1
|
Anbarci DN, McKey J, Levic DS, Bagnat M, Capel B. Rediscovering the rete ovarii, a secreting auxiliary structure to the ovary. eLife 2025; 13:RP96662. [PMID: 40105200 PMCID: PMC11922502 DOI: 10.7554/elife.96662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
The rete ovarii (RO) is an appendage of the ovary that has been given little attention. Although the RO appears in drawings of the ovary in early versions of Gray's Anatomy, it disappeared from recent textbooks, and is often dismissed as a functionless vestige in the adult ovary. Using PAX8 immunostaining and confocal microscopy, we characterized the fetal development of the RO in the context of the mouse ovary. The RO consists of three distinct regions that persist in adult life, the intraovarian rete (IOR), the extraovarian rete (EOR), and the connecting rete (CR). While the cells of the IOR appear to form solid cords within the ovary, the EOR rapidly develops into a convoluted tubular epithelium ending in a distal dilated tip. Cells of the EOR are ciliated and exhibit cellular trafficking capabilities. The CR, connecting the EOR to the IOR, gradually acquires tubular epithelial characteristics by birth. Using microinjections into the distal dilated tip of the EOR, we found that luminal contents flow toward the ovary. Mass spectrometry revealed that the EOR lumen contains secreted proteins potentially important for ovarian function. We show that the cells of the EOR are closely associated with vasculature and macrophages, and are contacted by neuronal projections, consistent with a role as a sensory appendage of the ovary. The direct proximity of the RO to the ovary and its integration with the extraovarian landscape suggest that it plays an important role in ovary development and homeostasis.
Collapse
Affiliation(s)
- Dilara N Anbarci
- Department of Cell Biology, Duke University Medical CenterDurhamUnited States
| | - Jennifer McKey
- Department of Cell Biology, Duke University Medical CenterDurhamUnited States
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Daniel S Levic
- Department of Cell Biology, Duke University Medical CenterDurhamUnited States
| | - Michel Bagnat
- Department of Cell Biology, Duke University Medical CenterDurhamUnited States
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical CenterDurhamUnited States
| |
Collapse
|
2
|
Prieto R, Juratli TA, Bander ED, Santagata S, Barrios L, Brastianos PK, Schwartz TH, Pascual JM. Papillary Craniopharyngioma: An Integrative and Comprehensive Review. Endocr Rev 2025; 46:151-213. [PMID: 39353067 DOI: 10.1210/endrev/bnae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/03/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024]
Abstract
Papillary craniopharyngioma (PCP) is a rare type of tumor, comprising ∼20% of all craniopharyngioma (CP) cases. It is now recognized as a separate pathological entity from the adamantinomatous type. PCPs are benign tumors, classified as World Health Organization grade 1, characterized by nonkeratinizing squamous epithelium. They typically grow as solid and round papillomatous masses or as unilocular cysts with a cauliflower-like excrescence. PCPs primarily occur in adults (95%), with increased frequency in males (60%), and predominantly affect the hypothalamus. Over 80% of these tumors are located in the third ventricle, expanding either above an anatomically intact infundibulum (strictly third ventricle tumors) or within the infundibulo-tuberal region of the third ventricle floor. Clinical manifestations commonly include visual deficits and a wide range of psychiatric disturbances (45% of patients), such as memory deficits and odd behavior. Magnetic resonance imaging can identify up to 50% of PCPs by the presence of a basal duct-like recess. Surgical management is challenging, requiring complex approaches to the third ventricle and posing significant risk of hypothalamic injury. The endoscopic endonasal approach allows radical tumor resection and yields more favorable patient outcomes. Of intriguing pathogenesis, over 90% of PCPs harbor the somatic BRAFV600E mutation, which activates the mitogen-activated protein kinase signaling pathway. A phase 2 clinical trial has demonstrated that PCPs respond well to proto-oncogene B-Raf/MAPK/ERK kinase inhibitors. This comprehensive review synthesizes information from a cohort of 560 well-described PCPs and 99 large CP series including PCP cases published from 1856 to 2023 and represents the most extensive collection of knowledge on PCPs to date.
Collapse
Affiliation(s)
- Ruth Prieto
- Department of Neurosurgery, Puerta de Hierro University Hospital, 28222 Madrid, Spain
| | - Tareq A Juratli
- Department of Neurosurgery, Laboratory of Translational Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
- Department of Neurosurgery, Division of Neuro-Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases, Partner Site Dresden, 01307 Dresden, Germany
| | - Evan D Bander
- Department of Neurosurgery, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sandro Santagata
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Laura Barrios
- Department of Applied Statistics, SGAI-CSIC, Spanish National Research Council, 28002 Madrid, Spain
| | - Priscilla K Brastianos
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Theodore H Schwartz
- Department of Neurosurgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY 10065, USA
- Department of Otolaryngology, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY 10065, USA
- Department of Neuroscience, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY 10065, USA
| | - José M Pascual
- Department of Neurosurgery, La Princesa University Hospital, 28006 Madrid, Spain
| |
Collapse
|
3
|
Anbarci DN, McKey1 J, Levic DS, Bagnat M, Capel B. Rediscovering the Rete Ovarii: a secreting auxiliary structure to the ovary. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.08.566085. [PMID: 37986754 PMCID: PMC10659334 DOI: 10.1101/2023.11.08.566085] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The rete ovarii (RO) is an appendage of the ovary that has been given little attention. Although the RO appears in drawings of the ovary in early versions of Gray's Anatomy, it disappeared from recent textbooks, and is often dismissed as a functionless vestige in the adult ovary. Using PAX8 immunostaining and confocal microscopy, we characterized the fetal development of the RO in the context of the ovary. The RO consists of three distinct regions that persist in adult life, the intraovarian rete (IOR), the extraovarian rete (EOR), and the connecting rete (CR). While the cells of the IOR appear to form solid cords within the ovary, the EOR rapidly develops into a convoluted tubular epithelium ending in a distal dilated tip. Cells of the EOR are ciliated and exhibit cellular trafficking capabilities. The CR, connecting the EOR to the IOR, gradually acquires tubular epithelial characteristics by birth. Using microinjections into the distal dilated tip of the EOR, we found that luminal contents flow towards the ovary. Mass spectrometry revealed that the EOR lumen contains secreted proteins potentially important for ovarian function. We show that the cells of the EOR are closely associated with vasculature and macrophages, and are contacted by neuronal projections, consistent with a role as a sensory appendage of the ovary. The direct proximity of the RO to the ovary and its integration with the extraovarian landscape suggest that it plays an important role in ovary development and homeostasis.
Collapse
Affiliation(s)
- Dilara N. Anbarci
- Department of Cell Biology, Duke University Medical Center, Durham NC 27710
| | - Jennifer McKey1
- Department of Cell Biology, Duke University Medical Center, Durham NC 27710
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora CO 80045
| | - Daniel S. Levic
- Department of Cell Biology, Duke University Medical Center, Durham NC 27710
| | - Michel Bagnat
- Department of Cell Biology, Duke University Medical Center, Durham NC 27710
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham NC 27710
| |
Collapse
|
4
|
Bian Y, Hahn H, Uhmann A. The hidden hedgehog of the pituitary: hedgehog signaling in development, adulthood and disease of the hypothalamic-pituitary axis. Front Endocrinol (Lausanne) 2023; 14:1219018. [PMID: 37476499 PMCID: PMC10355329 DOI: 10.3389/fendo.2023.1219018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Hedgehog signaling plays pivotal roles in embryonic development, adult homeostasis and tumorigenesis. However, its engagement in the pituitary gland has been long underestimated although Hedgehog signaling and pituitary embryogenic development are closely linked. Thus, deregulation of this signaling pathway during pituitary development results in malformation of the gland. Research of the last years further implicates a regulatory role of Hedgehog signaling in the function of the adult pituitary, because its activity is also interlinked with homeostasis, hormone production, and most likely also formation of neoplasms of the gland. The fact that this pathway can be efficiently targeted by validated therapeutic strategies makes it a promising candidate for treating pituitary diseases. We here summarize the current knowledge about the importance of Hedgehog signaling during pituitary development and review recent data that highlight the impact of Hedgehog signaling in the healthy and the diseased adult pituitary gland.
Collapse
|
5
|
Primary Cilia Are Frequently Present in Small Cell Lung Carcinomas but Not in Non–Small Cell Lung Carcinomas or Lung Carcinoids. J Transl Med 2023; 103:100007. [PMID: 37039149 DOI: 10.1016/j.labinv.2022.100007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/30/2022] [Accepted: 08/11/2022] [Indexed: 01/11/2023] Open
Abstract
Most human malignant neoplasms show loss of primary cilia (PC). However, PC are known to be retained and involved in tumorigenesis in some types of neoplasms. The PC status in lung carcinomas remains largely uninvestigated. In this study, we comprehensively assessed the PC status in lung carcinomas. A total of 492 lung carcinomas, consisting of adenocarcinomas (ACs) (n = 319), squamous cell carcinomas (SCCs) (n = 152), and small cell lung carcinomas (SCLCs) (n = 21), were examined by immunohistochemical analysis using an antibody against ARL13B, a marker of PC. The PC-positive rate was markedly higher in SCLCs (81.0%) than in ACs (1.6%) and SCCs (7.9%). We subsequently performed analyses to characterize the PC-positive lung carcinomas further. PC-positive lung carcinomas were more numerous and had longer PC than normal cells. The presence of PC in these cells was not associated with the phase of the cell cycle. We also found that the PC were retained even in metastases from PC-positive lung carcinomas. Furthermore, the hedgehog signaling pathway was activated in PC-positive lung carcinomas. Because ARL13B immunohistochemistry of lung carcinoids (n = 10) also showed a statistically significantly lower rate (10.0%) of PC positivity than SCLCs, we searched for a gene(s) that might be upregulated in PC-positive SCLCs compared with lung carcinoids, but not in PC-negative carcinomas. This search, and further cell culture experiments, identified HYLS1 as a gene possessing the ability to regulate ciliogenesis in PC-positive lung carcinomas. In conclusion, our findings indicate that PC are frequently present in SCLCs but not in non-SCLCs (ACs and SCCs) or lung carcinoids, and their PC exhibit various specific pathobiological characteristics. This suggests an important link between lung carcinogenesis and PC.
Collapse
|
6
|
Paul C, Tang R, Longobardi C, Lattanzio R, Eguether T, Turali H, Bremond J, Maurizy C, Gabola M, Poupeau S, Turtoi A, Denicolai E, Cufaro MC, Svrcek M, Seksik P, Castronovo V, Delvenne P, de Laurenzi V, Da Costa Q, Bertucci F, Lemmers B, Pieragostino D, Mamessier E, Janke C, Pinet V, Hahne M. Loss of primary cilia promotes inflammation and carcinogenesis. EMBO Rep 2022; 23:e55687. [PMID: 36281991 PMCID: PMC9724674 DOI: 10.15252/embr.202255687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/09/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
Primary cilia (PC) are important signaling hubs, and we here explored their role in colonic pathology. In the colon, PC are mostly present on fibroblasts, and exposure of mice to either chemically induced colitis-associated colon carcinogenesis (CAC) or dextran sodium sulfate (DSS)-induced acute colitis decreases PC numbers. We generated conditional knockout mice with reduced numbers of PC on colonic fibroblasts. These mice show increased susceptibility to CAC, as well as DSS-induced colitis. Secretome and immunohistochemical analyses of DSS-treated mice display an elevated production of the proinflammatory cytokine IL-6 in PC-deficient colons. An inflammatory environment diminishes PC presence in primary fibroblast cultures, which is triggered by IL-6 as identified by RNA-seq analysis together with blocking experiments. These findings suggest an activation loop between IL-6 production and PC loss. An analysis of PC presence on biopsies of patients with ulcerative colitis or colorectal cancer (CRC) reveals decreased numbers of PC on colonic fibroblasts in pathological compared with surrounding normal tissue. Taken together, we provide evidence that a decrease in colonic PC numbers promotes colitis and CRC.
Collapse
Affiliation(s)
- Conception Paul
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Label “Equipe FRM”MontpellierFrance
| | - Ruizhi Tang
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Label “Equipe FRM”MontpellierFrance
| | - Ciro Longobardi
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Label “Equipe FRM”MontpellierFrance,Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands,Oncode Institute, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Rossano Lattanzio
- Department of Innovative Technologies in Medicine & Dentistry, Center for Advanced Studies and Technology (CAST)‘G. d'Annunzio’ University of Chieti–PescaraChietiItaly
| | - Thibaut Eguether
- Centre de Recherche Saint AntoineSorbonne Université, INSERM, APHPParisFrance
| | - Hulya Turali
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Label “Equipe FRM”MontpellierFrance
| | - Julie Bremond
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Label “Equipe FRM”MontpellierFrance
| | - Chloé Maurizy
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Label “Equipe FRM”MontpellierFrance
| | - Monica Gabola
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Label “Equipe FRM”MontpellierFrance
| | - Sophie Poupeau
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Label “Equipe FRM”MontpellierFrance
| | - Andrei Turtoi
- Tumor Microenvironment and Resistance to Treatment Laboratory, Institut de Recherche en Cancérologie de MontpellierMontpellierFrance
| | - Emilie Denicolai
- Cancer Research Center of Marseille (CRCM), Laboratory of Predictive Oncology, Inserm U1068 ‐ CNRS UMR7258 – University of Aix‐Marseille UM105 ‐ Paoli Calmettes Institute (IPC)Label “Ligue contre le cancer”MarseilleFrance
| | - Maria Concetta Cufaro
- Department of Innovative Technologies in Medicine & Dentistry, Center for Advanced Studies and Technology (CAST)‘G. d'Annunzio’ University of Chieti–PescaraChietiItaly
| | - Magali Svrcek
- Department of Pathology, AP‐HP, Hôpital Saint‐AntoineSorbonne UniversitéParisFrance
| | - Philippe Seksik
- Centre de Recherche Saint AntoineSorbonne Université, INSERM, APHPParisFrance
| | - Vincent Castronovo
- Metastasis Research Laboratory, GIGA CancerUniversity of LiègeLiègeBelgium
| | - Philippe Delvenne
- Cancer Research Center of Marseille (CRCM), Laboratory of Predictive Oncology, Inserm U1068 ‐ CNRS UMR7258 – University of Aix‐Marseille UM105 ‐ Paoli Calmettes Institute (IPC)Label “Ligue contre le cancer”MarseilleFrance,Department of Pathology, University Hospital (CHU)University of LiègeLiègeBelgium
| | - Vincenzo de Laurenzi
- Department of Innovative Technologies in Medicine & Dentistry, Center for Advanced Studies and Technology (CAST)‘G. d'Annunzio’ University of Chieti–PescaraChietiItaly
| | - Quentin Da Costa
- Cancer Research Center of Marseille (CRCM), Laboratory of Predictive Oncology, Inserm U1068 ‐ CNRS UMR7258 – University of Aix‐Marseille UM105 ‐ Paoli Calmettes Institute (IPC)Label “Ligue contre le cancer”MarseilleFrance
| | - François Bertucci
- Cancer Research Center of Marseille (CRCM), Laboratory of Predictive Oncology, Inserm U1068 ‐ CNRS UMR7258 – University of Aix‐Marseille UM105 ‐ Paoli Calmettes Institute (IPC)Label “Ligue contre le cancer”MarseilleFrance
| | - Bénédicte Lemmers
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Label “Equipe FRM”MontpellierFrance
| | - Damiana Pieragostino
- Department of Innovative Technologies in Medicine & Dentistry, Center for Advanced Studies and Technology (CAST)‘G. d'Annunzio’ University of Chieti–PescaraChietiItaly
| | - Emilie Mamessier
- Cancer Research Center of Marseille (CRCM), Laboratory of Predictive Oncology, Inserm U1068 ‐ CNRS UMR7258 – University of Aix‐Marseille UM105 ‐ Paoli Calmettes Institute (IPC)Label “Ligue contre le cancer”MarseilleFrance
| | - Carsten Janke
- Institut Curie, Paris Sciences et Lettres (PSL) Research University, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 3348Label “Equipe FRM”OrsayFrance,Université Paris Sud, Université Paris‐Saclay, CNRS UMR 3348OrsayFrance
| | - Valérie Pinet
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Label “Equipe FRM”MontpellierFrance
| | - Michael Hahne
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Label “Equipe FRM”MontpellierFrance
| |
Collapse
|
7
|
Barbarino M, Bottaro M, Spagnoletti L, de Santi MM, Guazzo R, Defraia C, Custoza C, Serio G, Iannelli F, Pesetti M, Aiello R, Rosati D, Zanfrini E, Luzzi L, Bellan C, Giordano A. Analysis of Primary Cilium Expression and Hedgehog Pathway Activation in Mesothelioma Throws Back Its Complex Biology. Cancers (Basel) 2022; 14:5216. [PMID: 36358635 PMCID: PMC9654223 DOI: 10.3390/cancers14215216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 08/06/2023] Open
Abstract
The primary cilium (PC) is a sensory organelle present on the cell surface, modulating the activity of many pathways. Dysfunctions in the PC lead to different pathologic conditions including cancer. Hedgehog signaling (Hh) is regulated by PC and the loss of its control has been observed in many cancers, including mesothelioma. Malignant pleural mesothelioma (MPM) is a fatal cancer of the pleural membranes with poor therapeutic options. Recently, overexpression of the Hh transcriptional activator GL1 has been demonstrated to be associated with poor overall survival (OS) in MPM. However, unlike other cancers, the response to G-protein-coupled receptor smoothened (SMO)/Hh inhibitors is poor, mainly attributable to the lack of markers for patient stratification. For all these reasons, and in particular for the role of PC in the regulation of Hh, we investigated for the first time the status of PC in MPM tissues, demonstrating intra- and inter-heterogeneity in its expression. We also correlated the presence of PC with the activation of the Hh pathway, providing uncovered evidence of a PC-independent regulation of the Hh signaling in MPM. Our study contributes to the understanding MPM heterogeneity, thus helping to identify patients who might benefit from Hh inhibitors.
Collapse
Affiliation(s)
- Marcella Barbarino
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Maria Bottaro
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
| | - Laura Spagnoletti
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
| | | | - Raffaella Guazzo
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
| | - Chiara Defraia
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
| | - Cosimo Custoza
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
| | - Gabriella Serio
- Department of Emergency and Organ Transplantation-DETO, University of Bari, G. Cesare 1 Sq., 70121 Bari, Italy
| | - Francesco Iannelli
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
| | - Matilde Pesetti
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
| | - Raffaele Aiello
- Toma Institute Srl, Via Cesare Rosaroll 24, 80139 Napoli, Italy
| | - Diletta Rosati
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
| | - Edoardo Zanfrini
- Department of Medicine, Surgery and Neurosciences, Siena University Hospital, 53100 Siena, Italy
| | - Luca Luzzi
- Department of Medicine, Surgery and Neurosciences, Siena University Hospital, 53100 Siena, Italy
| | - Cristiana Bellan
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
| | - Antonio Giordano
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
8
|
Shinmura K, Kusafuka K, Kawasaki H, Kato H, Hariyama T, Tsuchiya K, Kawanishi Y, Funai K, Misawa K, Mineta H, Sugimura H. Identification and characterization of primary cilia-positive salivary gland tumours exhibiting basaloid/myoepithelial differentiation. J Pathol 2021; 254:519-530. [PMID: 33931860 DOI: 10.1002/path.5688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022]
Abstract
Primary cilia (PC) are non-motile, antenna-like structures on the cell surface. Many types of neoplasms exhibit PC loss, whereas in some neoplasms PC are retained and involved in tumourigenesis. To elucidate the PC status and characteristics of major salivary gland tumours (SGTs), we examined 100 major SGTs encompassing eight histopathological types by immunohistochemical analysis. PC were present in all (100%) of the pleomorphic adenomas (PAs), basal cell adenomas (BCAs), adenoid cystic carcinomas (AdCCs), and basal cell adenocarcinomas (BCAcs) examined, but absent in all (0%) of the Warthin tumours, salivary duct carcinomas, mucoepidermoid carcinomas, and acinic cell carcinomas examined. PC were also detected by electron-microscopic analysis using the NanoSuit method. It is worthy of note that the former category and latter category of tumours contained and did not contain a basaloid/myoepithelial differentiation component, respectively. The four types of PC-positive SGTs showed longer PC than normal and exhibited a characteristic distribution pattern of the PC in the ductal and basaloid/neoplastic myoepithelial components. Two PC-positive carcinomas (AdCC and BCAc) still possessed PC in their recurrent/metastatic sites. Interestingly, activation of the Hedgehog signalling pathway, shown by predominantly nuclear GLI1 expression, was significantly more frequently observed in PC-positive SGTs. Finally, we identified tau tubulin kinase 2 (TTBK2) as being possibly involved in the production of PC in SGTs. Taken together, our findings indicate that SGTs that exhibit basaloid/myoepithelial differentiation (PA, BCA, AdCC, and BCAc) are ciliated, and their PC exhibit tumour-specific characteristics, are involved in activation of the Hedgehog pathway, and are associated with TTBK2 upregulation, providing a significant and important link between SGT tumourigenesis and PC. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | - Hideya Kawasaki
- Institute for NanoSuit Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hisami Kato
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takahiko Hariyama
- Institute for NanoSuit Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuo Tsuchiya
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuichi Kawanishi
- Advanced Research Facilities and Services, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuhito Funai
- Department of Surgery 1, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kiyoshi Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroyuki Mineta
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
9
|
Brinkmeier ML, Bando H, Camarano AC, Fujio S, Yoshimoto K, de Souza FS, Camper SA. Rathke's cleft-like cysts arise from Isl1 deletion in murine pituitary progenitors. J Clin Invest 2021; 130:4501-4515. [PMID: 32453714 DOI: 10.1172/jci136745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
The transcription factor ISL1 is expressed in pituitary gland stem cells and the thyrotrope and gonadotrope lineages. Pituitary-specific Isl1 deletion causes hypopituitarism with increased stem cell apoptosis, reduced differentiation of thyrotropes and gonadotropes, and reduced body size. Conditional Isl1 deletion causes development of multiple Rathke's cleft-like cysts, with 100% penetrance. Foxa1 and Foxj1 are abnormally expressed in the pituitary gland and associated with a ciliogenic gene-expression program in the cysts. We confirmed expression of FOXA1, FOXJ1, and stem cell markers in human Rathke's cleft cyst tissue, but not craniopharyngiomas, which suggests these transcription factors are useful, pathological markers for diagnosis of Rathke's cleft cysts. These studies support a model whereby expression of ISL1 in pituitary progenitors drives differentiation into thyrotropes and gonadotropes and without it, activation of FOXA1 and FOXJ1 permits development of an oral epithelial cell fate with mucinous cysts. This pituitary-specific Isl1 mouse knockout sheds light on the etiology of Rathke's cleft cysts and the role of ISL1 in normal pituitary development.
Collapse
Affiliation(s)
- Michelle L Brinkmeier
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Hironori Bando
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Adriana C Camarano
- Institute of Physiology, Molecular Biology, and Neurosciences-IFIBYNE-CONICET, Pabellon IFIBYNE, Ciudad Universitaria, Buenos Aires, Argentina
| | - Shingo Fujio
- Graduate School of Medical and Dental Sciences, Department of Neurosurgery, Kagoshima University, Kagoshima, Japan
| | - Koji Yoshimoto
- Graduate School of Medical and Dental Sciences, Department of Neurosurgery, Kagoshima University, Kagoshima, Japan
| | - Flávio Sj de Souza
- Institute of Physiology, Molecular Biology, and Neurosciences-IFIBYNE-CONICET, Pabellon IFIBYNE, Ciudad Universitaria, Buenos Aires, Argentina
| | - Sally A Camper
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
10
|
In situ detection of SARS-CoV-2 in lungs and airways of patients with COVID-19. Mod Pathol 2020; 33:2104-2114. [PMID: 32561849 PMCID: PMC7304376 DOI: 10.1038/s41379-020-0595-z] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 02/04/2023]
Abstract
Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has led to a global public health crisis. In elderly individuals and those with comorbidities, COVID-19 is associated with high mortality, frequently caused by acute respiratory distress syndrome. We examine in situ expression of SARS-CoV-2 in airways and lung obtained at autopsy of individuals with confirmed COVID-19 infection. Seven autopsy cases (male, N = 5; female, N = 2) with reverse transcriptase-polymerase chain reaction (RT-PCR)-confirmed SARS-CoV-2 infection and a median age of 66 years (range, 50-77 years) were evaluated using a rabbit polyclonal antibody against SARS Nucleocapsid protein in correlation with clinical parameters. The median time from symptom onset to death was 9 days (range, 6-31 days), from hospitalization 7 days (range, 1-21 days), from positive RT-PCR 7 days (range, 0-18 days), and from intensive care unit admission defining onset of respiratory failure 3 days (range, 1-18 days). Chest imaging identified diffuse airspace disease in all patients corresponding to acute and (N = 5) or organizing (N = 2) diffuse alveolar damage (DAD) on histologic examination. Among five patients with acute-phase DAD (≤7 days from onset of respiratory failure), SARS-CoV-2 was detected in pulmonary pneumocytes and ciliated airway cells (N = 5), and in upper airway epithelium (N = 2). In two patients with organizing DAD (>14 days from onset of respiratory failure), no virus was detected in lungs or airways. No endothelial cell infection was observed. The findings suggest that SARS-CoV-2 infection of epithelial cells in lungs and airways of patients with COVID-19 who developed respiratory failure can be detected during the acute phase of lung injury and is absent in the organizing phase.
Collapse
|
11
|
Coy S, Rashid R, Lin JR, Du Z, Donson AM, Hankinson TC, Foreman NK, Manley PE, Kieran MW, Reardon DA, Sorger PK, Santagata S. Multiplexed immunofluorescence reveals potential PD-1/PD-L1 pathway vulnerabilities in craniopharyngioma. Neuro Oncol 2019; 20:1101-1112. [PMID: 29509940 DOI: 10.1093/neuonc/noy035] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background Craniopharyngiomas are neoplasms of the sellar/parasellar region that are classified into adamantinomatous craniopharyngioma (ACP) and papillary craniopharyngioma (PCP) subtypes. Surgical resection of craniopharyngiomas is challenging, and recurrence is common, frequently leading to profound morbidity. BRAF V600E mutations render PCP susceptible to BRAF/MEK inhibitors, but effective targeted therapies are needed for ACP. We explored the feasibility of targeting the programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) immune checkpoint pathway in ACP and PCP. Methods We mapped and quantified PD-L1 and PD-1 expression in ACP and PCP resections using immunohistochemistry, immunofluorescence, and RNA in situ hybridization. We used tissue-based cyclic immunofluorescence to map the spatial distribution of immune cells and characterize cell cycle and signaling pathways in ACP tumor cells which intrinsically express PD-1. Results All ACP (15 ± 14% of cells, n = 23, average ± SD) and PCP (35 ± 22% of cells, n = 18) resections expressed PD-L1. In ACP, PD-L1 was predominantly expressed by tumor cells comprising the cyst lining. In PCP, PD-L1 was highly expressed by tumor cells surrounding the stromal fibrovascular cores. ACP also exhibited tumor cell-intrinsic PD-1 expression in whorled epithelial cells with nuclear-localized beta-catenin. These cells exhibited evidence of elevated mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK) signaling. Profiling of immune populations in ACP and PCP showed a modest density of CD8+ T cells. Conclusions ACP exhibit PD-L1 expression in the tumor cyst lining and intrinsic PD-1 expression in cells proposed to comprise an oncogenic stem-like population. In PCP, proliferative tumor cells express PD-L1 in a continuous band at the stromal-epithelial interface. Targeting PD-L1 and/or PD-1 in both subtypes of craniopharyngioma might therefore be an effective therapeutic strategy.
Collapse
Affiliation(s)
- Shannon Coy
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Rumana Rashid
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Jia-Ren Lin
- Harvard Medical School, Boston, Massachusetts.,MS LINCS Center and Laboratory of Systems Pharmacology, Boston, Massachusetts
| | - Ziming Du
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Andrew M Donson
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado.,Morgan Adams Foundation Pediatric Brain Tumor Research Program, Denver, Colorado
| | - Todd C Hankinson
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Denver, Colorado.,Department of Neurosurgery, Children's Hospital Colorado, Aurora, Colorado
| | - Nicholas K Foreman
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado.,Morgan Adams Foundation Pediatric Brain Tumor Research Program, Denver, Colorado
| | - Peter E Manley
- Harvard Medical School, Boston, Massachusetts.,Pediatric Medical Neuro-Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Mark W Kieran
- Harvard Medical School, Boston, Massachusetts.,Pediatric Medical Neuro-Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - David A Reardon
- Harvard Medical School, Boston, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Peter K Sorger
- Harvard Medical School, Boston, Massachusetts.,MS LINCS Center and Laboratory of Systems Pharmacology, Boston, Massachusetts.,Ludwig Center at Harvard, Boston, Massachusetts
| | - Sandro Santagata
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,MS LINCS Center and Laboratory of Systems Pharmacology, Boston, Massachusetts.,Ludwig Center at Harvard, Boston, Massachusetts.,Department of Pathology, Boston Children's Hospital, Boston, Massachusetts.,Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
12
|
Wu F, Mao D, Liu Y, Chen X, Xu H, Li TC, Wang CC. Localization of Mucin 1 in endometrial luminal epithelium and its expression in women with reproductive failure during implantation window. J Mol Histol 2019; 50:563-572. [DOI: 10.1007/s10735-019-09848-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/23/2019] [Indexed: 11/30/2022]
|
13
|
Yoshimoto K, Hatae R, Suzuki SO, Hata N, Kuga D, Akagi Y, Amemiya T, Sangatsuda Y, Mukae N, Mizoguchi M, Iwaki T, Iihara K. High-resolution melting and immunohistochemical analysis efficiently detects mutually exclusive genetic alterations of adamantinomatous and papillary craniopharyngiomas. Neuropathology 2017; 38:3-10. [PMID: 28840946 DOI: 10.1111/neup.12408] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 12/11/2022]
Abstract
Craniopharyngioma consists of adamantinomatous and papillary subtypes. Recent genetic analysis has demonstrated that the two subtypes are different, not only in clinicopathological features, but also in molecular oncogenesis. Papillary craniopharyngioma (pCP) is characterized by a BRAF mutation, the V600E (Val 600 Glu) mutation. Adamantinomatous craniopharyngioma (aCP) can be distinguished by frequent β-catenin gene (CTNNB1) mutations. Although these genetic alterations can be a diagnostic molecular marker, the precise frequency of these mutations in clinical specimens remains unknown. In this study, we first evaluated BRAF V600E and CTNNB1 mutations in four and 14 cases of pCP and aCP, respectively, using high-resolution melting analysis followed by Sanger sequencing. The results showed that 100% (4/4) of pCP cases had BRAF V600E mutations, while 78% (11/14) of the aCP cases had CTNNB1 mutations, with these genetic alterations being subtype-specific and mutually exclusive. Second, we evaluated BRAF V600E and CTNNB1 mutations by immunohistochemical analysis (IHC). All pCP cases showed positive cytoplasmic staining with the BRAF V600E-mutant antibody (VE-1), whereas 86% (12/14) of aCP cases showed positive cytoplasmic and nuclear staining for CTNNB1, suggesting a CTNNB1 mutation. Only one case of wild-type CTNNB1 on the DNA analysis showed immunopositivity on IHC. We did not detect a coexistence of BRAF V600E and CTNNB1 mutations in any single tumor, which indicated that these genetic alterations were mutually exclusive. We also report our modified IHC protocol for VE-1 staining, and present the possibility that BRAF V600E mutations can be used as a diagnostic marker of pCP in the differentiation of Rathke cleft cyst with squamous metaplasia.
Collapse
Affiliation(s)
- Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryusuke Hatae
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi O Suzuki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuhiro Hata
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daisuke Kuga
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yojiro Akagi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeo Amemiya
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuhei Sangatsuda
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobutaka Mukae
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Kitakyushu Municipal Medical Center, Kitakyushu, Japan
| | - Toru Iwaki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Iihara
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
14
|
Nuclear CRX and FOXJ1 Expression Differentiates Non-Germ Cell Pineal Region Tumors and Supports the Ependymal Differentiation of Papillary Tumor of the Pineal Region. Am J Surg Pathol 2017; 41:1410-1421. [PMID: 28719464 DOI: 10.1097/pas.0000000000000903] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Papillary tumor of the pineal region (PTPR) is a neuroepithelial neoplasm first described in 2003. Despite the anatomic association of PTPR with the pineal gland, the features of these tumors resemble those of the ependymal circumventricular subcommissural organ (SCO) of the posterior third ventricle. Given the presumed distinct derivation of PTPR and pineal parenchymal tumors, we hypothesized that expression of lineage-specific transcription factors could distinguish these tumors and provide additional insight into the differentiation of PTPR. A broad series of pineal region samples was reviewed, including 7 benign pineal glands, 4 pineal cysts, 13 pineocytomas, 28 pineal parenchymal tumors of intermediate differentiation, 11 pineoblastomas, and 18 PTPR. All samples were evaluated by immunohistochemistry for expression of CRX, a master transcriptional regulator of photoreceptor differentiation expressed in pineal gland and retina and/or FOXJ1, a master transcriptional regulator of ciliogenesis expressed in normal ependymal cells and ependymal neoplasms. Diffuse nuclear CRX expression is present in 100% of pineal samples. FOXJ1 is negative in all pineal samples. CRX staining is present in 53% of PTPR, though expression is nearly always limited to rare cells. Diffuse nuclear FOXJ1 expression is present in 100% of PTPR. Fetal human SCO diffusely expressed FOXJ1 but was negative for CRX. Immunohistochemistry for FOXJ1 and CRX differentiates non-germ cell pineal region tumors with high sensitivity and specificity, including pineal parenchymal tumors and PTPR. Our findings support the hypothesis that PTPR have ependymal differentiation and are phenotypically more similar to SCO than pineal gland.
Collapse
|
15
|
Kleinschmidt-DeMasters BK, Lillehei KO, Hankinson TC. Review of xanthomatous lesions of the sella. Brain Pathol 2017; 27:377-395. [PMID: 28236350 DOI: 10.1111/bpa.12498] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 02/09/2017] [Indexed: 12/28/2022] Open
Abstract
Xanthomatous lesions of the sellar region have traditionally been divided into two separate categories, xanthomatous hypophysitis (XH) and xanthogranuloma (XG) of the sellar region. The seminal article on XH, a condition typified by foamy histiocytes and lymphoplasmacytic infiltrates in the pituitary gland/sellar region, but usually little or no hemosiderin pigment, detailed three patients. However, most reports since that time have been single cases, making understanding of the entity difficult. In contrast, the seminal report on XG, characterized by sellar region cholesterol clefts, lymphoplasmacytic infiltrates, marked hemosiderin deposits, fibrosis, multinucleated giant cells around cholesterol clefts, eosinophilic granular necrotic debris, and accumulation of macrophages, included 37 patients, allowing more insights into etiology. Few examples could be linked to adamantinomatous craniopharyngioma, and although ciliated epithelium similar to that of Rathke cleft cyst (RCC) was identified up to 35% of the 37 cases, it could not be proven that XG was related to hemorrhage into RCC. Case reports since that time, however, occasionally linked XG to RCC when an etiology could be identified at all, and a few recognized that a spectrum exists in xanthomatous lesions of the sella. They review literature, adding 23 cases from our own experience, to confirm that overlap occurs between XH and XG, and that the majority-but not all-can be linked to RCC leakage/rupture/hemorrhage. It was suggested that progressive accumulation of hemosiderin pigment in the lesion, possibly caused by the multiple episodes of bleeding, could account for the transition of at least some cases of XH to XG.
Collapse
Affiliation(s)
- B K Kleinschmidt-DeMasters
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO.,Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO.,Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Kevin O Lillehei
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO.,Morgan Adams Foundation Pediatric Brian Tumor Research Program
| | - Todd C Hankinson
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO.,Department of Neurosurgery, Children's Hospital Colorado, Aurora, CO
| |
Collapse
|
16
|
Apps JR, Martinez-Barbera JP. Genetically engineered mouse models of craniopharyngioma: an opportunity for therapy development and understanding of tumor biology. Brain Pathol 2017; 27:364-369. [PMID: 28414891 PMCID: PMC5705945 DOI: 10.1111/bpa.12501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 02/24/2017] [Indexed: 01/19/2023] Open
Abstract
Adamantinomatous craniopharyngioma (ACP) is the commonest tumor of the sellar region in childhood. Two genetically engineered mouse models have been developed and are giving valuable insights into ACP biology. These models have identified novel pathways activated in tumors, revealed an important function of paracrine signalling and extended conventional theories about the role of organ‐specific stem cells in tumorigenesis. In this review, we summarize these mouse models, what has been learnt, their limitations and open questions for future research. We then discussed how these mouse models may be used to test novel therapeutics against potentially targetable pathways recently identified in human ACP.
Collapse
Affiliation(s)
- John Richard Apps
- Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, University College London, Guilford Street, London, WC1N 1EH, UK
| | - Juan Pedro Martinez-Barbera
- Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, University College London, Guilford Street, London, WC1N 1EH, UK
| |
Collapse
|
17
|
Robinson LC, Santagata S, Hankinson TC. Potential evolution of neurosurgical treatment paradigms for craniopharyngioma based on genomic and transcriptomic characteristics. Neurosurg Focus 2017; 41:E3. [PMID: 27903126 DOI: 10.3171/2016.9.focus16308] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The recent genomic and transcriptomic characterization of human craniopharyngiomas has provided important insights into the pathogenesis of these tumors and supports that these tumor types are distinct entities. Critically, the insights provided by these data offer the potential for the introduction of novel therapies and surgical treatment paradigms for these tumors, which are associated with high morbidity rates and morbid conditions. Mutations in the CTNNB1 gene are primary drivers of adamantinomatous craniopharyngioma (ACP) and lead to the accumulation of β-catenin protein in a subset of the nuclei within the neoplastic epithelium of these tumors. Dysregulation of epidermal growth factor receptor (EGFR) and of sonic hedgehog (SHH) signaling in ACP suggest that paracrine oncogenic mechanisms may underlie ACP growth and implicate these signaling pathways as potential targets for therapeutic intervention using directed therapies. Recent work shows that ACP cells have primary cilia, further supporting the potential importance of SHH signaling in the pathogenesis of these tumors. While further preclinical data are needed, directed therapies could defer, or replace, the need for radiation therapy and/or allow for less aggressive surgical interventions. Furthermore, the prospect for reliable control of cystic disease without the need for surgery now exists. Studies of papillary craniopharyngioma (PCP) are more clinically advanced than those for ACP. The vast majority of PCPs harbor the BRAFv600e mutation. There are now 2 reports of patients with PCP that had dramatic therapeutic responses to targeted agents. Ongoing clinical and research studies promise to not only advance our understanding of these challenging tumors but to offer new approaches for patient management.
Collapse
Affiliation(s)
- Leslie C Robinson
- Pediatric Neurosurgery, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado; and
| | - Sandro Santagata
- Department of Pathology, Brigham and Women's Hospital, Boston Children's Hospital, Harvard Institute of Medicine, Boston, Massachusetts
| | - Todd C Hankinson
- Pediatric Neurosurgery, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado; and
| |
Collapse
|