, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea.
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, 1 Kangwondaehakgil, Chuncheon, Gangwon-do, 24431, South Korea.
- Institute of Medical Science, Kangwon National University, Chuncheon, 24341, South Korea.
- KW-Bio Co., Ltd, Wonju, South Korea.
| |
Collapse
|
3
|
Holley LC, Medina‐Torres CE. Systematic review of the putative role of herpesviruses in pulmonary fibrosis in horses and humans. EQUINE VET EDUC 2022. [DOI: 10.1111/eve.13492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- L. C. Holley
- School of Veterinary Science The University of Queensland Gatton Queensland Australia
| | - C. E. Medina‐Torres
- School of Veterinary Science The University of Queensland Gatton Queensland Australia
- Pferdeklinik Leichlingen GmbH Leichlingen Germany
| |
Collapse
|
4
|
The Crucial Role of NLRP3 Inflammasome in Viral Infection-Associated Fibrosing Interstitial Lung Diseases. Int J Mol Sci 2021; 22:ijms221910447. [PMID: 34638790 PMCID: PMC8509020 DOI: 10.3390/ijms221910447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 12/11/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF), one of the most common fibrosing interstitial lung diseases (ILD), is a chronic-age-related respiratory disease that rises from repeated micro-injury of the alveolar epithelium. Environmental influences, intrinsic factors, genetic and epigenetic risk factors that lead to chronic inflammation might be implicated in the development of IPF. The exact triggers that initiate the fibrotic response in IPF remain enigmatic, but there is now increasing evidence supporting the role of chronic exposure of viral infection. During viral infection, activation of the NLRP3 inflammasome by integrating multiple cellular and molecular signaling implicates robust inflammation, fibroblast proliferation, activation of myofibroblast, matrix deposition, and aberrant epithelial-mesenchymal function. Overall, the crosstalk of the NLRP3 inflammasome and viruses can activate immune responses and inflammasome-associated molecules in the development, progression, and exacerbation of IPF.
Collapse
|
5
|
Ishikawa G, Liu A, Herzog EL. Evolving Perspectives on Innate Immune Mechanisms of IPF. Front Mol Biosci 2021; 8:676569. [PMID: 34434962 PMCID: PMC8381017 DOI: 10.3389/fmolb.2021.676569] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/29/2021] [Indexed: 12/29/2022] Open
Abstract
While epithelial-fibroblast interactions are viewed as the primary drivers of Idiopathic Pulmonary Fibrosis (IPF), evidence gleaned from animal modeling and human studies implicates innate immunity as well. To provide perspective on this topic, this review synthesizes the available data regarding the complex role of innate immunity in IPF. The role of substances present in the fibrotic microenvironment including pathogen associated molecular patterns (PAMPs) derived from invading or commensal microbes, and danger associated molecular patterns (DAMPs) derived from injured cells and tissues will be discussed along with the proposed contribution of innate immune populations such as macrophages, neutrophils, fibrocytes, myeloid suppressor cells, and innate lymphoid cells. Each component will be considered in the context of its relationship to environmental and genetic factors, disease outcomes, and potential therapies. We conclude with discussion of unanswered questions and opportunities for future study in this area.
Collapse
Affiliation(s)
- Genta Ishikawa
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Angela Liu
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Erica L. Herzog
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States,Department of Pathology, Yale School of Medicine, New Haven, CT, United States,*Correspondence: Erica L. Herzog,
| |
Collapse
|
6
|
Duckworth A, Longhurst HJ, Paxton JK, Scotton CJ. The Role of Herpes Viruses in Pulmonary Fibrosis. Front Med (Lausanne) 2021; 8:704222. [PMID: 34368196 PMCID: PMC8339799 DOI: 10.3389/fmed.2021.704222] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/24/2021] [Indexed: 12/29/2022] Open
Abstract
Pulmonary fibrosis (PF) is a serious lung disease which can result from known genetic or environmental exposures but is more commonly idiopathic (IPF). In familial PF (FPF), the majority of identified causal genes play key roles in the maintenance of telomeres, the protective end structures of chromosomes. Recent evidence suggests that short telomeres may also be implicated causally in a significant proportion of idiopathic cases. The possible involvement of herpes viruses in PF disease incidence and progression has been examined for many years, with some studies showing strong, statistically significant associations and others reporting no involvement. Evidence is thus polarized and remains inconclusive. Here we review the reported involvement of herpes viruses in PF in both animals and humans and present a summary of the evidence to date. We also present several possible mechanisms of action of the different herpes viruses in PF pathogenesis, including potential contributions to telomere attrition and cellular senescence. Evidence for antiviral treatment in PF is very limited but suggests a potential benefit. Further work is required to definitely answer the question of whether herpes viruses impact PF disease onset and progression and to enable the possible use of targeted antiviral treatments to improve clinical outcomes.
Collapse
Affiliation(s)
- Anna Duckworth
- College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Hilary J. Longhurst
- Department of Medicine, University of Auckland, Auckland, New Zealand
- Dyskeratosis Congenita (DC) Action, London, United Kingdom
| | - Jane K. Paxton
- Dyskeratosis Congenita (DC) Action, London, United Kingdom
| | - Chris J. Scotton
- College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
7
|
Phan THG, Paliogiannis P, Nasrallah GK, Giordo R, Eid AH, Fois AG, Zinellu A, Mangoni AA, Pintus G. Emerging cellular and molecular determinants of idiopathic pulmonary fibrosis. Cell Mol Life Sci 2021; 78:2031-2057. [PMID: 33201251 PMCID: PMC7669490 DOI: 10.1007/s00018-020-03693-7] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/08/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF), the most common form of idiopathic interstitial pneumonia, is a progressive, irreversible, and typically lethal disease characterized by an abnormal fibrotic response involving vast areas of the lungs. Given the poor knowledge of the mechanisms underpinning IPF onset and progression, a better understanding of the cellular processes and molecular pathways involved is essential for the development of effective therapies, currently lacking. Besides a number of established IPF-associated risk factors, such as cigarette smoking, environmental factors, comorbidities, and viral infections, several other processes have been linked with this devastating disease. Apoptosis, senescence, epithelial-mesenchymal transition, endothelial-mesenchymal transition, and epithelial cell migration have been shown to play a key role in IPF-associated tissue remodeling. Moreover, molecules, such as chemokines, cytokines, growth factors, adenosine, glycosaminoglycans, non-coding RNAs, and cellular processes including oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, hypoxia, and alternative polyadenylation have been linked with IPF development. Importantly, strategies targeting these processes have been investigated to modulate abnormal cellular phenotypes and maintain tissue homeostasis in the lung. This review provides an update regarding the emerging cellular and molecular mechanisms involved in the onset and progression of IPF.
Collapse
Affiliation(s)
- Thị Hằng Giang Phan
- Department of Immunology and Pathophysiology, University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Panagiotis Paliogiannis
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100, Sassari, Italy
| | - Gheyath K Nasrallah
- Department of Biomedical Sciences, College of Health Sciences Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
- Biomedical Research Center Qatar University, P.O Box 2713, Doha, Qatar.
| | - Roberta Giordo
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah, 27272, United Arab Emirates
| | - Ali Hussein Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, PO Box 2713, Doha, Qatar
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, PO Box 11-0236, Beirut, Lebanon
| | - Alessandro Giuseppe Fois
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100, Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
| | - Arduino Aleksander Mangoni
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah, 27272, United Arab Emirates.
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy.
| |
Collapse
|
8
|
The role of viral and bacterial infections in the pathogenesis of IPF: a systematic review and meta-analysis. Respir Res 2021; 22:53. [PMID: 33579274 PMCID: PMC7880524 DOI: 10.1186/s12931-021-01650-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease. Several risk factors such as smoking, air pollution, inhaled toxins, high body mass index and infectious agents are involved in the pathogenesis of IPF. In the present study, this meta-analysis study investigates the prevalence of viral and bacterial infections in the IPF patients and any possible association between these infections with pathogenesis of IPF. Methods The authors carried out this systematic literature review from different reliable databases such as PubMed, ISI Web of Science, Scopus and Google Scholar to December 2020.Keywords used were the following “Idiopathic pulmonary fibrosis”, “Infection”, “Bacterial Infection” and “Viral Infection”, alone or combined together with the Boolean operators "OR”, “AND” and “NOT” in the Title/Abstract/Keywords field. Pooled proportion and its 95% CI were used to assess the prevalence of viral and bacterial infections in the IPF patients. Results In this systematic review and meta-analyses, 32 studies were selected based on the exclusion/inclusion criteria. Geographical distribution of included studies was: eight studies in American people, 8; in European people, 15 in Asians, and one in Africans. The pooled prevalence for viral and bacterial infections w ere 53.72% (95% CI 38.1–69.1%) and 31.21% (95% CI 19.9–43.7%), respectively. The highest and lowest prevalence of viral infections was HSV (77.7% 95% CI 38.48–99.32%), EBV (72.02%, 95% CI 44.65–90.79%) and Influenza A (7.3%, 95% CI 2.66–42.45%), respectively. Whereas the highest and lowest prevalence in bacterial infections were related to Streptococcus sp. (99.49%, 95% CI 96.44–99.9%) and Raoultella (1.2%, 95% CI 0.2–3.08%), respectively. Conclusions The results of this review were confirmed that the presence of viral and bacterial infections are the risk factors in the pathogenesis of IPF. In further analyses, which have never been shown in the previous studies, we revealed the geographic variations in the association strengths and emphasized other methodological parameters (e.g., detection method). Also, our study supports the hypothesis that respiratory infection could play a key role in the pathogenesis of IP.
Collapse
|
9
|
Le Hingrat Q, Ghanem M, Cazes A, Visseaux B, Collin G, Descamps D, Charpentier C, Crestani B. No association between human herpesvirus or herpesvirus saimiri and idiopathic pulmonary fibrosis. ERJ Open Res 2020; 6:00243-2020. [PMID: 32832526 PMCID: PMC7430142 DOI: 10.1183/23120541.00243-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 11/05/2022] Open
Abstract
There is a high prevalence of human herpesviruses in lung samples of IPF patients but this does not differ from controls, neither regarding prevalence, viral load levels nor co-infection rates. Herpesvirus saimiri DNA is not detected in any lung samples. https://bit.ly/2ZrKiDJ.
Collapse
Affiliation(s)
- Quentin Le Hingrat
- Université de Paris, INSERM UMR 1137 IAME, Paris, France.,AP-HP, Hôpital Bichat-Claude Bernard, Laboratoire de Virologie, Paris, France.,These authors contributed equally
| | - Mada Ghanem
- AP-HP, Hôpital Bichat-Claude Bernard, Service de Pneumologie, Centre de référence des maladies pulmonaires rares, Université de Paris, INSERM UMR1152, Paris, France.,These authors contributed equally
| | - Aurélie Cazes
- AP-HP, Hôpital Bichat-Claude Bernard, Service d'Anatomo-cytopathologie, Université de Paris, INSERM UMR1152F Paris, France
| | - Benoit Visseaux
- Université de Paris, INSERM UMR 1137 IAME, Paris, France.,AP-HP, Hôpital Bichat-Claude Bernard, Laboratoire de Virologie, Paris, France
| | - Gilles Collin
- Université de Paris, INSERM UMR 1137 IAME, Paris, France.,AP-HP, Hôpital Bichat-Claude Bernard, Laboratoire de Virologie, Paris, France
| | - Diane Descamps
- Université de Paris, INSERM UMR 1137 IAME, Paris, France.,AP-HP, Hôpital Bichat-Claude Bernard, Laboratoire de Virologie, Paris, France
| | - Charlotte Charpentier
- Université de Paris, INSERM UMR 1137 IAME, Paris, France.,AP-HP, Hôpital Bichat-Claude Bernard, Laboratoire de Virologie, Paris, France
| | - Bruno Crestani
- AP-HP, Hôpital Bichat-Claude Bernard, Service de Pneumologie, Centre de référence des maladies pulmonaires rares, Université de Paris, INSERM UMR1152, Paris, France
| |
Collapse
|
10
|
Sheng G, Chen P, Wei Y, Yue H, Chu J, Zhao J, Wang Y, Zhang W, Zhang HL. Viral Infection Increases the Risk of Idiopathic Pulmonary Fibrosis: A Meta-Analysis. Chest 2020; 157:1175-1187. [PMID: 31730835 PMCID: PMC7214095 DOI: 10.1016/j.chest.2019.10.032] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 10/11/2019] [Accepted: 10/19/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrotic lung disease with a poor prognosis. Although many factors have been identified that possibly trigger or aggravate IPF, such as viral infection, the exact cause of IPF remains unclear. Until now, there has been no systematic review to assess the role of viral infection in IPF quantitatively. OBJECTIVE This meta-analysis aims to present a collective view on the relationship between viral infection and IPF. METHODS We searched studies reporting the effect of viral infection on IPF in the PubMed, Embase, Cochrane Library, Web of Science, and Wiley Online Library databases. We calculated ORs with 95% CIs to assess the risk of virus in IPF. We also estimated statistical heterogeneity by using I2 and Cochran Q tests and publication bias by using the funnel plot, Begg test, Egger test, and trim-and-fill methods. Regression, sensitivity, and subgroup analyses were performed to assess the effects of confounding factors, such as sex and age. RESULTS We analyzed 20 case-control studies from 10 countries with 1,287 participants. The pooled OR of all viruses indicated that viral infection could increase the risk of IPF significantly (OR, 3.48; 95% CI, 1.61-7.52; P = .001), but not that of exacerbation of IPF (OR, 0.99; 95% CI, 0.47-2.12; P = .988). All analyzed viruses, including Epstein-Barr virus (EBV), cytomegalovirus (CMV), human herpesvirus 7 (HHV-7), and human herpesvirus 8 (HHV-8), were associated with a significant elevation in the risk of IPF, except human herpesvirus 6 (HHV-6). CONCLUSIONS The presence of persistent or chronic, but not acute, viral infections, including EBV, CMV, HHV-7, and HHV-8, significantly increases the risk of developing IPF, but not exacerbation of IPF. These findings imply that viral infection could be a potential risk factor for IPF.
Collapse
Affiliation(s)
- Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
| | - Peng Chen
- Division of Cardiology, Departments of Internal Medicine and Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan 430030, China
| | - Yanqiu Wei
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jie Fang Road, Han Kou District, Wu Han, HuBei Province 430030, China
| | - Huihui Yue
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jie Fang Road, Han Kou District, Wu Han, HuBei Province 430030, China
| | - Jiaojiao Chu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jie Fang Road, Han Kou District, Wu Han, HuBei Province 430030, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jie Fang Road, Han Kou District, Wu Han, HuBei Province 430030, China
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Wanguang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, HuBei Province 430030, China
| | - Hui-Lan Zhang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jie Fang Road, Han Kou District, Wu Han, HuBei Province 430030, China
| |
Collapse
|
11
|
Yin Q, Strong MJ, Zhuang Y, Flemington EK, Kaminski N, de Andrade JA, Lasky JA. Assessment of viral RNA in idiopathic pulmonary fibrosis using RNA-seq. BMC Pulm Med 2020; 20:81. [PMID: 32245461 PMCID: PMC7119082 DOI: 10.1186/s12890-020-1114-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 03/13/2020] [Indexed: 11/23/2022] Open
Abstract
Background Numerous publications suggest an association between herpes virus infection and idiopathic pulmonary fibrosis (IPF). These reports have employed immunohistochemistry, in situ hybridization and/or PCR, which are susceptible to specificity artifacts. Methods We investigated the possible association between IPF and viral RNA expression using next-generation sequencing, which has the potential to provide a high degree of both sensitivity and specificity. We quantified viral RNA expression for 740 viruses in 28 IPF patient lung biopsy samples and 20 controls. Key RNA-seq results were confirmed using Real-time RT-PCR for select viruses (EBV, HCV, herpesvirus saimiri and HERV-K). Results We identified sporadic low-level evidence of viral infections in our lung tissue specimens, but did not find a statistical difference for expression of any virus, including EBV, herpesvirus saimiri and HERV-K, between IPF and control lungs. Conclusions To the best of our knowledge, this is the first publication that employs RNA-seq to assess whether viral infections are linked to the pathogenesis of IPF. Our results do not address the role of viral infection in acute exacerbations of IPF, however, this analysis patently did not support an association between herpes virus detection and IPF.
Collapse
Affiliation(s)
- Qinyan Yin
- Section of Pulmonary Diseases, Critical Care and Environmental Medicine, Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Michael J Strong
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Yan Zhuang
- Section of Pulmonary Diseases, Critical Care and Environmental Medicine, Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Erik K Flemington
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University, 300 Cedar Street, Ste S441D, New Haven, CT, 06519, USA
| | - Joao A de Andrade
- Division of Allergy, Pulmonary, Critical Care Medicine, Department of Medicine, Vanderbilt University, 1161 21st Avenue South, B1317 MCN, Nashville, TN, 37232-2650, USA
| | - Joseph A Lasky
- Section of Pulmonary Diseases, Critical Care and Environmental Medicine, Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA.
| |
Collapse
|
12
|
Spagnolo P, Molyneaux PL, Bernardinello N, Cocconcelli E, Biondini D, Fracasso F, Tiné M, Saetta M, Maher TM, Balestro E. The Role of the Lung's Microbiome in the Pathogenesis and Progression of Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2019; 20:E5618. [PMID: 31717661 PMCID: PMC6888416 DOI: 10.3390/ijms20225618] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/04/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrosing interstitial lung disease that commonly affects older adults and is associated with the histopathological and/or radiological patterns of usual interstitial pneumonia (UIP). Despite significant advances in our understanding of disease pathobiology and natural history, what causes IPF remains unknown. A potential role for infection in the disease's pathogenesis and progression or as a trigger of acute exacerbation has long been postulated, but initial studies based on traditional culture methods have yielded inconsistent results. The recent application to IPF of culture-independent techniques for microbiological analysis has revealed previously unappreciated alterations of the lung microbiome, as well as an increased bacterial burden in the bronchoalveolar lavage (BAL) of IPF patients, although correlation does not necessarily entail causation. In addition, the lung microbiome remains only partially characterized and further research should investigate organisms other than bacteria and viruses, including fungi. The clarification of the role of the microbiome in the pathogenesis and progression of IPF may potentially allow its manipulation, providing an opportunity for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac Thoracic, Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Paolo, Italy; (E.C.); (D.B.); (F.F.); (M.T.); (M.S.); (E.B.)
| | - Philip L. Molyneaux
- NIHR Respiratory Clinical Research Facility, Royal Brompton Hospital, London SW3 6LR, UK; (P.L.M.); (T.M.M.)
- National Heart and Lung Institute, Imperial College, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - Nicol Bernardinello
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Elisabetta Cocconcelli
- Respiratory Disease Unit, Department of Cardiac Thoracic, Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Paolo, Italy; (E.C.); (D.B.); (F.F.); (M.T.); (M.S.); (E.B.)
| | - Davide Biondini
- Respiratory Disease Unit, Department of Cardiac Thoracic, Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Paolo, Italy; (E.C.); (D.B.); (F.F.); (M.T.); (M.S.); (E.B.)
| | - Federico Fracasso
- Respiratory Disease Unit, Department of Cardiac Thoracic, Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Paolo, Italy; (E.C.); (D.B.); (F.F.); (M.T.); (M.S.); (E.B.)
| | - Mariaenrica Tiné
- Respiratory Disease Unit, Department of Cardiac Thoracic, Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Paolo, Italy; (E.C.); (D.B.); (F.F.); (M.T.); (M.S.); (E.B.)
| | - Marina Saetta
- Respiratory Disease Unit, Department of Cardiac Thoracic, Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Paolo, Italy; (E.C.); (D.B.); (F.F.); (M.T.); (M.S.); (E.B.)
| | - Toby M. Maher
- NIHR Respiratory Clinical Research Facility, Royal Brompton Hospital, London SW3 6LR, UK; (P.L.M.); (T.M.M.)
- National Heart and Lung Institute, Imperial College, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - Elisabetta Balestro
- Respiratory Disease Unit, Department of Cardiac Thoracic, Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Paolo, Italy; (E.C.); (D.B.); (F.F.); (M.T.); (M.S.); (E.B.)
| |
Collapse
|
13
|
Hata A, Nakajima T, Matsusaka K, Fukuyo M, Morimoto J, Yamamoto T, Sakairi Y, Rahmutulla B, Ota S, Wada H, Suzuki H, Matsubara H, Yoshino I, Kaneda A. A low DNA methylation epigenotype in lung squamous cell carcinoma and its association with idiopathic pulmonary fibrosis and poorer prognosis. Int J Cancer 2019; 146:388-399. [PMID: 31241180 DOI: 10.1002/ijc.32532] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/09/2019] [Accepted: 06/14/2019] [Indexed: 12/25/2022]
Abstract
Patients with idiopathic pulmonary fibrosis (IPF) have higher risk of developing lung cancer, for example, squamous cell carcinoma (SCC), and show poor prognosis, while the molecular basis has not been fully investigated. Here we conducted DNA methylome analysis of lung SCC using 20 SCC samples with/without IPF, and noncancerous lung tissue samples from smokers/nonsmokers, using Infinium HumanMethylation 450K array. SCC was clustered into low- and high-methylation epigenotypes by hierarchical clustering analysis. Genes hypermethylated in SCC significantly included genes targeted by polycomb repressive complex in embryonic stem cells, and genes associated with Gene Ontology terms, for example, "transcription" and "cell adhesion," while genes hypermethylated specifically in high-methylation subgroup significantly included genes associated with "negative regulation of growth." Low-methylation subgroup significantly correlated with IPF (78%, vs. 17% in high-methylation subgroup, p = 0.04), and the correlation was validated by additional Infinium analysis of SCC samples (n = 44 in total), and data from The Cancer Genome Atlas (n = 390). The correlation between low-methylation subgroup and IPF was further validated by quantitative methylation analysis of marker genes commonly hypermethylated in SCC (HOXA2, HOXA9 and PCDHGB6), and markers specifically hypermethylated in high-methylation subgroup (DLEC1, CFTR, MT1M, CRIP3 and ALDH7A1) in 77 SCC cases using pyrosequencing (p = 0.003). Furthermore, low-methylation epigenotype significantly correlated with poorer prognosis among all SCC patients, or among patients without IPF. Multivariate analysis showed that low-methylation epigenotype is an independent predictor of poor prognosis. These may suggest that lung SCC could be stratified into molecular subtypes with distinct prognosis, and low-methylation lung SCC that significantly correlates with IPF shows unfavorable outcome.
Collapse
Affiliation(s)
- Atsushi Hata
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takahiro Nakajima
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Keisuke Matsusaka
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Genome Research and Development, Kazusa DNA Research Institute, Chiba, Japan
| | - Junichi Morimoto
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takayoshi Yamamoto
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuichi Sakairi
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Ota
- Department of Pathology, Chiba University Hospital, Chiba, Japan
| | - Hironobu Wada
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hidemi Suzuki
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ichiro Yoshino
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
14
|
Evaluation of Cyclin D1 as a Discriminatory Immunohistochemical Biomarker for Idiopathic Pulmonary Fibrosis. Appl Immunohistochem Mol Morphol 2019; 27:e11-e15. [DOI: 10.1097/pai.0000000000000692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Smaldone GC. Repurposing of gamma interferon via inhalation delivery. Adv Drug Deliv Rev 2018; 133:87-92. [PMID: 29886069 DOI: 10.1016/j.addr.2018.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/02/2018] [Accepted: 06/06/2018] [Indexed: 12/13/2022]
Abstract
Pulmonary diseases frequently involve imbalances in immunity. The inability to control bacteria in tuberculosis is a failed response to a pathogen. Idiopathic pulmonary fibrosis (IPF), a progressive fibrotic lung disease, can lead to respiratory failure and death within 3 years of diagnosis. Chronic obstructive pulmonary disease (COPD) progresses until death and in recent years has been labeled an autoimmune disease. Proposed mechanistic pathways of pathophysiology involve uncontrolled healing governed by pro-fibrotic cytokines that are unresponsive to the standard anti-inflammatory agents (e.g., corticosteroids). Interferon-γ (IFN-γ), currently delivered as a subcutaneous injection for chronic granulomatous disease and osteopetrosis, is a cytokine that can stimulate macrophage function and inhibit fibrotic pathways. In recent studies, our group has repurposed IFN-γ as an inhaled aerosol, targeted directly to the lung to treat a host of diseases affected by dysregulated immunity. At present, we have studied its potential in treating tuberculosis and IPF. In a controlled clinical trial in tuberculosis, inhaled IFN-γ was effective while parenteral IFN-γ was not, indicating that macrophages can be effectively immune-stimulated by aerosol therapy. A similar approach has been taken in IPF. In a two-year safety study treating patients with IPF, the drug was safe and the pretreatment decline in pulmonary function was reversed. Furthermore, the same fibrotic pathways active in the lung parenchyma in IPF may be at fault in the airways of COPD patients. These experiences warrant the continued evaluation of inhaled IFN-γ in human clinical trials.
Collapse
Affiliation(s)
- Gerald C Smaldone
- Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, State University of New York at Stony Brook, 101 Nicolls Rd, HSC T-17-040, Stony Brook, NY 11794-8172, United States.
| |
Collapse
|
16
|
Desai O, Winkler J, Minasyan M, Herzog EL. The Role of Immune and Inflammatory Cells in Idiopathic Pulmonary Fibrosis. Front Med (Lausanne) 2018; 5:43. [PMID: 29616220 PMCID: PMC5869935 DOI: 10.3389/fmed.2018.00043] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 02/06/2018] [Indexed: 12/15/2022] Open
Abstract
The contribution of the immune system to idiopathic pulmonary fibrosis (IPF) remains poorly understood. While most sources agree that IPF does not result from a primary immunopathogenic mechanism, evidence gleaned from animal modeling and human studies suggests that innate and adaptive immune processes can orchestrate existing fibrotic responses. This review will synthesize the available data regarding the complex role of professional immune cells in IPF. The role of innate immune populations such as monocytes, macrophages, myeloid suppressor cells, and innate lymphoid cells will be discussed, as will the activation of these cells via pathogen-associated molecular patterns derived from invading or commensural microbes, and danger-associated molecular patterns derived from injured cells and tissues. The contribution of adaptive immune responses driven by T-helper cells and B cells will be reviewed as well. Each form of immune activation will be discussed in the context of its relationship to environmental and genetic factors, disease outcomes, and potential therapies. We conclude with discussion of unanswered questions and opportunities for future study in this area.
Collapse
Affiliation(s)
- Omkar Desai
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Julia Winkler
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Maksym Minasyan
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Erica L Herzog
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
17
|
Wang J, Li F, Tian Z. Role of microbiota on lung homeostasis and diseases. SCIENCE CHINA-LIFE SCIENCES 2017; 60:1407-1415. [PMID: 29019144 PMCID: PMC7089139 DOI: 10.1007/s11427-017-9151-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/12/2017] [Indexed: 12/13/2022]
Abstract
The lungs, as a place of gas exchange, are continuously exposed to environmental stimuli, such as allergens, microbes, and pollutants. The development of the culture-independent technique for microbiological analysis, such as 16S rRNA sequencing, has uncovered that the lungs are not sterile and, in fact, colonized by diverse communities of microbiota. The function of intestinal microbiota in modulating mucosal homeostasis and defense has been widely studied; however, the potential function of lung microbiota in regulating immunity and homeostasis has just begun. Increasing evidence indicates the relevance of microbiota to lung homeostasis and disease. In this review, we describe the distribution and composition of microbiota in the respiratory system and discuss the potential function of lung microbiota in both health and acute/chronic lung disease. In addition, we also discuss the recent understanding of the gut-lung axis, because several studies have revealed that the immunological interaction among the gut, the lung, and the microbiota was involved in this issue.
Collapse
Affiliation(s)
- Jian Wang
- Institute of Immunology and the Key Laboratory of Innate Immunity and Chronic Disease (Chinese Academy of Sciences), School of Life Science and Medical Center, University of Science and Technology of China, Hefei, 230027, China. .,Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University Zurich, Zurich, 8091, Switzerland.
| | - Fengqi Li
- Institute of Immunology and the Key Laboratory of Innate Immunity and Chronic Disease (Chinese Academy of Sciences), School of Life Science and Medical Center, University of Science and Technology of China, Hefei, 230027, China
| | - Zhigang Tian
- Institute of Immunology and the Key Laboratory of Innate Immunity and Chronic Disease (Chinese Academy of Sciences), School of Life Science and Medical Center, University of Science and Technology of China, Hefei, 230027, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
18
|
O'Dwyer DN, Dickson RP, Moore BB. The Lung Microbiome, Immunity, and the Pathogenesis of Chronic Lung Disease. THE JOURNAL OF IMMUNOLOGY 2017; 196:4839-47. [PMID: 27260767 DOI: 10.4049/jimmunol.1600279] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/24/2016] [Indexed: 12/17/2022]
Abstract
The development of culture-independent techniques for microbiological analysis has uncovered the previously unappreciated complexity of the bacterial microbiome at various anatomic sites. The microbiome of the lung has relatively less bacterial biomass when compared with the lower gastrointestinal tract yet displays considerable diversity. The composition of the lung microbiome is determined by elimination, immigration, and relative growth within its communities. Chronic lung disease alters these factors. Many forms of chronic lung disease demonstrate exacerbations that drive disease progression and are poorly understood. Mounting evidence supports ways in which microbiota dysbiosis can influence host defense and immunity, and in turn may contribute to disease exacerbations. Thus, the key to understanding the pathogenesis of chronic lung disease may reside in deciphering the complex interactions between the host, pathogen, and resident microbiota during stable disease and exacerbations. In this brief review we discuss new insights into these labyrinthine relationships.
Collapse
Affiliation(s)
- David N O'Dwyer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; and
| | - Robert P Dickson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; and
| | - Bethany B Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; and Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
19
|
Gorshkova EA, Shilov ES. Possible Mechanisms of Acquisition of Herpesvirus Virokines. BIOCHEMISTRY (MOSCOW) 2017; 81:1350-1357. [PMID: 27914460 DOI: 10.1134/s0006297916110122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The genomes of certain types of human and primate herpesviruses contain functional homologs of important host cytokines (IL-6, IL-17, and IL-10), or so-called virokines. Virokines can interact with immune cell receptors, transmit a signal to them, and thus switch the type of immune response that facilitates viral infection development. In this work, we have summarized possible ways of virokine origin and proposed an evolutionary scenario of virokine acquisition with involvement of retroviral coinfection of the host. This scenario is probably valid for vIL-6 of HHV-8 and MRV-5 viruses, vIL-17 of HVS virus, and vIL-10 of HHV-4, Bonobo-HV, RhLCV, and BaLCV viruses. The ability to acquire cytokine genes allows herpesviruses to implement unique strategies of avoiding the immune response and provides them an evolutionary advantage: more than 90% of the host population can be chronically infected with different herpesviruses. It is possible that the biological success of herpesviruses can be partially due to their cooperation with another group of viruses. This hypothesis emphasizes the importance of studies on the reciprocal influence of pathogens on their coinfection, as well as their impact on the host organism.
Collapse
Affiliation(s)
- E A Gorshkova
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | | |
Collapse
|
20
|
Viruses in Idiopathic Pulmonary Fibrosis. Etiology and Exacerbation. Ann Am Thorac Soc 2016; 12 Suppl 2:S186-92. [PMID: 26595738 DOI: 10.1513/annalsats.201502-088aw] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Viral infections are important contributors to exacerbation of asthma and chronic obstructive pulmonary disease; however, the role of viruses in the pathogenesis of idiopathic pulmonary fibrosis (IPF) is less clear. This likely reflects that fact that IPF acute exacerbations are defined clinically as "noninfectious," and little attention has been paid to the outcomes of patients with IPF with diagnosed infections. However, accumulating evidence suggests that infections (both bacterial and viral) may influence disease outcomes either as exacerbating agents or initiators of disease. Support for a viral role in disease initiation comes from studies demonstrating the presence of herpesviral DNA and epithelial cell stress in the lungs of asymptomatic relatives at risk for developing familial IPF. In addition, the number of studies that can associate viral (especially herpesviral) signatures in the lung with the development of IPF is steadily growing, and activated leukocyte signatures in patients with IPF provide further support for infectious processes driving IPF progression. Animal modeling has been used to better understand how a gamma herpesvirus infection can modulate the pathogenesis of lung fibrosis and has demonstrated that preceding infections appear to reprogram lung epithelial cells during latency to produce profibrotic factors, making the lung more susceptible to subsequent fibrotic insult, whereas exacerbations of existing fibrosis, or infections in susceptible hosts, involve active viral replication and are influenced by antiviral therapy. In addition, there is new evidence that bacterial burden in the lungs of patients with IPF may predict a poor prognosis.
Collapse
|
21
|
Fang F, Marangoni RG, Zhou X, Yang Y, Ye B, Shangguang A, Qin W, Wang W, Bhattacharyya S, Wei J, Tourtellotte WG, Varga J. Toll-like Receptor 9 Signaling Is Augmented in Systemic Sclerosis and Elicits Transforming Growth Factor β-Dependent Fibroblast Activation. Arthritis Rheumatol 2016; 68:1989-2002. [PMID: 26946325 PMCID: PMC9993331 DOI: 10.1002/art.39655] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 02/18/2016] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Although transforming growth factor β (TGFβ) is recognized as being a key trigger of fibroblast activation in systemic sclerosis (SSc), prominent innate immunity suggests that additional pathways contribute to disease persistence. Toll-like receptor 9 (TLR9) is implicated in autoimmunity and fibrosis; however, the expression, mechanism of action, and pathogenic role of TLR9 signaling in SSc remain uncharacterized. The aim of this study was to explore the expression, activity, and potential pathogenic role of TLR9 in the context of skin fibrosis in SSc and in mouse models of experimental fibrosis. METHODS Expression and localization of TLR9 were evaluated in SSc skin biopsy specimens and explanted skin fibroblasts. Fibrotic responses elicited by type A CpG oligonucleotide and mitochondrial DNA (mtDNA) were examined in human skin fibroblasts by a combination of real-time quantitative polymerase chain reaction, Western blot analysis, transient transfection, immunofluorescence microscopy, and functional assays. Expression of TLR9 was examined in 2 distinct mouse models of experimental fibrosis. RESULTS Skin biopsy specimens obtained from 2 independent cohorts of SSc patients showed up-regulation of TLR9, and myofibroblasts were the major cellular source. Moreover, SSc skin biopsy specimens showed evidence of TLR9 pathway activation. CpG induced robust TLR9-dependent fibrotic responses in explanted normal fibroblasts that could be blocked by bortezomib and were mediated through the action of endogenous TGFβ. Mice with experimental fibrosis showed a time-dependent increase in TLR9 localized primarily to myofibroblasts in the dermis. CONCLUSION In isolated fibroblasts, TLR9 elicits fibrotic responses mediated via endogenous TGFβ. In patients with SSc, mtDNA and other damage-associated TLR9 ligands in the skin might trigger localized activation of TLR9 signaling, TGFβ production, and consequent fibroblast activation. Disrupting this fibrotic process with inhibitors targeting TLR9 or its downstream signaling pathways might therefore represent a novel approach to SSc therapy.
Collapse
Affiliation(s)
- Feng Fang
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | - Yang Yang
- China Pharmaceutical University, Nanjing, China
| | - Boping Ye
- China Pharmaceutical University, Nanjing, China
| | - Anna Shangguang
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Wenyi Qin
- University of Illinois at Chicago, Chicago, Illinois
| | - Wenxia Wang
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - Jun Wei
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - John Varga
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
22
|
Pawlica P, Moss WN, Steitz JA. Host miRNA degradation by Herpesvirus saimiri small nuclear RNA requires an unstructured interacting region. RNA (NEW YORK, N.Y.) 2016; 22:1181-9. [PMID: 27335146 PMCID: PMC4931111 DOI: 10.1261/rna.054817.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 05/16/2016] [Indexed: 06/06/2023]
Abstract
Herpesvirus saimiri, an oncogenic herpesvirus, during latency produces seven small nuclear RNAs, called the Herpesvirus saimiri U RNAs (HSUR1-7). HSUR1 mediates degradation of the host microRNA, miR-27, via a process that requires imperfect base-pairing. The decreased levels of miR-27 lead to prolonged T-cell activation and likely contribute to oncogenesis. To gain insight into HSUR1-mediated degradation of miR-27, we probed the in vivo secondary structure of HSUR1 and coupled this with bioinformatic structural analyses. The results suggest that HSUR1 adopts a conformation different than previously believed and that the region complementary to miR-27 lacks stable structure. To determine whether HSUR1 structural flexibility is important for its ability to mediate miR-27 degradation, we performed structurally informative mutagenic analyses of HSUR1. HSUR1 mutants in which the miR-27 binding site sequence is preserved, but sequestered in predicted helices, lose their ability to decrease miR-27 levels. These results indicate that the HSUR1 miR27-binding region must be available in a conformationally flexible segment for noncoding RNA function.
Collapse
Affiliation(s)
- Paulina Pawlica
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Walter N Moss
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| |
Collapse
|
23
|
Byrne AJ, Maher TM, Lloyd CM. Pulmonary Macrophages: A New Therapeutic Pathway in Fibrosing Lung Disease? Trends Mol Med 2016; 22:303-316. [PMID: 26979628 DOI: 10.1016/j.molmed.2016.02.004] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 12/20/2022]
Abstract
Pulmonary fibrosis (PF) is a growing clinical problem which can result in breathlessness or respiratory failure and has an average life expectancy of 3 years from diagnosis. Therapeutic options for PF are limited and there is therefore a significant unmet clinical need. The recent resurgent interest in macrophage biology has led to a new understanding of lung macrophage origins, biology, and phenotypes. In this review we discuss fibrotic mechanisms and focus on the role of macrophages during fibrotic lung disease. Data from both human and murine studies are reviewed, highlighting novel macrophage-orientated biomarkers for disease diagnosis and potential targets for future anti-fibrotic therapies.
Collapse
Affiliation(s)
- Adam J Byrne
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College, London SW7 2AZ, UK.
| | - Toby M Maher
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College, London SW7 2AZ, UK; National Institute for Health Research (NIHR) Respiratory Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| | - Clare M Lloyd
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College, London SW7 2AZ, UK
| |
Collapse
|
24
|
Alagha K, Bourdin A, Chanez P. Reply: Increased Mortality during Bleomycin-induced Pulmonary Fibrosis due to Low Endogenous Activated Protein C Levels. Am J Respir Crit Care Med 2015; 192:1259-60. [DOI: 10.1164/rccm.201507-1307le] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Khuder Alagha
- CHU MontpellierMontpellier, France
- INSERM U1046Montpellier, France
| | - Arnaud Bourdin
- CHU MontpellierMontpellier, France
- INSERM U1046Montpellier, France
| | - Pascal Chanez
- APHMMarseille, Franceand
- INSERM UMR1067Marseille, France
| |
Collapse
|
25
|
Rogers DL, McClure GB, Ruiz JC, Abee CR, Vanchiere JA. Endemic Viruses of Squirrel Monkeys (Saimiri spp.). Comp Med 2015; 65:232-240. [PMID: 26141448 PMCID: PMC4485632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/10/2014] [Accepted: 01/25/2015] [Indexed: 06/04/2023]
Abstract
Nonhuman primates are the experimental animals of choice for the study of many human diseases. As such, it is important to understand that endemic viruses of primates can potentially affect the design, methods, and results of biomedical studies designed to model human disease. Here we review the viruses known to be endemic in squirrel monkeys (Saimiri spp.). The pathogenic potential of these viruses in squirrel monkeys that undergo experimental manipulation remains largely unexplored but may have implications regarding the use of squirrel monkeys in biomedical research.
Collapse
Affiliation(s)
- Donna L Rogers
- Department of Pediatrics, Section of Infectious Diseases, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Gloria B McClure
- Department of Pediatrics, Section of Infectious Diseases, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Julio C Ruiz
- Keeling Center for Comparative Medicine, Department of Veterinary Sciences, University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| | - Christian R Abee
- Keeling Center for Comparative Medicine, Department of Veterinary Sciences, University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| | - John A Vanchiere
- Department of Pediatrics, Section of Infectious Diseases, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA.
| |
Collapse
|
26
|
Juarez MM, Chan AL, Norris AG, Morrissey BM, Albertson TE. Acute exacerbation of idiopathic pulmonary fibrosis-a review of current and novel pharmacotherapies. J Thorac Dis 2015; 7:499-519. [PMID: 25922733 DOI: 10.3978/j.issn.2072-1439.2015.01.17] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 11/26/2014] [Indexed: 12/19/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive form of lung disease of unknown etiology for which a paucity of therapies suggest benefit, and for which none have demonstrated improved survival. Acute exacerbation of IPF (AE-IPF) is defined as a sudden acceleration of the disease or an idiopathic acute injury superimposed on diseased lung that leads to a significant decline in lung function. An AE-IPF is associated with a mortality rate as high as 85% with mean survival periods of between 3 to 13 days. Under these circumstances, mechanical ventilation (MV) is controversial, unless used a as a bridge to lung transplantation. Judicious fluid management may be helpful. Pharmaceutical treatment regimens for AE-IPF include the use of high dose corticosteroids with or without immunosuppressive agents such as cyclosporine A (CsA), and broad spectrum antibiotics, despite the lack of convincing evidence demonstrating benefit. Newer research focuses on abnormal wound healing as a cause of fibrosis and preventing fibrosis itself through blocking growth factors and their downstream intra-cellular signaling pathways. Several novel pharmaceutical approaches are discussed.
Collapse
Affiliation(s)
- Maya M Juarez
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis, School of Medicine and VA Northern California Health Care System, Sacramento, CA 95817, USA
| | - Andrew L Chan
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis, School of Medicine and VA Northern California Health Care System, Sacramento, CA 95817, USA
| | - Andrew G Norris
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis, School of Medicine and VA Northern California Health Care System, Sacramento, CA 95817, USA
| | - Brian M Morrissey
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis, School of Medicine and VA Northern California Health Care System, Sacramento, CA 95817, USA
| | - Timothy E Albertson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis, School of Medicine and VA Northern California Health Care System, Sacramento, CA 95817, USA
| |
Collapse
|
27
|
Suzuki M, Murakami T, Cheng J, Kano H, Fukata M, Fujimoto T. ELMOD2 is anchored to lipid droplets by palmitoylation and regulates adipocyte triglyceride lipase recruitment. Mol Biol Cell 2015; 26:2333-42. [PMID: 25904333 PMCID: PMC4462949 DOI: 10.1091/mbc.e14-11-1504] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/14/2015] [Indexed: 01/09/2023] Open
Abstract
ELMOD2, a putative Arf1–GTPase-activating protein, was found to control recruitment of adipocyte triglyceride lipase to lipid droplets (LDs). ELMOD2 was found in LDs, endoplasmic reticulum, and mitochondria, but palmitoylation was required only for LD distribution. Because palmitoylation-deficient ELMOD2 was defective in this functionality, ELMOD2 is likely to regulate the Arf1–coatomer protein complex I mechanism operating in LDs. Adipocyte triglyceride lipase (ATGL) is the major enzyme involved in the hydrolysis of triglycerides. The Arf1–coat protein complex I (COPI) machinery is known to be engaged in the recruitment of ATGL to lipid droplets (LDs), but the regulatory mechanism has not been clarified. In the present study, we found that ELMOD2, a putative noncanonical Arf–GTPase activating protein (GAP) localizing in LDs, plays an important role in controlling ATGL transport to LDs. We showed that knockdown of ELMOD2 by RNA interference induced an increase in the amount of ATGL existing in LDs and decreased the total cellular triglycerides. These effects of ELMOD2 knockdown were canceled by transfection of small interfering RNA-resistant cDNA of wild-type ELMOD2 but not by that of mutated ELMOD2 lacking the Arf-GAP activity. ELMOD2 was distributed in the endoplasmic reticulum and mitochondria as well as in LDs, but palmitoylation was required only for distribution to LDs. An ELMOD2 mutant deficient in palmitoylation failed to reconstitute the ATGL transport after the ELMOD2 knockdown, indicating that distribution in LDs is indispensable to the functionality of ELMOD2. These results indicate that ELMOD2 regulates ATGL transport and cellular lipid metabolism by modulating the Arf1-COPI activity in LDs.
Collapse
Affiliation(s)
- Michitaka Suzuki
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tatsuro Murakami
- Division of Membrane Physiology, Department of Cell Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki 444-8787, Japan Department of Physiological Sciences, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki 444-8787, Japan
| | - Jinglei Cheng
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroyuki Kano
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Cell Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki 444-8787, Japan Department of Physiological Sciences, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki 444-8787, Japan
| | - Toyoshi Fujimoto
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
28
|
Sustained activation of toll-like receptor 9 induces an invasive phenotype in lung fibroblasts: possible implications in idiopathic pulmonary fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:943-57. [PMID: 25660181 DOI: 10.1016/j.ajpath.2014.12.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 12/19/2014] [Accepted: 12/29/2014] [Indexed: 02/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by excessive scarring of the lung parenchyma, resulting in a steady decline of lung function and ultimately respiratory failure. The disease course of IPF is extremely variable, with some patients exhibiting stability of symptoms for prolonged periods of time, whereas others exhibit rapid progression and loss of lung function. Viral infections have been implicated in IPF and linked to disease severity; however, whether they directly contribute to progression is unclear. We previously classified patients as rapid and slow progressors on the basis of clinical features and expression of the pathogen recognition receptor, Toll-like receptor 9 (TLR9). Activation of TLR9 in vivo exacerbated IPF in mice and induced differentiation of myofibroblasts in vitro, but the mechanism of TLR9 up-regulation and progression of fibrosis are unknown. Herein, we investigate whether transforming growth factor (TGF)-β, a pleiotropic cytokine central to IPF pathogenesis, regulates TLR9 in lung myofibroblasts. Results showed induction of TLR9 expression by TGF-β in lung myofibroblasts and a distinct profibrotic myofibroblast phenotype driven by stimulation with the TLR9 agonist, CpG-DNA. Chronic TLR9 stimulation resulted in stably differentiated α-smooth muscle actin(+)/platelet-derived growth factor receptor α(+)/CD44(+)/matrix metalloproteinase-14(+)/matrix metalloproteinase-2(+) myofibroblasts, which secrete inflammatory cytokines, invade Matrigel toward platelet-derived growth factor, and resist hypoxia-induced apoptosis. These results suggest a mechanism by which TGF-β and TLR9 responses in myofibroblasts collaborate to drive rapid progression of IPF.
Collapse
|
29
|
Spagnolo P, Sverzellati N, Rossi G, Cavazza A, Tzouvelekis A, Crestani B, Vancheri C. Idiopathic pulmonary fibrosis: an update. Ann Med 2015; 47:15-27. [PMID: 25613170 DOI: 10.3109/07853890.2014.982165] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common and lethal form of idiopathic interstitial pneumonia. The disease, which occurs primarily in middle-aged and older adults, is thought to arise following an aberrant reparative response to alveolar epithelial cell injury characterized by secretion of excessive amounts of extracellular matrix components, resulting in scarring of the lung, architectural distortion, and irreversible loss of function. A complex interplay between environmental and host factors is thought to contribute to the development of the disease, although the cause of IPF remains elusive and its pathogenesis incompletely understood. Over the last decade, disease definition and diagnostic criteria have evolved significantly, and this has facilitated the design of a number of high-quality clinical trials evaluating novel therapeutic agents for IPF. This massive effort of the medical and industry community has led to the identification of two compounds (pirfenidone and nintedanib) able to reduce functional decline and disease progression. These promising results notwithstanding, IPF remains a major cause of morbidity and mortality and a largely unmet medical need. A real cure for this devastating disease has yet to emerge and will likely consist of a combination of drugs targeting the plethora of pathways potentially involved in disease pathogenesis.
Collapse
Affiliation(s)
- Paolo Spagnolo
- Medical University Clinic, Canton Hospital Baselland, and University of Basel , Switzerland
| | | | | | | | | | | | | |
Collapse
|
30
|
Embracing complex diseases. The case for an idiopathic pulmonary fibrosis biorepository. Ann Am Thorac Soc 2014; 11:1248-9. [PMID: 25343192 DOI: 10.1513/annalsats.201408-404ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|