1
|
Talibova G, Bilmez Y, Tire B, Ozturk S. The DNA double-strand break repair proteins γH2AX, RAD51, BRCA1, RPA70, KU80, and XRCC4 exhibit follicle-specific expression differences in the postnatal mouse ovaries from early to older ages. J Assist Reprod Genet 2024; 41:2419-2439. [PMID: 39023827 PMCID: PMC11405603 DOI: 10.1007/s10815-024-03189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
PURPOSE Ovarian aging is closely related to a decrease in follicular reserve and oocyte quality. The precise molecular mechanisms underlying these reductions have yet to be fully elucidated. Herein, we examine spatiotemporal distribution of key proteins responsible for DNA double-strand break (DSB) repair in ovaries from early to older ages. Functional studies have shown that the γH2AX, RAD51, BRCA1, and RPA70 proteins play indispensable roles in HR-based repair pathway, while the KU80 and XRCC4 proteins are essential for successfully operating cNHEJ pathway. METHODS Female Balb/C mice were divided into five groups as follows: Prepuberty (3 weeks old; n = 6), puberty (7 weeks old; n = 7), postpuberty (18 weeks old; n = 7), early aged (52 weeks old; n = 7), and late aged (60 weeks old; n = 7). The expression of DSB repair proteins, cellular senescence (β-GAL) and apoptosis (cCASP3) markers was evaluated in the ovaries using immunohistochemistry. RESULT β-GAL and cCASP3 levels progressively increased from prepuberty to aged groups (P < 0.05). Notably, γH2AX levels varied in preantral and antral follicles among the groups (P < 0.05). In aged groups, RAD51, BRCA1, KU80, and XRCC4 levels increased (P < 0.05), while RPA70 levels decreased (P < 0.05) compared to the other groups. CONCLUSIONS The observed alterations were primarily attributed to altered expression in oocytes and granulosa cells of the follicles and other ovarian cells. As a result, the findings indicate that these DSB repair proteins may play a role in the repair processes and even other related cellular events in ovarian cells from early to older ages.
Collapse
Affiliation(s)
- Gunel Talibova
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Yesim Bilmez
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Betul Tire
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
2
|
Cai X, Stringer JM, Zerafa N, Carroll J, Hutt KJ. Xrcc5/Ku80 is required for the repair of DNA damage in fully grown meiotically arrested mammalian oocytes. Cell Death Dis 2023; 14:397. [PMID: 37407587 DOI: 10.1038/s41419-023-05886-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/07/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023]
Abstract
Mammalian oocytes spend most of their life in a unique state of cell cycle arrest at meiotic prophase I, during which time they are exposed to countless DNA-damaging events. Recent studies have shown that DNA double-strand break repair occurs predominantly via the homologous recombination (HR) pathway in small non-growing meiotically arrested oocytes (primordial follicle stage). However, the DNA repair mechanisms employed by fully grown meiotically arrested oocytes (GV-stage) have not been studied in detail. Here we established a conditional knockout mouse model to explore the role of Ku80, a critical component of the nonhomologous end joining (NHEJ) pathway, in the repair of DNA damage in GV oocytes. GV oocytes lacking Ku80 failed to repair etoposide-induced DNA damage, even when only low levels of damage were sustained. This indicates Ku80 is needed to resolve DSBs and that HR cannot compensate for a compromised NHEJ pathway in fully-grown oocytes. When higher levels of DNA damage were induced, a severe delay in M-phase entry was observed in oocytes lacking XRCC5 compared to wild-type oocytes, suggesting that Ku80-dependent repair of DNA damage is important for the timely release of oocytes from prophase I and resumption of meiosis. Ku80 was also found to be critical for chromosome integrity during meiotic maturation following etoposide exposure. These data demonstrate that Ku80, and NHEJ, are vital for quality control in mammalian GV stage oocytes and reveal that DNA repair pathway choice differs in meiotically arrested oocytes according to growth status.
Collapse
Affiliation(s)
- Xuebi Cai
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Jessica M Stringer
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Nadeen Zerafa
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - John Carroll
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Karla J Hutt
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
3
|
Sato H, Niimi A, Yasuhara T, Permata TBM, Hagiwara Y, Isono M, Nuryadi E, Sekine R, Oike T, Kakoti S, Yoshimoto Y, Held KD, Suzuki Y, Kono K, Miyagawa K, Nakano T, Shibata A. DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells. Nat Commun 2017; 8:1751. [PMID: 29170499 PMCID: PMC5701012 DOI: 10.1038/s41467-017-01883-9] [Citation(s) in RCA: 502] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 10/23/2017] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence suggests that exogenous cellular stress induces PD-L1 upregulation in cancer. A DNA double-strand break (DSB) is the most critical type of genotoxic stress, but the involvement of DSB repair in PD-L1 expression has not been investigated. Here we show that PD-L1 expression in cancer cells is upregulated in response to DSBs. This upregulation requires ATM/ATR/Chk1 kinases. Using an siRNA library targeting DSB repair genes, we discover that BRCA2 depletion enhances Chk1-dependent PD-L1 upregulation after X-rays or PARP inhibition. In addition, we show that Ku70/80 depletion substantially enhances PD-L1 upregulation after X-rays. The upregulation by Ku80 depletion requires Chk1 activation following DNA end-resection by Exonuclease 1. DSBs activate STAT1 and STAT3 signalling, and IRF1 is required for DSB-dependent PD-L1 upregulation. Thus, our findings reveal the involvement of DSB repair in PD-L1 expression and provide mechanistic insight into how PD-L1 expression is regulated after DSBs.
Collapse
Affiliation(s)
- Hiro Sato
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Atsuko Niimi
- Research Program for Heavy Ion Therapy, Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma, 371-8511, Japan
| | - Takaaki Yasuhara
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tiara Bunga Mayang Permata
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Yoshihiko Hagiwara
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Mayu Isono
- Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma, 371-8511, Japan
| | - Endang Nuryadi
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Ryota Sekine
- Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma, 371-8511, Japan
| | - Takahiro Oike
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Sangeeta Kakoti
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Yuya Yoshimoto
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Kathryn D Held
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, 02114, USA
- International Open Laboratory, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma, 371-8511, Japan
| | - Yoshiyuki Suzuki
- Department of Radiation Oncology, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Kiyoshi Miyagawa
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
- Research Program for Heavy Ion Therapy, Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma, 371-8511, Japan
| | - Atsushi Shibata
- Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma, 371-8511, Japan.
- Education and Research Support Center, Graduate School of Medicine, Gunma University, Maebashi, Gunma, 371-8511, Japan.
| |
Collapse
|
4
|
Mechanisms Underlying the Absence of Cancers of the Human Crystalline Lens. Int Ophthalmol Clin 2016; 57:49-56. [PMID: 27898613 DOI: 10.1097/iio.0000000000000159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Zu G, Dou Y, Tian Q, Wang H, Zhao W, Li F. Role and mechanism of radiological protection cream in treating radiation dermatitis in rats. J TRADIT CHIN MED 2014; 34:329-37. [PMID: 24992761 DOI: 10.1016/s0254-6272(14)60098-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To explore the role and mechanism of a radiation protection cream (Rp) in the treatment of radiation dermatitis, and to accumulate necessary technical information for a new drug report on Rp. METHODS High-performance liquid chromatography was used to establish the method of measuring the main effective ingredients of sovereign and adjuvant herbs of Rp drugs, and to formulate the draft quality standards of Rp. A total of 48 Sprague-Dawley male rats were randomly divided into the Model, Trolamine cream (Tc), Rp and Blank groups according to a random number table method. The skin of each rat's buttocks was irradiated using an electron linear accelerator to establish an acute radiation dermatitis model. The histological changes were observed under light microscopy and electron microscopy during wound healing and the effect of Rp on rat fibroblast Ku70/80 gene expression was detected at the transcriptional level. RESULTS Pathological examination revealed that Rp protected the cellular and subcellular structures of skin after irradiation, promoting the proliferation and restoration of collagen fibers. Ku70/80 mRNA expression levels in the Rp and Tc groups were higher than that in the model group (P < 0.05). Moreover, The majority of grade radiation dermatitis relative to the Model, Rp and Tc groups for reducing grade III and IV dermatitis efficiency were 85.7% and 69.2% (P < 0.05), respectively. The efficacy of Rp group in treating radiation dermatitis was better than the Trolamine cream group by 16.5% (P < 0.05). CONCLUSION Compared with Tc, Rp had certain advantages in the efficacy and performance to price ratio. Thus, Rp is considered an effective alternative formulation for the prevention and treatment of radiation dermatitis.
Collapse
|
6
|
O’Sullivan D, Henry M, Joyce H, Walsh N, Auley EM, Dowling P, Swan N, Moriarty M, Barnham P, Clynes M, Larkin A. 7B7: a novel antibody directed against the Ku70/Ku80 heterodimer blocks invasion in pancreatic and lung cancer cells. Tumour Biol 2014; 35:6983-97. [DOI: 10.1007/s13277-014-1857-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/17/2014] [Indexed: 02/06/2023] Open
|
7
|
Mandalà M, Massi D. Tissue prognostic biomarkers in primary cutaneous melanoma. Virchows Arch 2014; 464:265-81. [PMID: 24487785 DOI: 10.1007/s00428-013-1526-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/03/2013] [Indexed: 01/04/2023]
Abstract
Cutaneous melanoma (CM) causes the greatest number of skin cancer-related deaths worldwide. Predicting CM prognosis is important to determine the need for further investigation, counseling of patients, to guide appropriate management (particularly the need for postoperative adjuvant therapy), and for assignment of risk status in groups of patients entering clinical trials. Since recurrence rate is largely independent from stages defined by morphological and morphometric criteria, there is a strong need for identification of additional robust prognostic factors to support decision-making processes. Most data on prognostic biomarkers in melanoma have been evaluated in tumor tissue samples by conventional morphology and immunohistochemistry (IHC) as well as DNA and RNA analyses. In the present review, we critically summarize main high-quality studies investigating IHC-based protein biomarkers of melanoma outcome according to Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK)-derived criteria. Pathways have been classified and conveyed in the "biologic road" previously described by Hanahan and Weinberg. Data derived from genomic and transcriptomic technologies have been critically reviewed to better understand if any of investigated proteins or gene signatures should be incorporated into clinical practice or still remain a field of melanoma research. Despite a wide body of research, no molecular prognostic biomarker has yet been translated into clinical practice. Conventional tissue biomarkers, such as Breslow thickness, ulceration, mitotic rate and lymph node positivity, remain the backbone prognostic indicators in melanoma.
Collapse
Affiliation(s)
- Mario Mandalà
- Unit of Clinical and Translational Research, Medical Oncology, Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | | |
Collapse
|
8
|
Gould Rothberg BE, Bracken MB, Rimm DL. Tissue biomarkers for prognosis in cutaneous melanoma: a systematic review and meta-analysis. J Natl Cancer Inst 2009; 101:452-74. [PMID: 19318635 DOI: 10.1093/jnci/djp038] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In the clinical management of early-stage cutaneous melanoma, it is critical to determine which patients are cured by surgery alone and which should be treated with adjuvant therapy. To assist in this decision, many groups have made an effort to use molecular information. However, although there are hundreds of studies that have sought to assess the potential prognostic value of molecular markers in predicting the course of cutaneous melanoma, at this time, no molecular method to improve risk stratification is part of recommended clinical practice. To help understand this disconnect, we conducted a systematic review and meta-analysis of the published literature that reported immunohistochemistry-based protein biomarkers of melanoma outcome. Three parallel search strategies were applied to the PubMed database through January 15, 2008, to identify cohort studies that reported associations between immunohistochemical expression and survival outcomes in melanoma that conformed to the REMARK criteria. Of the 102 cohort studies, we identified only 37 manuscripts, collectively describing 87 assays on 62 distinct proteins, which met all inclusion criteria. Promising markers that emerged included melanoma cell adhesion molecule (MCAM)/MUC18 (all-cause mortality [ACM] hazard ratio [HR] = 16.34; 95% confidence interval [CI] = 3.80 to 70.28), matrix metalloproteinase-2 (melanoma-specific mortality [MSM] HR = 2.6; 95% CI = 1.32 to 5.07), Ki-67 (combined ACM HR = 2.66; 95% CI = 1.41 to 5.01), proliferating cell nuclear antigen (ACM HR = 2.27; 95% CI = 1.56 to 3.31), and p16/INK4A (ACM HR = 0.29; 95% CI = 0.10 to 0.83, MSM HR = 0.4; 95% CI = 0.24 to 0.67). We further noted incomplete adherence to the REMARK guidelines: 14 of 27 cohort studies that failed to adequately report their methods and nine studies that failed to either perform multivariable analyses or report their risk estimates were published since 2005.
Collapse
|
9
|
Lee MN, Tseng RC, Hsu HS, Chen JY, Tzao C, Ho WL, Wang YC. Epigenetic inactivation of the chromosomal stability control genes BRCA1, BRCA2, and XRCC5 in non-small cell lung cancer. Clin Cancer Res 2007; 13:832-8. [PMID: 17289874 DOI: 10.1158/1078-0432.ccr-05-2694] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE Lung cancer cells frequently exhibit marked chromosome instability. We postulated that alterations of the double-strand break repair genes (BRCA1, BRCA2, and XRCC5) might be involved in lung cancer. PATIENTS AND METHODS We examined the loss of protein and mRNA expression and the 5'CpG hypermethylation and allelic imbalance of the BRCA1, BRCA2, and XRCC5 genes in 98 non-small cell lung cancer (NSCLC) samples. Anchorage-dependent growth after reexpression of these genes was examined in a lung cancer cell line that originally lacked BRCA1 and BRCA2 expression. RESULTS The data indicated that low protein expression of BRCA1 and BRCA2 was frequent in lung adenocarcinomas (42-44%), whereas low XRCC5 protein expression was more prevalent among squamous cell carcinoma (32%). In addition, low BRCA1 expression was significantly associated with low RB expression, especially in lung adenocarcinoma. Concurrent alterations in XRCC5 and p53 were the most frequent profiles in smoking patients. Importantly, low mRNA and protein expressions of BRCA1, BRCA2, and XRCC5 were significantly associated with their promoter hypermethylation. 5-Aza-2'-deoxycytidine treatment of NSCLC cells showed demethylation and reexpression of the BRCA1 and BRCA2 genes and reduced anchorage-independent growth. CONCLUSIONS Our retrospective study provides compelling evidence that low mRNA and protein expression in the BRCA1/BRCA2 and XRCC5 genes occur in lung adenocarcinoma and squamous cell carcinoma, respectively, and that promoter hypermethylation is the predominant mechanism in deregulation of these genes. Alteration of the double-strand break repair pathway, perhaps by interacting with p53 and RB deregulation, is important in the pathogenesis of a subset of NSCLC.
Collapse
Affiliation(s)
- Ming-Ni Lee
- Department of Life Sciences, National Taiwan Normal University, and Division of Thoracic Surgery, Taipei Veterans General Hospital, Taiwan
| | | | | | | | | | | | | |
Collapse
|
10
|
Madhusudan S, Middleton MR. The emerging role of DNA repair proteins as predictive, prognostic and therapeutic targets in cancer. Cancer Treat Rev 2005; 31:603-17. [PMID: 16298073 DOI: 10.1016/j.ctrv.2005.09.006] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Advanced cancer is the second leading cause of death in the western world. Chemotherapy and radiation are the two main treatment modalities currently available to improve patient outcomes, but treatment related toxicity and the emergence of resistance limit their effectiveness. Hence there is an urgent need to develop novel treatment strategies. Rapid advances in cancer biology have identified key pathways involved in the repair of DNA damage induced by chemotherapeutic agents and irradiation. Efficient DNA repair in the cancer cell is an important mechanism for therapeutic resistance. Up to 130 genes have been identified that are associated with human DNA repair. Several of these proteins are emerging as important predictive and prognostic factors in solid tumours. Inhibition of DNA repair has the potential to enhance the efficacy of currently available DNA damaging agents. In recent years, several promising drug targets have been identified and novel drugs synthesised that target specific DNA repair proteins. These agents have shown impressive anti-cancer effects in preclinical studies in combination with chemotherapy or irradiation. Their role in human cancer is now being investigated in early phase clinical trials in combination with chemotherapy. MGMT inhibitors, PARP inhibitors and methoxyamine are currently in early stages of clinical development. Innovative clinical trial designs are essential to evaluate the potential of DNA repair inhibitor in cancer therapy.
Collapse
Affiliation(s)
- Srinivasan Madhusudan
- Cancer Research UK, Medical Oncology Unit, University of Oxford, The Churchill, Oxford Radcliffe Hospitals, Oxford OX3 7LJ, United Kingdom
| | | |
Collapse
|
11
|
Boukerche H, Su ZZ, Kang DC, Fisher PB. Identification and cloning of genes displaying elevated expression as a consequence of metastatic progression in human melanoma cells by rapid subtraction hybridization. Gene 2005; 343:191-201. [PMID: 15563845 DOI: 10.1016/j.gene.2004.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 08/13/2004] [Accepted: 09/10/2004] [Indexed: 01/22/2023]
Abstract
Although extensively investigated, the complete repertoire of genes associated with and causative of metastasis remain largely unknown. We developed an efficient approach for identifying differentially expressed genes that involves rapid subtraction hybridization (RaSH) of cDNA clones prepared from two cell populations, a driver and a tester. This RaSH approach has previously documented high sensitivity and effectiveness in identifying genes that are differentially expressed as a function of induction of terminal differentiation in human melanoma cells, resistance or sensitivity to human immunodeficiency virus-1 (HIV-1) infection of human T cells and perturbation in gene expression in normal human fetal astrocytes infected with HIV-1 or treated with HIV-1 gp120 viral envelope glycoprotein or tumor necrosis factor-alpha (TNF-alpha). In the present study, RaSH has been applied to a metastatic melanoma model, which mimics the early events of metastasis in humans, comprising weakly metastatic vs. immunosuppressed newborn rat-selected highly metastatic variants. This has now resulted in the identification of eight genes displaying elevated expression in the high metastatic variants vs. normal immortal melanocytes or weakly metastatic parental clones. These include six known genes, 67-kDa laminin receptor (67LR), endothelin receptor B (ENDRB), Na+/K+-ATPase, Ku antigen, interleukin-receptor-associated kinase-1 (IRAK-1) and ribosomal protein RPLA, which may contribute to the complex process of melanoma metastasis. Additionally, two unknown genes (not reported in current databases) that may also impact on the metastatic phenotype have also been identified. These studies provide additional support of the use of the RaSH approach, in this application in the context of closely related variant cell lines with different metastatic potential, for effective differential gene identification and elucidate eight previously unrecognized genes whose role in melanoma progression to metastatic competence can now be scrutinized.
Collapse
Affiliation(s)
- Habib Boukerche
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | |
Collapse
|
12
|
Abstract
Metastatic melanoma has a poor prognosis due to resistance to multiple chemotherapy regimens. The mainstay of treatment remains dacarbazine, with cisplatin being a commonly used alternative. Melanoma displays marked resistance to the DNA-damaging effects of these drugs. Intrinsic and acquired resistance involves multiple cellular pathways of damage recognition, repair and apoptosis. Increased understanding of these pathways is identifying novel targets that it is hoped will make inroads into the treatment of this lethal disease.
Collapse
Affiliation(s)
- Penny A Bradbury
- Cancer Research UK Medical Oncology Unit, Churchill Hospital, Oxford, UK
| | | |
Collapse
|
13
|
Korabiowska M, Bauer H, Quentin T, Stachura J, Cordon-Cardo C, Brinck U. Application of new in situ hybridization probes for Ku70 and Ku80 in tissue microarrays of paraffin-embedded malignant melanomas: correlation with immunohistochemical analysis. Hum Pathol 2004; 35:210-6. [PMID: 14991539 DOI: 10.1016/j.humpath.2003.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ku70 and Ku80 proteins are responsible for the repair of DNA double-strand breaks and function as a regulatory subunit of the DNA-dependent protein kinase. In this study we analyzed expression of both genes in malignant melanoma tissue arrays applying in situ hybridization probes produced by our research group and using immunohistochemical analysis. Expression of both genes was down-regulated as melanoma progressed. In situ hybridization demonstrated more Ku70- and Ku80-positive cells than immunohistochemical methods, but the correlation between the two methods was highly significant (P <0.01). We conclude that the in situ hybridization assay for the detection of Ku70 and Ku80 expression used in this study is also suitable for tissue microarray analysis of paraffin-embedded melanoma samples. The laboratory procedure is much more complicated than the immunohistochemical method, however.
Collapse
Affiliation(s)
- Monika Korabiowska
- Department of Cytopathology, Georg-August-University, Goettingen, Germany
| | | | | | | | | | | |
Collapse
|