1
|
Nadeem A, Sharma P, Gupta P, Sandeep P, Sharma B, Sharma N, Yadav M, Dhiman N. Exploring Neuregulin3: From physiology to pathology, a novel target for rational drug design. Biochem Pharmacol 2025; 238:116964. [PMID: 40320052 DOI: 10.1016/j.bcp.2025.116964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 04/23/2025] [Accepted: 04/28/2025] [Indexed: 05/09/2025]
Abstract
Neuregulin 3 (NRG3) is an epidermal growth factor related protein that binds to and stimulates the Erb-B2 receptor tyrosine kinase 4 (ErbB4). NRG3 is a multifunctional protein with fifteen alternative splicing isoforms categorized into four classes. Numerous physiological processes, such as the formation of cortical plate, cortical patterning, synaptic development, neuronal proliferation, regulation of neurotransmission, control of impulsive behavior, mammary gland morphogenesis, spermatogonial proliferation and cardiac homeostasis are influenced by NRG3. Besides its physiological roles, NRG3 also modulates anxiogenic phenotypes. It is a susceptibility gene for schizophrenia, autism spectrum disorder and Hirschsprung's Disease. Furthermore, anxiety during nicotine withdrawal is dependent on NRG3-ErbB4 signaling. Research on a range of solid carcinomas, such as brain tumors, ovarian cancer, gastrointestinal cancer and breast cancer, has demonstrated NRG3 gene as a therapeutic target. NRG3 also has potential involvement in epilepsy, angular limb malformation in Rambouillet rams, amyotrophic lateral sclerosis and polythelia. Nevertheless, little is known about the molecular characteristics, activities specific to isoforms, and molecular mechanisms of NRG3. Examining its potential involvement in a range of physiological processes and pathological states is a unique area that needs in-depth study and may offer new mechanistic insights and comprehension of these elements. Thus, the purpose of this review is to shed light on the utility of NRG3 as a potential target in various health and disease conditions.
Collapse
Affiliation(s)
- Aqsa Nadeem
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India; Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh 201306, India.
| | - Palak Gupta
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Parth Sandeep
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, Gurugram University (A State Govt. University), Gurugram, Haryana, India.
| | - Nitin Sharma
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Mahendra Yadav
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Neerupma Dhiman
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| |
Collapse
|
2
|
Turner-Ivey B, Jenkins DP, Carroll SL. Multiple Roles for Neuregulins and Their ERBB Receptors in Neurodegenerative Disease Pathogenesis and Therapy. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00119-1. [PMID: 40254133 DOI: 10.1016/j.ajpath.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 04/22/2025]
Abstract
The role that neurotrophins, such as nerve growth factor, play in the pathogenesis of neurodegenerative diseases has long been appreciated. However, the neuregulin (NRG) family of growth factors and/or their v-erb-B2 avian erythroblastic leukemia viral oncogene homolog (ERBB) receptors have also been implicated in the pathogenesis of conditions, such as Alzheimer disease (AD), frontotemporal lobar degeneration (FTLD), and amyotrophic lateral sclerosis (ALS). In this review, we consider i) the structural variability of NRG isoforms generated by alternative RNA splicing, the use of multiple promoters and proteolysis, and the impact that this structural variability has on neuronal and glial physiology during development and adulthood. We discuss ii) the NRG receptors ERBB2, ERBB3, and ERBB4, how activation of each of these receptors further diversifies NRG actions in the central nervous system, and how dementia-related proteins, such as γ-secretase modulate the action of NRGs and their ERBB receptors. We then iii) turn to the abnormalities in NRG and ERBB expression and function evident in human AD and mouse AD models, how these abnormalities affect brain function, and attempts to use NRGs to treat AD. Finally, iv) we discuss NRG effects on the survival and function of neurons relevant to FTLD and ALS, alterations in NRG/ERBB signaling identified in these conditions, and the recent discovery of multiple human pedigrees in which autosomal dominant FTLD/ALS potentially results from point mutations in ERBB4.
Collapse
Affiliation(s)
- Brittany Turner-Ivey
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Dorea P Jenkins
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
3
|
Puerta R, de Rojas I, García-González P, Olivé C, Sotolongo-Grau O, García-Sánchez A, García-Gutiérrez F, Montrreal L, Tartari JP, Sanabria Á, Pytel V, Lage C, Quintela I, Aguilera N, Rodriguez-Rodriguez E, Alarcón-Martín E, Orellana A, Pastor P, Pérez-Tur J, Piñol-Ripoll G, López de Munain A, García-Alberca JM, Royo JL, Bullido MJ, Álvarez V, Real LM, Corbatón Anchuelo A, Gómez-Garre D, Martínez Larrad MT, Franco-Macías E, Mir P, Medina M, Sánchez-Valle R, Dols-Icardo O, Sáez ME, Carracedo Á, Tárraga L, Alegret M, Valero S, Marquié M, Boada M, Sánchez Juan P, Cavazos JE, Cabrera-Socorro A, Cano A, Ruiz A. Linking genomic and proteomic signatures to brain amyloid burden: insights from GR@ACE/DEGESCO. Funct Integr Genomics 2025; 25:73. [PMID: 40133566 PMCID: PMC11937198 DOI: 10.1007/s10142-025-01581-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025]
Abstract
Alzheimer's disease (AD) is a complex disease with a strong genetic component, yet many genetic risk factors remain unknown. We combined genome-wide association studies (GWAS) on amyloid endophenotypes measured in cerebrospinal fluid (CSF) and positron emission tomography (PET) as surrogates of amyloid pathology, which may provide insights into the underlying biology of the disease. We performed a meta-GWAS of CSF Aβ42 and PET measures combining six independent cohorts (n = 2,076). Given the opposite beta direction of Aβ phenotypes in CSF and PET measures, only genetic signals showing opposite directions were considered for analysis (n = 376,599). We explored the amyloidosis signature in the CSF proteome using SOMAscan proteomics (ACE cohort, n = 1,008), connected it with GWAS loci modulating amyloidosis and performed an enrichment analysis of overlapping hits. Finally, we compared our results with a large meta-analysis using publicly available datasets in CSF (n = 13,409) and PET (n = 13,116). After filtering the meta-GWAS, we observed genome-wide significance in the rs429358-APOE locus and annotated nine suggestive hits. We replicated the APOE loci using the large CSF-PET meta-GWAS, identifying multiple AD-associated genes including the novel GADL1 locus. Additionally, we found 1,387 FDR-significant SOMAscan proteins associated with CSF Aβ42 levels. The overlap among GWAS loci and proteins associated with amyloid burden was minimal (n = 35). The enrichment analysis revealed mechanisms connecting amyloidosis with the plasma membrane's anchored component, synapse physiology and mental disorders that were replicated in the large CSF-PET meta-analysis. Combining CSF and PET amyloid GWAS with CSF proteome analyses may effectively elucidate causative molecular mechanisms behind amyloid mobilization and AD physiopathology.
Collapse
Affiliation(s)
- Raquel Puerta
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- Doctorate in Biotechnology, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Itziar de Rojas
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Pablo García-González
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Clàudia Olivé
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
| | - Oscar Sotolongo-Grau
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
| | - Ainhoa García-Sánchez
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
| | - Fernando García-Gutiérrez
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
| | - Laura Montrreal
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
| | - Juan Pablo Tartari
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
| | - Ángela Sanabria
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Vanesa Pytel
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Carmen Lage
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Marqués de Valdecilla University Hospital- IDIVAL-Universidad de Cantabria, Santander, Spain
| | - Inés Quintela
- Grupo de Medicina Xenómica, Centro Nacional de Genotipado (CEGEN-PRB3-ISCIII), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Nuria Aguilera
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
| | - Eloy Rodriguez-Rodriguez
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Marqués de Valdecilla University Hospital- IDIVAL-Universidad de Cantabria, Santander, Spain
| | - Emilio Alarcón-Martín
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
| | - Adelina Orellana
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Pau Pastor
- Unit of Neurodegenerative Diseases, Department of Neurology, University Hospital Germans Trias I Pujol, Badalona, Barcelona, Spain
- The Germans Trias I Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
| | - Jordi Pérez-Tur
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Unitat de Genètica Molecular, Institut de Biomedicina de València-CSIC, Valencia, Spain
- Unidad Mixta de Neurologia Genètica, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Gerard Piñol-Ripoll
- Unitat Trastorns Cognitius, Hospital Universitari Santa Maria de Lleida, Lleida, Spain
- Institut de Recerca Biomedica de Lleida (IRBLLeida), Lleida, Spain
| | - Adolfo López de Munain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Neurology, Hospital Universitario Donostia, San Sebastian, Spain
- Department of Neurosciences. Faculty of Medicine and Nursery, University of the Basque Country, San Sebastián, Spain
- Neurosciences Area, Instituto Biodonostia, San Sebastian, Spain
| | - Jose María García-Alberca
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Alzheimer Research Center & Memory Clinic, Andalusian Institute for Neuroscience, Málaga, Spain
| | - Jose Luís Royo
- Departamento de Especialidades Quirúrgicas, Bioquímica E Inmunología. School of Medicine, University of Malaga, Málaga, Spain
| | - María J Bullido
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria 'Hospital La Paz' (IdIPaz), Madrid, Spain
- Universidad Autónoma de Madrid, Madrid, Spain
| | - Victoria Álvarez
- Laboratorio de Genética, Hospital Universitario Central de Asturias, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Luis Miguel Real
- Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen de Valme/CSIC/Dpto de Bioquímica Médica, Biología Molecular e Inmunología/Universidad de Sevilla, Sevilla, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Arturo Corbatón Anchuelo
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Dulcenombre Gómez-Garre
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
- Laboratorio de Riesgo Cardiovascular y Microbiota, Hospital Clínico San Carlos; Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Biomedical Research Networking Center in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - María Teresa Martínez Larrad
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Emilio Franco-Macías
- Dementia Unit, Department of Neurology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBiS), Seville, Spain
| | - Pablo Mir
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología. Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Miguel Medina
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- CIEN Foundation/Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Raquel Sánchez-Valle
- Alzheimer'S Disease and Other Cognitive Disorders Unit. Service of Neurology. Hospital Clínic of Barcelona. Institut d'Investigacions Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | - Oriol Dols-Icardo
- Department of Neurology, Sant Pau Memory Unit, Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Ángel Carracedo
- Grupo de Medicina Xenómica, Centro Nacional de Genotipado (CEGEN-PRB3-ISCIII), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica- CIBERER-IDIS, Santiago de Compostela, Spain
| | - Lluís Tárraga
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Montse Alegret
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Sergi Valero
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Marta Marquié
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Pascual Sánchez Juan
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Reina Sofia Alzheimer Centre, CIEN Foundation, ISCIII, Madrid, Spain
| | - Jose Enrique Cavazos
- South Texas Alzheimer's Disease Research Center, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Alfredo Cabrera-Socorro
- Neuroscience Therapeutic Area, Janssen Research & Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Amanda Cano
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Agustín Ruiz
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain.
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain.
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA.
- Department of Microbiology, Immunology and Molecular Genetics. Long School of Medicine, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
4
|
Puerta R, de Rojas I, García-González P, Olivé C, Sotolongo-Grau O, García-Sánchez A, García-Gutiérrez F, Montrreal L, Pablo Tartari J, Sanabria Á, Pytel V, Lage C, Quintela I, Aguilera N, Rodriguez-Rodriguez E, Alarcón-Martín E, Orellana A, Pastor P, Pérez-Tur J, Piñol-Ripoll G, de Munian AL, García-Alberca JM, Royo JL, Bullido MJ, Álvarez V, Real LM, Anchuelo AC, Gómez-Garre D, Larrad MTM, Franco-Macías E, Mir P, Medina M, Sánchez-Valle R, Dols-Icardo O, Sáez ME, Carracedo Á, Tárraga L, Alegret M, Valero S, Marquié M, Boada M, Juan PS, Cavazos JE, Cabrera A, Cano A, Alzheimer’s Disease Neuroimaging Initiative.. Connecting genomic and proteomic signatures of amyloid burden in the brain. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.06.24313124. [PMID: 39281766 PMCID: PMC11398581 DOI: 10.1101/2024.09.06.24313124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Background Alzheimer's disease (AD) has a high heritable component characteristic of complex diseases, yet many of the genetic risk factors remain unknown. We combined genome-wide association studies (GWAS) on amyloid endophenotypes measured in cerebrospinal fluid (CSF) and positron emission tomography (PET) as surrogates of amyloid pathology, which may be helpful to understand the underlying biology of the disease. Methods We performed a meta-analysis of GWAS of CSF Aβ42 and PET measures combining six independent cohorts (n=2,076). Due to the opposite effect direction of Aβ phenotypes in CSF and PET measures, only genetic signals in the opposite direction were considered for analysis (n=376,599). Polygenic risk scores (PRS) were calculated and evaluated for AD status and amyloid endophenotypes. We then searched the CSF proteome signature of brain amyloidosis using SOMAscan proteomic data (Ace cohort, n=1,008) and connected it with GWAS results of loci modulating amyloidosis. Finally, we compared our results with a large meta-analysis using publicly available datasets in CSF (n=13,409) and PET (n=13,116). This combined approach enabled the identification of overlapping genes and proteins associated with amyloid burden and the assessment of their biological significance using enrichment analyses. Results After filtering the meta-GWAS, we observed genome-wide significance in the rs429358-APOE locus and nine suggestive hits were annotated. We replicated the APOE loci using the large CSF-PET meta-GWAS and identified multiple AD-associated genes as well as the novel GADL1 locus. Additionally, we found a significant association between the AD PRS and amyloid levels, whereas no significant association was found between any Aβ PRS with AD risk. CSF SOMAscan analysis identified 1,387 FDR-significant proteins associated with CSF Aβ42 levels. The overlap among GWAS loci and proteins associated with amyloid burden was very poor (n=35). The enrichment analysis of overlapping hits strongly suggested several signalling pathways connecting amyloidosis with the anchored component of the plasma membrane, synapse physiology and mental disorders that were replicated in the large CSF-PET meta-analysis. Conclusions The strategy of combining CSF and PET amyloid endophenotypes GWAS with CSF proteome analyses might be effective for identifying signals associated with the AD pathological process and elucidate causative molecular mechanisms behind the amyloid mobilization in AD.
Collapse
Affiliation(s)
- Raquel Puerta
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- Universitat de Barcelona (UB)
| | - Itziar de Rojas
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Pablo García-González
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Clàudia Olivé
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
| | | | | | | | - Laura Montrreal
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
| | - Juan Pablo Tartari
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
| | - Ángela Sanabria
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Vanesa Pytel
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Carmen Lage
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Neurology Service, Marqués de Valdecilla University Hospital (University of Cantabria and IDIVAL), Santander, Spain
| | - Inés Quintela
- Grupo de Medicina Xenómica, Centro Nacional de Genotipado (CEGEN-PRB3-ISCIII). Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Nuria Aguilera
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
| | - Eloy Rodriguez-Rodriguez
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Neurology Service, Marqués de Valdecilla University Hospital (University of Cantabria and IDIVAL), Santander, Spain
| | | | - Adelina Orellana
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Pau Pastor
- Unit of Neurodegenerative diseases, Department of Neurology, University Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
- The Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
| | - Jordi Pérez-Tur
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Unitat de Genètica Molecular, Institut de Biomedicina de València-CSIC, Valencia, Spain
- Unidad Mixta de Neurologia Genètica, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Gerard Piñol-Ripoll
- Unitat Trastorns Cognitius, Hospital Universitari Santa Maria de Lleida, Lleida, Spain
- Institut de Recerca Biomedica de Lleida (IRBLLeida), Lleida, Spain
| | - Adolfo López de Munian
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Neurology. Hospital Universitario Donostia. San Sebastian, Spain
- Department of Neurosciences. Faculty of Medicine and Nursery. University of the Basque Country, San Sebastián, Spain
- Neurosciences Area. Instituto Biodonostia. San Sebastian, Spain
| | - Jose María García-Alberca
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Alzheimer Research Center & Memory Clinic, Andalusian Institute for Neuroscience, Málaga, Spain
| | - Jose Luís Royo
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología. School of Medicine. University of Malaga. Málaga, Spain
| | - María Jesús Bullido
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC)
- Instituto de Investigacion Sanitaria ‘Hospital la Paz’ (IdIPaz), Madrid, Spain
- Universidad Autónoma de Madrid
| | - Victoria Álvarez
- Laboratorio de Genética. Hospital Universitario Central de Asturias, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)
| | - Luis Miguel Real
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología. School of Medicine. University of Malaga. Málaga, Spain
- Unidad Clínica de Enfermedades Infecciosas y Microbiología.Hospital Universitario de Valme, Sevilla, Spain
| | - Arturo Corbatón Anchuelo
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos
| | - Dulcenombre Gómez-Garre
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos
- Laboratorio de Riesgo Cardiovascular y Microbiota, Hospital Clínico San Carlos; Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid (UCM)
- Biomedical Research Networking Center in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - María Teresa Martínez Larrad
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)
| | - Emilio Franco-Macías
- Dementia Unit, Department of Neurology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
| | - Pablo Mir
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología. Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Miguel Medina
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- CIEN Foundation/Queen Sofia Foundation Alzheimer Center
| | - Raquel Sánchez-Valle
- Alzheimer’s disease and other cognitive disorders unit. Service of Neurology. Hospital Clínic of Barcelona. Institut d’Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Oriol Dols-Icardo
- Department of Neurology, Sant Pau Memory Unit, Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Ángel Carracedo
- Grupo de Medicina Xenómica, Centro Nacional de Genotipado (CEGEN-PRB3-ISCIII). Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica – CIBERER-IDIS, Santiago de Compostela, Spain
| | - Lluís Tárraga
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Montse Alegret
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Sergi Valero
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Marta Marquié
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Pascual Sánchez Juan
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Neurology Service, Marqués de Valdecilla University Hospital (University of Cantabria and IDIVAL), Santander, Spain
| | - Jose Enrique Cavazos
- South Texas Medical Science Training Program, University of Texas Health San Antonio, San Antonio
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 USA
| | - Alfredo Cabrera
- Neuroscience Therapeutic Area, Janssen Research & Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Amanda Cano
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Alzheimer’s Disease Neuroimaging Initiative.
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 USA
| |
Collapse
|
5
|
Elder TR, Turner JR. Nicotine use disorder and Neuregulin 3: Opportunities for precision medicine. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 99:387-404. [PMID: 38467488 DOI: 10.1016/bs.apha.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Nicotine use disorder remains a major public health emergency despite years of trumpeting the consequences of smoking. This is likely due to the complex interplay of genetics and nicotine exposure across the lifespan of these individuals. Genetics influence all aspects of life, including complex disorders such as nicotine use disorder. This review first highlights the critical neurocircuitry underlying nicotine dependence and withdrawal, and then describes the cellular signaling mechanisms involved. Finally, current genetic, genomic, and transcriptomic evidence for new drug development of smoking cessation aids is discussed, with a focus on the Neuregulin 3 Signaling Pathway.
Collapse
Affiliation(s)
- Taylor R Elder
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, United States
| | - Jill R Turner
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, United States.
| |
Collapse
|
6
|
Shao T, Wang W, Hei G, Yang Y, Long Y, Wang X, Xiao J, Huang Y, Song X, Xu X, Gao S, Huang J, Wang Y, Zhao J, Wu R. Identifying and revealing different brain neural activities of cognitive subtypes in early course schizophrenia. Front Mol Neurosci 2022; 15:983995. [PMID: 36267704 PMCID: PMC9577612 DOI: 10.3389/fnmol.2022.983995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/07/2022] [Indexed: 01/10/2023] Open
Abstract
Background Cognitive subtypes of schizophrenia may exhibit different neurobiological characteristics. This study aimed to reveal the underlying neurobiological features between cognitive subtypes in the early course of schizophrenia (ECS). According to prior studies, we hypothesized to identify 2–4 distinct cognitive subtypes. We further hypothesized that the subtype with relatively poorer cognitive function might have lower brain spontaneous neural activity than the subtype with relatively better cognitive function. Method Cognitive function was assessed by the MATRICS Consensus Cognitive Battery (MCCB). Resting-state functional magnetic resonance imaging scanning was conducted for each individual. There were 155 ECS individuals and 97 healthy controls (HCs) included in the subsequent analysis. Latent profile analysis (LPA) was used to identify the cognitive subtypes in ECS individuals, and amplitude of low-frequency fluctuations (ALFFs) was used to measure brain spontaneous neural activity in ECS individuals and HCs. Results LPA identified two cognitive subtypes in ECS individuals, containing a severely impaired subtype (SI, n = 63) and a moderately impaired subtype (MI, n = 92). Compared to HCs, ECS individuals exhibited significantly increased ALFF in the left caudate and bilateral thalamus and decreased ALFF in the bilateral medial prefrontal cortex and bilateral posterior cingulate cortex/precuneus (PCC/PCu). In ECS cognitive subtypes, SI showed significantly higher ALFF in the left precentral gyrus (PreCG) and lower ALFF in the left PCC/PCu than MI. Furthermore, ALFFs of left PreCG were negatively correlated with several MCCB cognitive domains in ECS individuals, while ALFF of left PCC/PCu presented opposite correlations. Conclusion Our findings suggest that differences in the brain spontaneous neural activity of PreCG and PCC/PCu might be the potential neurobiological features of the cognitive subtypes in ECS, which may deepen our understanding of the role of PreCG and PCC/PCu in the pathogenesis of cognitive impairment in schizophrenia.
Collapse
Affiliation(s)
- Tiannan Shao
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Weiyan Wang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Gangrui Hei
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ye Yang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yujun Long
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoyi Wang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jingmei Xiao
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yuyan Huang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xijia Xu
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Shuzhan Gao
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Jing Huang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ying Wang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jingping Zhao
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Renrong Wu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Renrong Wu
| |
Collapse
|
7
|
Greenwood TA. Genetic Influences on Cognitive Dysfunction in Schizophrenia. Curr Top Behav Neurosci 2022; 63:291-314. [PMID: 36029459 DOI: 10.1007/7854_2022_388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Schizophrenia is a severe and debilitating psychotic disorder that is highly heritable and relatively common in the population. The clinical heterogeneity associated with schizophrenia is substantial, with patients exhibiting a broad range of deficits and symptom severity. Large-scale genomic studies employing a case-control design have begun to provide some biological insight. However, this strategy combines individuals with clinically diverse symptoms and ignores the genetic risk that is carried by many clinically unaffected individuals. Consequently, the majority of the genetic architecture underlying schizophrenia remains unexplained, and the pathways by which the implicated variants contribute to the clinically observable signs and symptoms are still largely unknown. Parsing the complex, clinical phenotype of schizophrenia into biologically relevant components may have utility in research aimed at understanding the genetic basis of liability. Cognitive dysfunction is a hallmark symptom of schizophrenia that is associated with impaired quality of life and poor functional outcome. Here, we examine the value of quantitative measures of cognitive dysfunction to objectively target the underlying neurobiological pathways and identify genetic variants and gene networks contributing to schizophrenia risk. For a complex disorder, quantitative measures are also more efficient than diagnosis, allowing for the identification of associated genetic variants with fewer subjects. Such a strategy supplements traditional analyses of schizophrenia diagnosis, providing the necessary biological insight to help translate genetic findings into actionable treatment targets. Understanding the genetic basis of cognitive dysfunction in schizophrenia may thus facilitate the development of novel pharmacological and procognitive interventions to improve real-world functioning.
Collapse
Affiliation(s)
- Tiffany A Greenwood
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
8
|
Ahmad T, Vullhorst D, Chaudhuri R, Guardia CM, Chaudhary N, Karavanova I, Bonifacino JS, Buonanno A. Transcytosis and trans-synaptic retention by postsynaptic ErbB4 underlie axonal accumulation of NRG3. J Cell Biol 2022; 221:213222. [PMID: 35579602 PMCID: PMC9118086 DOI: 10.1083/jcb.202110167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 01/07/2023] Open
Abstract
Neuregulins (NRGs) are EGF-like ligands associated with cognitive disorders. Unprocessed proNRG3 is cleaved by BACE1 to generate the mature membrane-bound NRG3 ligand, but the subcellular site of proNRG3 cleavage, mechanisms underlying its transport into axons, and presynaptic accumulation remain unknown. Using an optogenetic proNRG3 cleavage reporter (LA143-NRG3), we investigate the spatial-temporal dynamics of NRG3 processing and sorting in neurons. In dark conditions, unprocessed LA143-NRG3 is retained in the trans-Golgi network but, upon photoactivation, is cleaved by BACE1 and released from the TGN. Mature NRG3 then emerges on the somatodendritic plasma membrane from where it is re-endocytosed and anterogradely transported on Rab4+ vesicles into axons via transcytosis. By contrast, the BACE1 substrate APP is sorted into axons on Rab11+ vesicles. Lastly, by a mechanism we denote "trans-synaptic retention," NRG3 accumulates at presynaptic terminals by stable interaction with its receptor ErbB4 on postsynaptic GABAergic interneurons. We propose that trans-synaptic retention may account for polarized expression of other neuronal transmembrane ligands and receptors.
Collapse
Affiliation(s)
- Tanveer Ahmad
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD,Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Detlef Vullhorst
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Rituparna Chaudhuri
- Molecular and Cellular Neuroscience, Neurovirology Section, National Brain Research Centre, Haryana, India
| | - Carlos M. Guardia
- Section on Intracellular Protein Trafficking, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Nisha Chaudhary
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Irina Karavanova
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Juan S. Bonifacino
- Section on Intracellular Protein Trafficking, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Andres Buonanno
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD,Correspondence to Andres Buonanno:
| |
Collapse
|
9
|
Cui W, Gao N, Dong Z, Shen C, Zhang H, Luo B, Chen P, Comoletti D, Jing H, Wang H, Robinson H, Xiong WC, Mei L. In trans neuregulin3-Caspr3 interaction controls DA axonal bassoon cluster development. Curr Biol 2021; 31:3330-3342.e7. [PMID: 34143959 DOI: 10.1016/j.cub.2021.05.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/19/2021] [Accepted: 05/20/2021] [Indexed: 01/09/2023]
Abstract
Dopamine (DA) transmission is critical to motivation, movement, and emotion. Unlike glutamatergic and GABAergic synapses, the development of DA synapses is less understood. We show that bassoon (BSN) clusters along DA axons in the core of nucleus accumbens (NAcc) were increased in neonatal stages and reduced afterward, suggesting DA synapse elimination. Remarkably, DA neuron-specific ablating neuregulin 3 (NRG3), a protein whose levels correlate with BSN clusters, increased the clusters and impaired DA release and behaviors related to DA transmission. An unbiased screen of transmembrane proteins with the extracellular domain (ECD) of NRG3 identified Caspr3 (contactin associate-like protein 3) as a binding partner. Caspr3 was enriched in striatal medium spiny neurons (MSNs). NRG3 and Caspr3 interact in trans, which was blocked by Caspr3-ECD. Caspr3 null mice displayed phenotypes similar to those in DAT-Nrg3f/f mice in DA axonal BSN clusters and DA transmission. Finally, in vivo disruption of the NRG3-Caspr3 interaction increased BSN clusters. Together, these results demonstrate that DA synapse development is controlled by trans interaction between NRG3 in DA neurons and Caspr3 in MSNs, identifying a novel pair of cell adhesion molecules for brain circuit wiring.
Collapse
Affiliation(s)
- Wanpeng Cui
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Nannan Gao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Zhaoqi Dong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Chen Shen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Hongsheng Zhang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Bin Luo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Peng Chen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Davide Comoletti
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand; Child Health Institute of New Jersey, and Departments of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Hongyang Jing
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Hongsheng Wang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Heath Robinson
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA.
| |
Collapse
|
10
|
Sun T, Huang GY, Wang ZH, Teng SH, Cao YH, Sun JL, Hanif Q, Chen NB, Lei CZ, Liao YY. Selection signatures of Fuzhong Buffalo based on whole-genome sequences. BMC Genomics 2020; 21:674. [PMID: 32993537 PMCID: PMC7526191 DOI: 10.1186/s12864-020-07095-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Fuzhong buffalo, a native breed of Guangxi Zhuang Autonomous Region, is traditionally used as a draft animal to provide farm power in the rice cultivation. In addition, the Fuzhong buffalo also prepared for the bullfighting festival organized by the locals. The detection of the selective signatures in its genome can help in elucidating the selection mechanisms in its stamina and muscle development of a draft animal. RESULTS In this study, we analyzed 27 whole genomes of buffalo (including 15 Fuzhong buffalo genomes and 12 published buffalo genomes from Upper Yangtze region). The ZHp, ZFst, π-Ratio, and XP-EHH statistics were used to identify the candidate signatures of positive selection in Fuzhong buffalo. Our results detected a set of candidate genes involving in the pathways and GO terms associated with the response to exercise (e.g., ALDOA, STAT3, AKT2, EIF4E2, CACNA2D2, TCF4, CDH2), immunity (e.g., PTPN22, NKX2-3, PIK3R1, ITK, TMEM173), nervous system (e.g., PTPN21, ROBO1, HOMER1, MAGI2, SLC1A3, NRG3, SNAP47, CTNNA2, ADGRL3). In addition, we also identified several genes related to production and growth traits (e.g., PHLPP1, PRKN, MACF1, UCN3, RALGAPA1, PHKB, PKD1L). Our results depicted several pathways, GO terms, and candidate genes to be associated with response to exercise, immunity, nervous system, and growth traits. CONCLUSIONS The selective sweep analysis of the Fuzhong buffalo demonstrated positive selection pressure on potential target genes involved in behavior, immunity, and growth traits, etc. Our findings provided a valuable resource for future research on buffalo breeding and an insight into the mechanisms of artificial selection.
Collapse
Affiliation(s)
- Ting Sun
- Animal Husbandry Institute of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, 530001, China.,College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Guang-Yun Huang
- Animal Husbandry Institute of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, 530001, China
| | - Zi-Hao Wang
- Animal Husbandry Institute of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, 530001, China
| | - Shao-Hua Teng
- Animal Husbandry Institute of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, 530001, China
| | - Yan-Hong Cao
- Animal Husbandry Institute of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, 530001, China
| | - Jun-Li Sun
- Animal Husbandry Institute of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, 530001, China
| | - Quratulain Hanif
- Computational Biology Laboratory, Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan.,Department of Biotechnology, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - Ning-Bo Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chu-Zhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Yu-Ying Liao
- Animal Husbandry Institute of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, 530001, China.
| |
Collapse
|
11
|
Louhivuori LM, Turunen PM, Louhivuori V, Al Rayyes I, Nordström T, Uhlén P, Åkerman KE. Neurotransmitters and Endothelins Acting on Radial Glial G-Protein-Coupled Receptors Are, Through Proteolytic NRG/ErbB4 Activation, Able to Modify the Migratory Behavior of Neocortical Cells and Mediate Bipolar-to-Multipolar Transition. Stem Cells Dev 2020; 29:1160-1177. [PMID: 31941419 DOI: 10.1089/scd.2019.0133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cell-cell communication plays a central role in the guidance of migrating neurons during the development of the cerebral cortex. Neuregulins (NRGs) are essential mediators for migration and maintenance of the radial glial scaffold. We show, in this study that soluble NRG reduces neuronal motility, causes transition of bipolar cells to multipolar ones, and induces neuronal mitosis. Blocking the NRG receptor, ErbB4, results in reduction of neuron-neuron and neuron-radial glial contacts and causes an increase in neuronal motility. Blocking the radial glial metabotropic glutamate receptor 5 (mGluR5), the nonselective cation channel transient receptor potential 3 (TRPC3), or matrix metalloproteinases (MMPs) results in similar effects as ErbB4 blockade. Soluble NRG counteract the changes in motility pattern. Stimulation of other radial glial G-protein-coupled receptors (GPCRs), such as muscarinic acetylcholine receptors or endothelin receptors counteract all the effect of mGluR5 blockade, but not that of ErbB4, TRPC3, and MMP blockade. The results indicate that neurotransmitters and endothelins acting on radial glial GPCRs are, through proteolytic NRG/ErbB4 activation, able to modify the migratory behavior of neurons.
Collapse
Affiliation(s)
- Lauri M Louhivuori
- Department of Physiology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Pauli M Turunen
- Department of Physiology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Verna Louhivuori
- Department of Physiology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Ibrahim Al Rayyes
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Tommy Nordström
- Department of Physiology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Karl E Åkerman
- Department of Physiology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Reay WR, Atkins JR, Quidé Y, Carr VJ, Green MJ, Cairns MJ. Polygenic disruption of retinoid signalling in schizophrenia and a severe cognitive deficit subtype. Mol Psychiatry 2020; 25:719-731. [PMID: 30532020 PMCID: PMC7156344 DOI: 10.1038/s41380-018-0305-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/02/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022]
Abstract
Retinoid metabolites of vitamin A are intrinsically linked to neural development, connectivity and plasticity, and have been implicated in the pathophysiology of schizophrenia. We hypothesised that a greater burden of common and rare genomic variation in genes involved with retinoid biogenesis and signalling could be associated with schizophrenia and its cognitive symptoms. Common variants associated with schizophrenia in the largest genome-wide association study were aggregated in retinoid genes and used to formulate a polygenic risk score (PRSRet) for each participant in the Australian Schizophrenia Research Bank. In support of our hypothesis, we found PRSRet to be significantly associated with the disorder. Cases with severe cognitive deficits, while not further differentiated by PRSRet, were enriched with rare variation in the retinoic acid receptor beta gene RARB, detected through whole-genome sequencing. RARB rare variant burden was also associated with reduced cerebellar volume in the cases with marked cognitive deficit, and with covariation in grey matter throughout the brain. An excess of rare variation was further observed in schizophrenia in retinoic acid response elements proximal to target genes, which we show are differentially expressed in the disorder in two RNA sequencing datasets. Our results suggest that genomic variation may disrupt retinoid signalling in schizophrenia, with particular significance for cases with severe cognitive impairment.
Collapse
Affiliation(s)
- William R Reay
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Joshua R Atkins
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Yann Quidé
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
| | - Vaughan J Carr
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
- Department of Psychiatry, Monash University, Melbourne, VIC, Australia
| | - Melissa J Green
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.
- Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW, Australia.
| |
Collapse
|
13
|
Sumirtanurdin R, Laksono JP, Dania H, Ramadhani FN, Perwitasari DA, Abdulah R, Barliana MI. Single-nucleotide Polymorphism of CTLA-4 (rs5742909) in Correlation with Schizophrenia Risk Factor. J Pharm Bioallied Sci 2020; 11:S605-S610. [PMID: 32148371 PMCID: PMC7020830 DOI: 10.4103/jpbs.jpbs_215_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/01/2019] [Indexed: 11/04/2022] Open
Abstract
Background Cytotoxic T protein lymphocyte antigen-4 (CTLA-4) plays a key role in regulating the T-cell system, where occurrence of disturbances in the system seen by imbalances in Th1 and Th2 levels is believed to be one of the etiologies of schizophrenia. Single-nucleotide polymorphisms (SNPs) at rs5742909 in the CTLA-4 gene (C→T) might affect the expression level of CTLA-4 protein. Aims and Objectives The aim of this study was to determine the genotype distribution of the CTLA-4 gene (rs5742909) in patients with schizophrenia at Rumah Sakit Jiwa Prof. Dr. Soerojo Magelang and identify the correlation of these genetic polymorphisms as the risk factors of schizophrenia. Materials and Methods This research was conducted through the stage of submitting ethical approval, primer design, chromosomal DNA isolation, optimization of polymerase chain reaction conditions, and data analysis. Results Based on the results of the study, the CC genotype was shown in 36 patients (78.26%), TT genotype in 10 patients (21.73%), and no TT genotypes. However, statistical analysis using Fisher's exact and binary logistic regression statistical test showed no significant relationship between genetic polymorphism of the CTLA-4 rs5742909 against risk factors for schizophrenia (P = 0.05; α = 5%). Conclusion SNP at rs5742909, C-to-T-allele transition, was not significant associated with the risk of schizophrenia.
Collapse
Affiliation(s)
- Riyadi Sumirtanurdin
- Department of Biological Pharmacy, Biotechnology Pharmacy Laboratory, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - James P Laksono
- Department of Biological Pharmacy, Biotechnology Pharmacy Laboratory, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Haafizah Dania
- Department of Pharmacology and Clinical Pharmacy, Clinical Pharmacy Laboratory, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia.,Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
| | - Fitri N Ramadhani
- Department of Pharmacology and Clinical Pharmacy, Clinical Pharmacy Laboratory, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Dyah A Perwitasari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
| | - Rizky Abdulah
- Department of Pharmacology and Clinical Pharmacy, Clinical Pharmacy Laboratory, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia.,Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
| | - Melisa I Barliana
- Department of Biological Pharmacy, Biotechnology Pharmacy Laboratory, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia.,Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
14
|
Zhou Y, Li Y, Meng Y, Wang J, Wu F, Ning Y, Li Y, Cassidy RM, Li Z, Zhang XY. Neuregulin 3 rs10748842 polymorphism contributes to the effect of body mass index on cognitive impairment in patients with schizophrenia. Transl Psychiatry 2020; 10:62. [PMID: 32066712 PMCID: PMC7026092 DOI: 10.1038/s41398-020-0746-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/07/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022] Open
Abstract
There is evidence that obesity or higher body mass index is correlated with cognitive impairment in schizophrenia. Recent studies have demonstrated that genetic risk factors, such as the NRG3, are correlated with both elevated BMI and reduced cognitive function. In present study, we aimed to determine whether possession of the NRG3 rs10748842 influences the correlation between elevated BMI and reduced cognitive ability in schizophrenia. To our knowledge, this has never been examined before. A total of 625 inpatients with schizophrenia and 400 controls were recruited. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) was performed to assess cognitive function. We used multiple analysis of covariance (MANCOVA), analyses of covariance (ANCOVA), Pearson correlations, partial correlations, and multivariate regression analysis to test the influence of NRG3 rs10748842 on the aforementioned variables. All RBANS five sub-scores and total score were lower in patients than those in controls (all p < 0.001). Patients carrying NRG3 rs10748842 TC + CC heterozygous genotype had lower attention score compared to TT homozygous genotype (adjusted F = 4.77, p = 0.029). BMI was positively associated with language score in patients (β = 0.387, t = 2.59, p = 0.01). Interestingly, we further found positive association between BMI and language score in TT carriers (partial correlations: r = 0.13, adjusted p = 0.004; multivariate regression: β = 0.42, t = 2.66, p = 0.008), but not in CT + CC carrier (p > 0.05). Our study demonstrated that NRG3 rs10748842 was associated with cognitive impairments, especially attention performance in schizophrenia. Moreover, NRG3 rs10748842 altered the effect of BMI on cognitive impairments as measured by the RBANS language score in chronic patients with schizophrenia.
Collapse
Affiliation(s)
- Yongjie Zhou
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, China
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Yuhuan Li
- Qingdao Mental Health Center, Qingdao, China
| | - Yujie Meng
- Qingdao Mental Health Center, Qingdao, China
| | - Jiesi Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Fengchun Wu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Yuping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Yi Li
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, China
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Ryan M Cassidy
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zezhi Li
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiang Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
15
|
Li Z, Liu L, Lin W, Zhou Y, Zhang G, Du X, Li Y, Tang W, Zhang X. NRG3 contributes to cognitive deficits in chronic patients with schizophrenia. Schizophr Res 2020; 215:134-139. [PMID: 31753594 DOI: 10.1016/j.schres.2019.10.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 09/06/2019] [Accepted: 10/30/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND Cognitive deficit is a fundamental trait of schizophrenia, but its mecwhanisms remain unknown. The neuregulin 3 (NRG3) gene, involving in neuronal function, has been considered to be associated with schizophrenia and cognition. However, no study has investigated the effects of NRG3 polymorphism on cognitive deficits in a large sample of the patients with schizophrenia. METHODS A total of 1112 schizophrenia patients and 423 controls were recruited and genotyped with NRG3 rs10748842. Among them, 864 patients and 403 controls were assessed for cognition through the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). SHEsis was applied and followed by logistic regression analysis. The models of analyses of covariance (ANCOVA) were constructed to examine the effects of NRG3 rs10748842 on cognitive deficits. RESULTS No differences in NRG3 rs10748842 allele and genotype were found between patients and controls (both p > 0.05). With the exception of Visuospatial/construction, the other RBANS scores were significantly lower in patients compared to controls after adjusting for gender and education (all p < 0.001). Interestingly, we found that NRG3 rs10748842 was associated with cognitive deficit in schizophrenia, showing that patients carrying C allele had lower attention and total scores than those with TT genotype (both p < 0.05). CONCLUSION NRG3 rs10748842 may not confer susceptibility to schizophrenia, but may be more closely associated with cognitive deficit, especially attention performance in chronic schizophrenia.
Collapse
Affiliation(s)
- Zezhi Li
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lihua Liu
- Department of Psychiatry, Qingdao Mental Health Center, Qingdao, China
| | - Wei Lin
- Department of Psychiatry, Qingdao Mental Health Center, Qingdao, China
| | - Yongjie Zhou
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, China; Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Guangya Zhang
- Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Xiangdong Du
- Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Yi Li
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, China; Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Wei Tang
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Medical University Wenzhou, Zhejiang, China.
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
16
|
A Systematic Review of Studies Reporting Data-Driven Cognitive Subtypes across the Psychosis Spectrum. Neuropsychol Rev 2019; 30:446-460. [PMID: 31853717 DOI: 10.1007/s11065-019-09422-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
Abstract
The delineation of cognitive subtypes of schizophrenia and bipolar disorder may offer a means of determining shared genetic markers and neuropathology among individuals with these conditions. We systematically reviewed the evidence from published studies reporting the use of data-driven (i.e., unsupervised) clustering methods to delineate cognitive subtypes among adults diagnosed with schizophrenia, schizoaffective disorder, or bipolar disorder. We reviewed 24 studies in total, contributing data to 13 analyses of schizophrenia spectrum patients, 8 analyses of bipolar disorder, and 5 analyses of mixed samples of schizophrenia and bipolar disorder participants. Studies of bipolar disorder most consistently revealed a 3-cluster solution, comprising a subgroup with 'near-normal' (cognitively spared) cognition and two other subgroups demonstrating graded deficits across cognitive domains. In contrast, there was no clear consensus regarding the number of cognitive subtypes among studies of cognitive subtypes in schizophrenia, while four of the five studies of mixed diagnostic groups reported a 4-cluster solution. Common to all cluster solutions was a severe cognitive deficit subtype with cognitive impairments of moderate to large effect size relative to healthy controls. Our review highlights several key factors (e.g., symptom profile, sample size, statistical procedures, and cognitive domains examined) that may influence the results of data-driven clustering methods, and which were largely inconsistent across the studies reviewed. This synthesis of findings suggests caution should be exercised when interpreting the utility of particular cognitive subtypes for biological investigation, and demonstrates much heterogeneity among studies using unsupervised clustering approaches to cognitive subtyping within and across the psychosis spectrum.
Collapse
|
17
|
Greenwood TA, Lazzeroni LC, Maihofer AX, Swerdlow NR, Calkins ME, Freedman R, Green MF, Light GA, Nievergelt CM, Nuechterlein KH, Radant AD, Siever LJ, Silverman JM, Stone WS, Sugar CA, Tsuang DW, Tsuang MT, Turetsky BI, Gur RC, Gur RE, Braff DL. Genome-wide Association of Endophenotypes for Schizophrenia From the Consortium on the Genetics of Schizophrenia (COGS) Study. JAMA Psychiatry 2019; 76:1274-1284. [PMID: 31596458 PMCID: PMC6802253 DOI: 10.1001/jamapsychiatry.2019.2850] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
IMPORTANCE The Consortium on the Genetics of Schizophrenia (COGS) uses quantitative neurophysiological and neurocognitive endophenotypes with demonstrated deficits in schizophrenia as a platform from which to explore the underlying neural circuitry and genetic architecture. Many of these endophenotypes are associated with poor functional outcome in schizophrenia. Some are also endorsed as potential treatment targets by the US Food and Drug Administration. OBJECTIVE To build on prior assessments of heritability, association, and linkage in the COGS phase 1 (COGS-1) families by reporting a genome-wide association study (GWAS) of 11 schizophrenia-related endophenotypes in the independent phase 2 (COGS-2) cohort of patients with schizophrenia and healthy comparison participants (HCPs). DESIGN, SETTING, AND PARTICIPANTS A total of 1789 patients with schizophrenia and HCPs of self-reported European or Latino ancestry were recruited through a collaborative effort across the COGS sites and genotyped using the PsychChip. Standard quality control filters were applied, and more than 6.2 million variants with a genotyping call rate of greater than 0.99 were available after imputation. Association was performed for data sets stratified by diagnosis and ancestry using linear regression and adjusting for age, sex, and 5 principal components, with results combined through weighted meta-analysis. Data for COGS-1 were collected from January 6, 2003, to August 6, 2008; data for COGS-2, from June 30, 2010, to February 14, 2014. Data were analyzed from October 28, 2016, to May 4, 2018. MAIN OUTCOMES AND MEASURES A genome-wide association study was performed to evaluate association for 11 neurophysiological and neurocognitive endophenotypes targeting key domains of schizophrenia related to inhibition, attention, vigilance, learning, working memory, executive function, episodic memory, and social cognition. RESULTS The final sample of 1533 participants included 861 male participants (56.2%), and the mean (SD) age was 41.8 (13.6) years. In total, 7 genome-wide significant regions (P < 5 × 10-8) and 2 nearly significant regions (P < 9 × 10-8) containing several genes of interest, including NRG3 and HCN1, were identified for 7 endophenotypes. For each of the 11 endophenotypes, enrichment analyses performed at the level of P < 10-4 compared favorably with previous association results in the COGS-1 families and showed extensive overlap with regions identified for schizophrenia diagnosis. CONCLUSIONS AND RELEVANCE These analyses identified several genomic regions of interest that require further exploration and validation. These data seem to demonstrate the utility of endophenotypes for resolving the genetic architecture of schizophrenia and characterizing the underlying biological dysfunctions. Understanding the molecular basis of these endophenotypes may help to identify novel treatment targets and pave the way for precision-based medicine in schizophrenia and related psychotic disorders.
Collapse
Affiliation(s)
| | - Laura C. Lazzeroni
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California,Sierra Pacific Mental Illness Research Education and Clinical Center, Department of Veterans Affairs (VA) Health Care System, Palo Alto, California
| | - Adam X. Maihofer
- Department of Psychiatry, University of California, San Diego, La Jolla
| | - Neal R. Swerdlow
- Department of Psychiatry, University of California, San Diego, La Jolla
| | | | - Robert Freedman
- Department of Psychiatry, University of Colorado Health Sciences Center, Denver
| | - Michael F. Green
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, California,Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Gregory A. Light
- Department of Psychiatry, University of California, San Diego, La Jolla,Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, California
| | | | | | - Allen D. Radant
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle,Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington
| | - Larry J. Siever
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York,Research & Development, James J. Peters VA Medical Center, New York, New York
| | - Jeremy M. Silverman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York,Research & Development, James J. Peters VA Medical Center, New York, New York
| | - William S. Stone
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts,Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston
| | - Catherine A. Sugar
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, California,Department of Biostatistics, UCLA School of Public Health
| | - Debby W. Tsuang
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle,Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington
| | - Ming T. Tsuang
- Department of Psychiatry, University of California, San Diego, La Jolla
| | | | - Ruben C. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia
| | - Raquel E. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia
| | - David L. Braff
- Department of Psychiatry, University of California, San Diego, La Jolla
| |
Collapse
|
18
|
The role of membrane trafficking in the processing of amyloid precursor protein and production of amyloid peptides in Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:697-712. [PMID: 30639513 DOI: 10.1016/j.bbamem.2018.11.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/25/2018] [Accepted: 11/29/2018] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease (AD) is characterized by progressive accumulation of misfolded proteins, which form senile plaques and neurofibrillary tangles, and the release of inflammatory mediators by innate immune responses. β-Amyloid peptide (Aβ) is derived from sequential processing of the amyloid precursor protein (APP) by membrane-bound proteases, namely the β-secretase, BACE1, and γ-secretase. Membrane trafficking plays a key role in the regulation of APP processing as both APP and the processing secretases traffic along distinct pathways. Genome wide sequencing studies have identified several AD susceptibility genes which regulate membrane trafficking events. To understand the pathogenesis of AD it is critical that the cell biology of APP and Aβ production in neurons is well defined. This review discusses recent advances in unravelling the membrane trafficking events associated with the production of Aβ, and how AD susceptible alleles may perturb the sorting and transport of APP and BACE1. Mechanisms whereby inflammation may influence APP processing are also considered.
Collapse
|
19
|
Rahman A, Weber J, Labin E, Lai C, Prieto AL. Developmental expression of Neuregulin‐3 in the rat central nervous system. J Comp Neurol 2018; 527:797-817. [DOI: 10.1002/cne.24559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/24/2018] [Accepted: 10/11/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Afrida Rahman
- Departmentof Psychological and Brain SciencesIndiana University Bloomington Indiana
| | - Janet Weber
- Department NeuroscienceUniversity of California San Diego San Diego California
| | - Edward Labin
- Department of NeurologyUniversity of Minnesota Minneapolis
| | - Cary Lai
- Departmentof Psychological and Brain SciencesIndiana University Bloomington Indiana
| | - Anne L Prieto
- Departmentof Psychological and Brain SciencesIndiana University Bloomington Indiana
| |
Collapse
|
20
|
Müller T, Braud S, Jüttner R, Voigt BC, Paulick K, Sheean ME, Klisch C, Gueneykaya D, Rathjen FG, Geiger JR, Poulet JF, Birchmeier C. Neuregulin 3 promotes excitatory synapse formation on hippocampal interneurons. EMBO J 2018; 37:embj.201798858. [PMID: 30049711 PMCID: PMC6120667 DOI: 10.15252/embj.201798858] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 01/09/2023] Open
Abstract
Hippocampal GABAergic interneurons are crucial for cortical network function and have been implicated in psychiatric disorders. We show here that Neuregulin 3 (Nrg3), a relatively little investigated low-affinity ligand, is a functionally dominant interaction partner of ErbB4 in parvalbumin-positive (PV) interneurons. Nrg3 and ErbB4 are located pre- and postsynaptically, respectively, in excitatory synapses on PV interneurons in vivo Additionally, we show that ablation of Nrg3 results in a similar phenotype as the one described for ErbB4 ablation, including reduced excitatory synapse numbers on PV interneurons, altered short-term plasticity, and disinhibition of the hippocampal network. In culture, presynaptic Nrg3 increases excitatory synapse numbers on ErbB4+ interneurons and affects short-term plasticity. Nrg3 mutant neurons are poor donors of presynaptic terminals in the presence of competing neurons that produce recombinant Nrg3, and this bias requires postsynaptic ErbB4 but not ErbB4 kinase activity. Furthermore, when presented by non-neuronal cells, Nrg3 induces postsynaptic membrane specialization. Our data indicate that Nrg3 provides adhesive cues that facilitate excitatory neurons to synapse onto ErbB4+ interneurons.
Collapse
Affiliation(s)
- Thomas Müller
- Developmental Biology/Signal Transduction Group, Max-Delbrueck-Centrum in the Helmholtz Association, Berlin, Germany
| | - Stephanie Braud
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - René Jüttner
- Developmental Neurobiology Group, Max-Delbrueck-Centrum in the Helmholtz Association, Berlin, Germany
| | - Birgit C Voigt
- Neural Circuits and Behaviour Group, Max-Delbrueck-Centrum in the Helmholtz Association, Berlin, Germany
| | - Katharina Paulick
- Developmental Biology/Signal Transduction Group, Max-Delbrueck-Centrum in the Helmholtz Association, Berlin, Germany
| | - Maria E Sheean
- Developmental Biology/Signal Transduction Group, Max-Delbrueck-Centrum in the Helmholtz Association, Berlin, Germany
| | - Constantin Klisch
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dilansu Gueneykaya
- Cellular Neuroscience Group, Max-Delbrueck-Centrum in the Helmholtz Association, Berlin, Germany
| | - Fritz G Rathjen
- Developmental Neurobiology Group, Max-Delbrueck-Centrum in the Helmholtz Association, Berlin, Germany
| | - Jörg Rp Geiger
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - James Fa Poulet
- Neural Circuits and Behaviour Group, Max-Delbrueck-Centrum in the Helmholtz Association, Berlin, Germany.,Neuroscience Research Center and Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Carmen Birchmeier
- Developmental Biology/Signal Transduction Group, Max-Delbrueck-Centrum in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
21
|
de Vega WC, Erdman L, Vernon SD, Goldenberg A, McGowan PO. Integration of DNA methylation & health scores identifies subtypes in myalgic encephalomyelitis/chronic fatigue syndrome. Epigenomics 2018; 10:539-557. [PMID: 29692205 DOI: 10.2217/epi-2017-0150] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIM To identify subtypes in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) based on DNA methylation profiles and health scores. METHODS DNA methylome profiles in immune cells were integrated with symptomatology from 70 women with ME/CFS using similarity network fusion to identify subtypes. RESULTS We discovered four ME/CFS subtypes associated with DNA methylation modifications in 1939 CpG sites, three RAND-36 categories and five DePaul Symptom Questionnaire measures. Methylation patterns of immune response genes and differences in physical functioning and postexertional malaise differentiated the subtypes. CONCLUSION ME/CFS subtypes are associated with specific DNA methylation differences and health symptomatology and provide additional evidence of the potential relevance of metabolic and immune differences in ME/CFS with respect to specific symptoms.
Collapse
Affiliation(s)
- Wilfred C de Vega
- Department of Biological Sciences, University of Toronto, Scarborough, Toronto, Ontario, Canada.,Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Lauren Erdman
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.,Genetics & Genome Biology, SickKids Research Institute, Toronto, Ontario, Canada
| | - Suzanne D Vernon
- The Bateman Horne Center of Excellence, Salt Lake City, UT 84102, USA
| | - Anna Goldenberg
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.,Genetics & Genome Biology, SickKids Research Institute, Toronto, Ontario, Canada
| | - Patrick O McGowan
- Department of Biological Sciences, University of Toronto, Scarborough, Toronto, Ontario, Canada.,Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Morar B, Badcock JC, Phillips M, Almeida OP, Jablensky A. The longevity gene Klotho is differentially associated with cognition in subtypes of schizophrenia. Schizophr Res 2018; 193:348-353. [PMID: 28673754 DOI: 10.1016/j.schres.2017.06.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 06/22/2017] [Accepted: 06/27/2017] [Indexed: 01/10/2023]
Abstract
Cognitive impairment is a core feature of schizophrenia and impacts negatively the functioning of affected individuals. Cognitive decline correlates with aging, and is the primary cause of loss of independence and reduced quality of life. The klotho gene is a key modulator of aging, with expression deficiency resulting in premature aging, while overexpression extends lifespan and enhances cognition. A haplotype and functional human variant of the gene, KL-VS, increases expression and promotes longevity. KL-VS heterozygosity is associated with enhanced cognition and a larger volume of the right dorsolateral prefrontal cortex, a region involved in planning and decision-making, which is especially susceptible to shrinkage with age. We examined the effect of KL-VS heterozygosity on cognition in 497 schizophrenia patients and 316 healthy controls from the Western Australian Family Study of Schizophrenia (WAFSS) who had been comprehensively characterised by neurocognitive tests and classified into cognitively deficient (CD) and cognitively "spared" (CS) clusters. An older, cognitively normal population sample from the Health in Men Study (HIMS) was included to allow assessment of heterozygosity and memory in aged individuals. We show that heterozygosity is associated with better learning and memory in the younger WAFSS healthy controls but not in the aging HIMS sample. However, in schizophrenia patients, KL-VS has a selective effect on memory, with heterozygotes in CD and CS clusters performing worse than non-carriers. This effect was significant and more severe in the CD cluster, reinforcing the utility of subtyping patients into CD and CS clusters that may differ in their genetic underpinnings.
Collapse
Affiliation(s)
- Bharti Morar
- Centre for Clinical Research in Neuropsychiatry, School of Psychiatry and Clinical Neurosciences, University of Western Australia, MRF Building, 50 Murray Street, Perth 6000, Australia; Cooperative Research Centre for Mental Health, Carlton South, Victoria, Australia; Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, 6 Verdun Street, Nedlands, WA 6009, Australia.
| | - Johanna C Badcock
- Centre for Clinical Research in Neuropsychiatry, School of Psychiatry and Clinical Neurosciences, University of Western Australia, MRF Building, 50 Murray Street, Perth 6000, Australia; Cooperative Research Centre for Mental Health, Carlton South, Victoria, Australia
| | - Michael Phillips
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, 6 Verdun Street, Nedlands, WA 6009, Australia
| | - Osvaldo P Almeida
- WA Centre for Health and Ageing, Centre for Medical Research, Perth, Australia
| | - Assen Jablensky
- Centre for Clinical Research in Neuropsychiatry, School of Psychiatry and Clinical Neurosciences, University of Western Australia, MRF Building, 50 Murray Street, Perth 6000, Australia; Cooperative Research Centre for Mental Health, Carlton South, Victoria, Australia
| |
Collapse
|
23
|
Avramopoulos D. Neuregulin 3 and its roles in schizophrenia risk and presentation. Am J Med Genet B Neuropsychiatr Genet 2018; 177:257-266. [PMID: 28556469 PMCID: PMC5735014 DOI: 10.1002/ajmg.b.32552] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/26/2017] [Indexed: 12/31/2022]
Abstract
Neuregulins, a four-member family of epidermal growth factor-like signaling molecules, have been studied for over two decades. They were first implicated in schizophrenia in 2002 with the detection of linkage and association at the NRG1 locus followed after a few years by NRG3. However, the associations with disease have not been very consistently observed. In contrast, association of NGR3 variants with disease presentation, specifically the presence of delusions, has been more consistent. This appears to be mediated by quantitative changes in the alternative splicing of the gene, which has also been consistently observed. Additional diseases and phenotypes, psychiatric or not, have also been connected with NRG3. These results demonstrate two important aspects of behavioral genetics research. The first is that if we only consider simple risk and fail to examine the details of each patient's individual phenotype, we will miss important insights on the disease biology. This is an important aspect of the goals of precision medicine. The second is that the functional consequences of variants are often more complex than simple alterations in levels of transcription of a particular gene, including, among others, regulation of alternative splicing. To accurately model and understand the biological consequences of phenotype-associated genetic variants, we need to study the biological consequences of each specific variant. Simply studying the consequences of a null allele of the orthologous gene in a model system, runs the risk of missing the many nuances of hypomorphic and/or gain of function variants in the genome of interest.
Collapse
Affiliation(s)
- Dimitrios Avramopoulos
- Johns Hopkins University, Institute of Genetic Medicine and Department of Psychiatry and Behavioral Sciences, 733 North Broadway - MRB room 507, Baltimore MD 21205
| |
Collapse
|
24
|
Neuregulin 3 Mediates Cortical Plate Invasion and Laminar Allocation of GABAergic Interneurons. Cell Rep 2017; 18:1157-1170. [PMID: 28147272 PMCID: PMC5300889 DOI: 10.1016/j.celrep.2016.12.089] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/08/2016] [Accepted: 12/27/2016] [Indexed: 02/07/2023] Open
Abstract
Neural circuits in the cerebral cortex consist of excitatory pyramidal cells and inhibitory interneurons. These two main classes of cortical neurons follow largely different genetic programs, yet they assemble into highly specialized circuits during development following a very precise choreography. Previous studies have shown that signals produced by pyramidal cells influence the migration of cortical interneurons, but the molecular nature of these factors has remained elusive. Here, we identified Neuregulin 3 (Nrg3) as a chemoattractive factor expressed by developing pyramidal cells that guides the allocation of cortical interneurons in the developing cortical plate. Gain- and loss-of-function approaches reveal that Nrg3 modulates the migration of interneurons into the cortical plate in a process that is dependent on the tyrosine kinase receptor ErbB4. Perturbation of Nrg3 signaling in conditional mutants leads to abnormal lamination of cortical interneurons. Nrg3 is therefore a critical mediator in the assembly of cortical inhibitory circuits. Nrg3 acts a short-range chemoattractive molecule for cortical interneurons Nrg3 functions through ErbB4 to attract interneurons into the cortical plate Interneurons prefer Cxcl12 over Nrg3 during tangential migration Disruption of Nrg3 signaling causes abnormal interneuron lamination in the cortex
Collapse
|
25
|
Marchisella E, Wijnands R, Koopmans B, Spijker S, Loos M. Constitutive loss and acute pharmacological manipulation of ErbB4 signaling do not affect attention and inhibitory control in mice. GENES BRAIN AND BEHAVIOR 2017; 17:56-69. [PMID: 28792672 DOI: 10.1111/gbb.12402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/30/2017] [Accepted: 07/19/2017] [Indexed: 02/03/2023]
Abstract
The receptor tyrosine kinase ErbB4 and its ligand trophic factors of the neuregulin (NRG) family have been associated with schizophrenia and other mental disorders in human genetic studies. In vivo studies in mice have shown how abnormal Nrg-ErbB4 signaling leads to deviant behaviors relevant to distinct aspects of schizophrenia, including hyperactivity, sensory gating deficits, working and spatial memory deficits and impaired social behavior. However, so far little is known on the role of ErbB4 in attention and inhibitory control, two aspects of executive functions that are impaired in schizophrenia. Here we investigated the effects of constitutive loss of ErbB4 in the central nervous system of mice on performance in a 5-choice serial reaction time task (5CSRTT) assessing attention and inhibitory control. In this task, ErbB4-/- mice did not show deficits in various parameters of attention, and premature responses as measure of inhibitory control. Nonetheless, ErbB4-/- mice recapitulated a specific set of behavioral phenotypes associated with schizophrenia, including a deficit in spatial learning and memory in the Barnes Maze and in contextual fear learning, and a trend for a deficit in sensorimotor gating. Furthermore, we investigated the effect of acute pharmacological inhibition of ErbB tyrosine kinase receptor using the pan-ErbB kinase inhibitor JNJ-28871063 (JNJ), in an automated version of the 5CSRTT. JNJ did not affect attention and inhibitory control. In conclusion, our data suggest no direct involvement of a classical Nrg-ErbB4 pathway in attention and inhibitory control in mice, while it confirms the involvement of this pathway in other domains relevant to schizophrenia.
Collapse
Affiliation(s)
| | | | | | - S Spijker
- Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive research, Neuroscience Campus Amsterdam, VU University, De Boelelaan, The Netherlands
| | - M Loos
- Sylics (Synaptologics B.V.), Amsterdam.,Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive research, Neuroscience Campus Amsterdam, VU University, De Boelelaan, The Netherlands
| |
Collapse
|
26
|
Louhivuori LM, Turunen PM, Louhivuori V, Yellapragada V, Nordström T, Uhlén P, Åkerman KE. Regulation of radial glial process growth by glutamate via mGluR5/TRPC3 and neuregulin/ErbB4. Glia 2017; 66:94-107. [PMID: 28887860 DOI: 10.1002/glia.23230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/18/2017] [Accepted: 08/24/2017] [Indexed: 11/09/2022]
Abstract
Radial glial cells play an essential role through their function as guides for neuronal migration during development. Disruption of metabotropic glutamate receptor 5 (mGluR5) function retards the growth of radial glial processes in vitro. Neuregulins (NRG) are activated by proteolytic cleavage and regulate (radial) glial maintenance via ErbB3/ErbB4 receptors. We show here that blocking ErbB4 disrupts radial process extension. Soluble NRG acting on ErbB4 receptors is able to promote radial process extension in particular where process elongation has been impeded by blockade of mGluR5, the nonselective cation channel canonical transient receptor potential 3 (TRPC3), or matrix metalloproteases (MMP). NRG does not restore retarded process growth caused by ErbB4 blockade. Stimulation of muscarinic receptors restores process elongation due to mGluR5 blockade but not that caused by TRPC3, MMP or ErbB4 blockade suggesting that muscarinic receptors can replace mGluR5 with respect to radial process extension. Additionally, NRG/ErbB4 causes Ca2+ mobilization in a population of cells through cooperation with ErbB1 receptors. Our results indicate that mGluR5 promotes radial process growth via NRG activation by a mechanism involving TRPC3 channels and MMPs. Thus neurotransmitters acting on G-protein coupled receptors could play a central role in the maintenance of the radial glial scaffold through activation of NRG/ErbB4 signaling.
Collapse
Affiliation(s)
- Lauri M Louhivuori
- University of Helsinki, Biomedicum, Medicum/Physiology, Helsinki, FIN-00014, Finland.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Pauli M Turunen
- University of Helsinki, Biomedicum, Medicum/Physiology, Helsinki, FIN-00014, Finland
| | - Verna Louhivuori
- University of Helsinki, Biomedicum, Medicum/Physiology, Helsinki, FIN-00014, Finland
| | | | - Tommy Nordström
- University of Helsinki, Biomedicum, Medicum/Physiology, Helsinki, FIN-00014, Finland
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Karl E Åkerman
- University of Helsinki, Biomedicum, Medicum/Physiology, Helsinki, FIN-00014, Finland
| |
Collapse
|
27
|
Abe H, Aoya D, Takeuchi HA, Inoue-Murayama M. Gene expression patterns of chicken neuregulin 3 in association with copy number variation and frameshift deletion. BMC Genet 2017; 18:69. [PMID: 28732471 PMCID: PMC5521077 DOI: 10.1186/s12863-017-0537-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 07/11/2017] [Indexed: 01/21/2023] Open
Abstract
Background Neuregulin 3 (NRG3) plays a key role in central nervous system development and is a strong candidate for human mental disorders. Thus, genetic variation in NRG3 may have some impact on a variety of phenotypes in non-mammalian vertebrates. Recently, genome-wide screening for short insertions and deletions in chicken (Gallus gallus) genomes has provided useful information about structural variation in functionally important genes. NRG3 is one such gene that has a putative frameshift deletion in exon 2, resulting in premature termination of translation. Our aims were to characterize the structure of chicken NRG3 and to compare expression patterns between NRG3 isoforms. Results Depending on the presence or absence of the 2-bp deletion in chicken NRG3, 3 breeds (red junglefowl [RJF], Boris Brown [BB], and Hinai-jidori [HJ]) were genotyped using flanking primers. In the commercial breeds (BB and HJ), approximately 45% of individuals had at least one exon 2 allele with the 2-bp deletion, whereas there was no deletion allele in RJF. The lack of a homozygous mutant indicated the existence of duplicated NRG3 segments in the chicken genome. Indeed, highly conserved elements consisting of exon 1, intron 1, exon 2, and part of intron 2 were found in the reference RJF genome, and quantitative PCR detected copy number variation (CNV) between breeds as well as between individuals. The copy number of conserved elements was significantly higher in chicks harboring the 2-bp deletion in exon 2. We identified 7 novel transcript variants using total mRNA isolated from the amygdala. Novel isoforms were found to lack the exon 2 cassette, which probably harbored the premature termination codon. The relative transcription levels of the newly identified isoforms were almost the same between chick groups with and without the 2-bp deletion, while chicks with the deletion showed significant suppression of the expression of previously reported isoforms. Conclusions A putative frameshift deletion and CNV in chicken NRG3 are structural mutations that occurred before the establishment of commercial chicken lines. Our results further suggest that the putative frameshift deletion in exon 2 may potentially affect the expression level of particular isoforms of chicken NRG3. Electronic supplementary material The online version of this article (doi:10.1186/s12863-017-0537-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hideaki Abe
- Wildlife Research Center, Kyoto University, 2-24 Tanaka-Sekiden-cho, Sakyo, Kyoto, 606-8203, Japan.
| | - Daiki Aoya
- Akita Prefectural Livestock Experiment Station, 13-3 Kaisonumayachi, Jinguji, Daisen, Akita, 019-1701, Japan
| | - Hiro-Aki Takeuchi
- Department of Biological Science, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Miho Inoue-Murayama
- Wildlife Research Center, Kyoto University, 2-24 Tanaka-Sekiden-cho, Sakyo, Kyoto, 606-8203, Japan.,Wildlife Genome Collaborative Research Group, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| |
Collapse
|
28
|
Paterson C, Wang Y, Hyde TM, Weinberger DR, Kleinman JE, Law AJ. Temporal, Diagnostic, and Tissue-Specific Regulation of NRG3 Isoform Expression in Human Brain Development and Affective Disorders. Am J Psychiatry 2017; 174:256-265. [PMID: 27771971 PMCID: PMC5892449 DOI: 10.1176/appi.ajp.2016.16060721] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Genes implicated in schizophrenia are enriched in networks differentially regulated during human CNS development. Neuregulin 3 (NRG3), a brain-enriched neurotrophin, undergoes alternative splicing and is implicated in several neurological disorders with developmental origins. Isoform-specific increases in NRG3 are observed in schizophrenia and associated with rs10748842, a NRG3 risk polymorphism, suggesting NRG3 transcriptional dysregulation as a molecular mechanism of risk. The authors quantitatively mapped the temporal trajectories of NRG3 isoforms (classes I-IV) in the neocortex throughout the human lifespan, examined whether tissue-specific regulation of NRG3 occurs in humans, and determined if abnormalities in NRG3 transcriptomics occur in mood disorders and are genetically determined. METHOD NRG3 isoform classes I-IV were quantified using quantitative real-time polymerase chain reaction in human postmortem dorsolateral prefrontal cortex from 286 nonpsychiatric control individuals, from gestational week 14 to 85 years old, and individuals diagnosed with either bipolar disorder (N=34) or major depressive disorder (N=69). Tissue-specific mapping was investigated in several human tissues. rs10748842 was genotyped in individuals with mood disorders, and association with NRG3 isoform expression examined. RESULTS NRG3 classes displayed individually specific expression trajectories across human neocortical development and aging; classes I, II, and IV were significantly associated with developmental stage. NRG3 class I was increased in bipolar and major depressive disorder, consistent with observations in schizophrenia. NRG3 class II was increased in bipolar disorder, and class III was increased in major depression. The rs10748842 risk genotype predicted elevated class II and III expression, consistent with previous reports in the brain, with tissue-specific analyses suggesting that classes II and III are brain-specific isoforms of NRG3. CONCLUSIONS Mapping the temporal expression of genes during human brain development provides vital insight into gene function and identifies critical sensitive periods whereby genetic factors may influence risk for psychiatric disease. Here the authors provide comprehensive insight into the transcriptional landscape of the psychiatric risk gene, NRG3, in human neocortical development and expand on previous findings in schizophrenia to identify increased expression of developmentally and genetically regulated isoforms in the brain of patients with mood disorders. Principally, the finding that NRG3 classes II and III are brain-specific isoforms predicted by rs10748842 risk genotype and are increased in mood disorders further implicates a molecular mechanism of psychiatric risk at the NRG3 locus and identifies a potential developmental role for NRG3 in bipolar disorder and major depression. These observations encourage investigation of the neurobiology of NRG3 isoforms and highlight inhibition of NRG3 signaling as a potential target for psychiatric treatment development.
Collapse
Affiliation(s)
- Clare Paterson
- From the Department of Psychiatry and the Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora; the Lieber Institute for Brain Development, Johns Hopkins University, Baltimore; and the Department of Psychiatry and Behavioral Sciences, the Department of Neurology, the Department of Neuroscience, and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore
| | - Yanhong Wang
- From the Department of Psychiatry and the Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora; the Lieber Institute for Brain Development, Johns Hopkins University, Baltimore; and the Department of Psychiatry and Behavioral Sciences, the Department of Neurology, the Department of Neuroscience, and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore
| | - Thomas M. Hyde
- From the Department of Psychiatry and the Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora; the Lieber Institute for Brain Development, Johns Hopkins University, Baltimore; and the Department of Psychiatry and Behavioral Sciences, the Department of Neurology, the Department of Neuroscience, and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore
| | - Daniel R. Weinberger
- From the Department of Psychiatry and the Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora; the Lieber Institute for Brain Development, Johns Hopkins University, Baltimore; and the Department of Psychiatry and Behavioral Sciences, the Department of Neurology, the Department of Neuroscience, and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore
| | - Joel E. Kleinman
- From the Department of Psychiatry and the Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora; the Lieber Institute for Brain Development, Johns Hopkins University, Baltimore; and the Department of Psychiatry and Behavioral Sciences, the Department of Neurology, the Department of Neuroscience, and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore
| | - Amanda J. Law
- From the Department of Psychiatry and the Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora; the Lieber Institute for Brain Development, Johns Hopkins University, Baltimore; and the Department of Psychiatry and Behavioral Sciences, the Department of Neurology, the Department of Neuroscience, and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore
| |
Collapse
|
29
|
Ikawa D, Makinodan M, Iwata K, Ohgidani M, Kato TA, Yamashita Y, Yamamuro K, Kimoto S, Toritsuka M, Yamauchi T, Fukami SI, Yoshino H, Okumura K, Tanaka T, Wanaka A, Owada Y, Tsujii M, Sugiyama T, Tsuchiya K, Mori N, Hashimoto R, Matsuzaki H, Kanba S, Kishimoto T. Microglia-derived neuregulin expression in psychiatric disorders. Brain Behav Immun 2017; 61:375-385. [PMID: 28089559 DOI: 10.1016/j.bbi.2017.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 01/05/2017] [Accepted: 01/08/2017] [Indexed: 12/18/2022] Open
Abstract
Several studies have revealed that neuregulins (NRGs) are involved in brain function and psychiatric disorders. While NRGs have been regarded as neuron- or astrocyte-derived molecules, our research has revealed that microglia also express NRGs, levels of which are markedly increased in activated microglia. Previous studies have indicated that microglia are activated in the brains of individuals with autism spectrum disorder (ASD). Therefore, we investigated microglial NRG mRNA expression in multiple lines of mice considered models of ASD. Intriguingly, microglial NRG expression significantly increased in BTBR and socially-isolated mice, while maternal immune activation (MIA) mice exhibited identical NRG expression to controls. Furthermore, we observed a positive correlation between NRG expression in microglia and peripheral blood mononuclear cells (PBMCs) in mice, suggesting that NRG expression in human PBMCs may mirror microglia-derived NRG expression in the human brain. To translate these findings for application in clinical psychiatry, we measured levels of NRG1 splice-variant expression in clinically available PBMCs of patients with ASD. Levels of NRG1 type III expression in PBMCs were positively correlated with impairments in social interaction in children with ASD (as assessed using the Autistic Diagnostic Interview-Revised test: ADI-R). These findings suggest that immune cell-derived NRGs may be implicated in the pathobiology of psychiatric disorders such as ASD.
Collapse
Affiliation(s)
- Daisuke Ikawa
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan.
| | - Keiko Iwata
- Research Center for Child Mental Development, University of Fukui, Japan; Department of Development of Functional Brain Activities, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Fukui, Japan
| | - Masahiro Ohgidani
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyusyu University, Fukuoka, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyusyu University, Fukuoka, Japan; Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan
| | - Yasunori Yamashita
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Kazuhiko Yamamuro
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Sohei Kimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Michihiro Toritsuka
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Takahira Yamauchi
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Shin-Ichi Fukami
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Hiroki Yoshino
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Kazuki Okumura
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Tatsuhide Tanaka
- Department of Anatomy and Neuroscience, Nara Medical University School of Medicine, Nara, Japan
| | - Akio Wanaka
- Department of Anatomy and Neuroscience, Nara Medical University School of Medicine, Nara, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | | | - Kenji Tsuchiya
- Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Norio Mori
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Ryota Hashimoto
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan; Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hideo Matsuzaki
- Research Center for Child Mental Development, University of Fukui, Japan; Department of Development of Functional Brain Activities, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Fukui, Japan
| | - Shigenobu Kanba
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyusyu University, Fukuoka, Japan
| | - Toshifumi Kishimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| |
Collapse
|
30
|
Arbabshirani MR, Plis S, Sui J, Calhoun VD. Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls. Neuroimage 2017; 145:137-165. [PMID: 27012503 PMCID: PMC5031516 DOI: 10.1016/j.neuroimage.2016.02.079] [Citation(s) in RCA: 560] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 02/03/2016] [Accepted: 02/25/2016] [Indexed: 01/18/2023] Open
Abstract
Neuroimaging-based single subject prediction of brain disorders has gained increasing attention in recent years. Using a variety of neuroimaging modalities such as structural, functional and diffusion MRI, along with machine learning techniques, hundreds of studies have been carried out for accurate classification of patients with heterogeneous mental and neurodegenerative disorders such as schizophrenia and Alzheimer's disease. More than 500 studies have been published during the past quarter century on single subject prediction focused on a multiple brain disorders. In the first part of this study, we provide a survey of more than 200 reports in this field with a focus on schizophrenia, mild cognitive impairment (MCI), Alzheimer's disease (AD), depressive disorders, autism spectrum disease (ASD) and attention-deficit hyperactivity disorder (ADHD). Detailed information about those studies such as sample size, type and number of extracted features and reported accuracy are summarized and discussed. To our knowledge, this is by far the most comprehensive review of neuroimaging-based single subject prediction of brain disorders. In the second part, we present our opinion on major pitfalls of those studies from a machine learning point of view. Common biases are discussed and suggestions are provided. Moreover, emerging trends such as decentralized data sharing, multimodal brain imaging, differential diagnosis, disease subtype classification and deep learning are also discussed. Based on this survey, there is extensive evidence showing the great potential of neuroimaging data for single subject prediction of various disorders. However, the main bottleneck of this exciting field is still the limited sample size, which could be potentially addressed by modern data sharing models such as the ones discussed in this paper. Emerging big data technologies and advanced data-intensive machine learning methodologies such as deep learning have coincided with an increasing need for accurate, robust and generalizable single subject prediction of brain disorders during an exciting time. In this report, we survey the past and offer some opinions regarding the road ahead.
Collapse
Affiliation(s)
- Mohammad R Arbabshirani
- The Mind Research Network, Albuquerque, NM 87106, USA; Geisinger Health System, Danville, PA 17822, USA
| | - Sergey Plis
- The Mind Research Network, Albuquerque, NM 87106, USA
| | - Jing Sui
- The Mind Research Network, Albuquerque, NM 87106, USA; Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, NM 87106, USA; Department of ECE, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
31
|
Zai G, Robbins TW, Sahakian BJ, Kennedy JL. A review of molecular genetic studies of neurocognitive deficits in schizophrenia. Neurosci Biobehav Rev 2017; 72:50-67. [DOI: 10.1016/j.neubiorev.2016.10.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 10/17/2016] [Accepted: 10/27/2016] [Indexed: 02/08/2023]
|
32
|
Cope ZA, Powell SB, Young JW. Modeling neurodevelopmental cognitive deficits in tasks with cross-species translational validity. GENES BRAIN AND BEHAVIOR 2016; 15:27-44. [PMID: 26667374 DOI: 10.1111/gbb.12268] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/14/2015] [Accepted: 10/27/2015] [Indexed: 12/24/2022]
Abstract
Numerous psychiatric disorders whose cognitive dysfunction links to functional outcome have neurodevelopmental origins including schizophrenia, autism and bipolar disorder. Treatments are needed for these cognitive deficits, which require development using animal models. Models of neurodevelopmental disorders are as varied and diverse as the disorders themselves, recreating some but not all aspects of the disorder. This variety may in part underlie why purported procognitive treatments translated from these models have failed to restore functioning in the targeted patient populations. Further complications arise from environmental factors used in these models that can contribute to numerous disorders, perhaps only impacting specific domains, while diagnostic boundaries define individual disorders, limiting translational efficacy. The Research Domain Criteria project seeks to 'develop new ways to classify mental disorders based on behavioral dimensions and neurobiological measures' in hopes of facilitating translational research by remaining agnostic toward diagnostic borders derived from clinical presentation in humans. Models could therefore recreate biosignatures of cognitive dysfunction irrespective of disease state. This review highlights work within the field of neurodevelopmental models of psychiatric disorders tested in cross-species translational cognitive paradigms that directly inform this newly developing research strategy. By expounding on this approach, the hopes are that a fuller understanding of each model may be attainable in terms of the cognitive profile elicited by each manipulation. Hence, conclusions may begin to be drawn on the nature of cognitive neuropathology on neurodevelopmental and other disorders, increasing the chances of procognitive treatment development for individuals affected in specific cognitive domains.
Collapse
Affiliation(s)
- Z A Cope
- Department of Psychiatry, University of California San Diego, La Jolla
| | - S B Powell
- Department of Psychiatry, University of California San Diego, La Jolla.,Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - J W Young
- Department of Psychiatry, University of California San Diego, La Jolla.,Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
33
|
Hayes LN, Shevelkin A, Zeledon M, Steel G, Chen PL, Obie C, Pulver A, Avramopoulos D, Valle D, Sawa A, Pletnikov MV. Neuregulin 3 Knockout Mice Exhibit Behaviors Consistent with Psychotic Disorders. MOLECULAR NEUROPSYCHIATRY 2016; 2:79-87. [PMID: 27606322 PMCID: PMC4996025 DOI: 10.1159/000445836] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/24/2016] [Indexed: 12/22/2022]
Abstract
Neuregulin 3 (NRG3) is a paralog of NRG1. Genetic studies in schizophrenia demonstrate that risk variants in NRG3 are associated with cognitive and psychotic symptom severity, and several intronic single nucleotide polymorphisms in NRG3 are associated with delusions in patients with schizophrenia. In order to gain insights into the biological function of the gene, we generated a novel Nrg3 knockout (KO) mouse model and tested for neurobehavioral phenotypes relevant to psychotic disorders. KO mice displayed novelty-induced hyperactivity, impaired prepulse inhibition of the acoustic startle response, and deficient fear conditioning. No gross cytoarchitectonic or layer abnormalities were noted in the brain of KO mice. Our findings suggest that deletion of the Nrg3 gene leads to alterations consistent with aspects of schizophrenia. We propose that KO mice will provide a valuable animal model to determine the role of the NRG3 in the molecular pathogenesis of schizophrenia and other psychotic disorders.
Collapse
Affiliation(s)
- Lindsay N. Hayes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Alexey Shevelkin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Mariela Zeledon
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Predoctoral Training Program in Human Genetics, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Gary Steel
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Pei-Lung Chen
- Department of Medical Genetics, National Taiwan University Hospital, Taipei City, Taiwan, ROC
| | - Cassandra Obie
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Ann Pulver
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Dimitrios Avramopoulos
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - David Valle
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Akira Sawa
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Predoctoral Training Program in Human Genetics, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Mikhail V. Pletnikov
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| |
Collapse
|
34
|
Wu JQ, Green MJ, Gardiner EJ, Tooney PA, Scott RJ, Carr VJ, Cairns MJ. Altered neural signaling and immune pathways in peripheral blood mononuclear cells of schizophrenia patients with cognitive impairment: A transcriptome analysis. Brain Behav Immun 2016; 53:194-206. [PMID: 26697997 DOI: 10.1016/j.bbi.2015.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/26/2015] [Accepted: 12/13/2015] [Indexed: 12/20/2022] Open
Abstract
Cognitive deficits are a core feature of schizophrenia and contribute significantly to functional disability. We investigated the molecular pathways associated with schizophrenia (SZ; n=47) cases representing both 'cognitive deficit' (CD; n=22) and 'cognitively spared' (CS; n=25) subtypes of schizophrenia (based on latent class analysis of 9 cognitive performance indicators), compared with 49 healthy controls displaying 'normal' cognition. This was accomplished using gene-set analysis of transcriptome data derived from peripheral blood mononuclear cells (PBMCs). We detected 27 significantly altered pathways (19 pathways up-regulated and 8 down-regulated) in the combined SZ group and a further 6 pathways up-regulated in the CS group and 5 altered pathways (4 down-regulated and 1 up-regulated) in the CD group. The transcriptome profiling in SZ and cognitive subtypes were characterized by the up-regulated pathways involved in immune dysfunction (e.g., antigen presentation in SZ), energy metabolism (e.g., oxidative phosphorylation), and down-regulation of the pathways involved in neuronal signaling (e.g., WNT in SZ/CD and ERBB in SZ). When we looked for pathways that differentiated the two cognitive subtypes we found that the WNT signaling was significantly down-regulated (FDR<0.05) in the CD group in accordance with the combined SZ cohort, whereas it was unaffected in the CS group. This suggested suppression of WNT signaling was a defining feature of cognitive decline in schizophrenia. The WNT pathway plays a role in both the development/function of the central nervous system and peripheral tissues, therefore its alteration in PBMCs may be indicative of an important genomic axis relevant to cognition in the neuropathology of schizophrenia.
Collapse
Affiliation(s)
- Jing Qin Wu
- School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Schizophrenia Research Institute, Sydney, Australia; Centre for Translational Neuroscience and Mental Health, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia
| | - Melissa J Green
- Schizophrenia Research Institute, Sydney, Australia; School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Erin J Gardiner
- School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Schizophrenia Research Institute, Sydney, Australia; Centre for Translational Neuroscience and Mental Health, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia
| | - Paul A Tooney
- School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Schizophrenia Research Institute, Sydney, Australia
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Schizophrenia Research Institute, Sydney, Australia; Centre for Translational Neuroscience and Mental Health, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia
| | - Vaughan J Carr
- Schizophrenia Research Institute, Sydney, Australia; School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Schizophrenia Research Institute, Sydney, Australia; Centre for Translational Neuroscience and Mental Health, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia.
| |
Collapse
|
35
|
Frydecka D, Beszłej JA, Pawlak-Adamska E, Misiak B, Karabon L, Tomkiewicz A, Partyka A, Jonkisz A, Szewczuk-Bogusławska M, Zawadzki M, Kiejna A. CTLA4 and CD28 Gene Polymorphisms with Respect to Affective Symptom Domain in Schizophrenia. Neuropsychobiology 2016; 71:158-67. [PMID: 25998553 DOI: 10.1159/000379751] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/02/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Accumulating evidence indicates that immune alterations in schizophrenia are due to genetic underpinnings. Here, we aimed at investigating whether polymorphisms in CTLA4 and CD28 genes, encoding molecules that regulate T-cell activity, influence schizophrenia symptomatology. METHOD We recruited 120 schizophrenia patients and 380 healthy age- and sex-matched controls. We divided the patients into two groups: one with no co-occurrence between psychotic and affective symptoms and the second one with psychotic symptoms dominating in the clinical manifestation, although also with occasional affective disturbances in the course of illness. RESULTS Among the patients with co-occurring affective symptoms, there were significantly more CTLA4 c.49A>G[A] alleles (p = 0.018, odds ratio (OR) 2.03, 95% confidence interval (CI) 1.2-3.66) and more CTLA4 g.319C>T[T] alleles (p = 0.07, OR 1.93, 95% CI 0.94-4.13) in comparison to the second group. Additionally, we have shown that CD28 c.17 + 3T>C[C+] were more significantly overrepresented among patients with co-occurring psychotic and affective symptoms (p = 0.0003, OR 3.36, 95% CI 1.69-6.68) than in patients without co-occurence between these symptoms (p = 0.012, OR 1.88, 95% CI 1.15-3.10). CONCLUSION CTLA4 and CD28 gene polymorphisms may not only act in immune deregulation observed in schizophrenia, but may also influence the course of the illness by modifying the susceptibility to the co-occurrence of psychotic and affective symptoms.
Collapse
Affiliation(s)
- Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hu X, Fan Q, Hou H, Yan R. Neurological dysfunctions associated with altered BACE1-dependent Neuregulin-1 signaling. J Neurochem 2016; 136:234-49. [PMID: 26465092 PMCID: PMC4833723 DOI: 10.1111/jnc.13395] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 01/09/2023]
Abstract
Inhibition of BACE1 is being pursued as a therapeutic target to treat patients suffering from Alzheimer's disease because BACE1 is the sole β-secretase that generates β-amyloid peptide. Knowledge regarding other cellular functions of BACE1 is therefore critical for the safe use of BACE1 inhibitors in human patients. Neuregulin-1 (Nrg1) is a BACE1 substrate and BACE1 cleavage of Nrg1 is critical for signaling functions in myelination, remyelination, synaptic plasticity, normal psychiatric behaviors, and maintenance of muscle spindles. This review summarizes the most recent discoveries associated with BACE1-dependent Nrg1 signaling in these areas. This body of knowledge will help to provide guidance for preventing unwanted Nrg1-based side effects following BACE1 inhibition in humans. To initiate its signaling cascade, membrane anchored Neuregulin (Nrg), mainly type I and III β1 Nrg1 isoforms and Nrg3, requires ectodomain shedding. BACE1 is one of such indispensable sheddases to release the functional Nrg signaling fragment. The dependence of Nrg on the cleavage by BACE1 is best manifested by disrupting the critical role of Nrg in the control of axonal myelination, schizophrenic behaviors as well as the formation and maintenance of muscle spindles.
Collapse
Affiliation(s)
- Xiangyou Hu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Qingyuan Fan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Hailong Hou
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| |
Collapse
|
37
|
Role of the Neuregulin Signaling Pathway in Nicotine Dependence and Co-morbid Disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 124:113-31. [PMID: 26472527 DOI: 10.1016/bs.irn.2015.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Smoking is currently the leading cause of preventable death in the United States and is responsible for over four million deaths annually worldwide. Therefore, there is a vast clinical unmet need with regards to therapeutics targeting smoking cessation. This is even more apparent when examining smokers co-morbid with psychiatric illness, as rates of smoking in this population are ~4× higher than in the general population. Examining common genetic and molecular signaling pathways impinging upon both smoking behavior and psychiatric illness will lead to a better understanding of co-morbid disorders and potential development of novel therapeutics. Studies have implicated the Neuregulin Signaling Pathway in the pathophysiology of a number of psychiatric illnesses. Additionally, recent studies have also shown an association between the Neuregulin Signaling Pathway and smoking behaviors. This review outlines basic mechanisms of the Neuregulin Signaling Pathway and how it may be exploited for precision medicine approaches in treating nicotine dependence and mental illness.
Collapse
|
38
|
Zeledón M, Eckart N, Taub M, Vernon H, Szymanski M, Wang R, Chen PL, Nestadt G, McGrath JA, Sawa A, Pulver AE, Avramopoulos D, Valle D. Identification and functional studies of regulatory variants responsible for the association of NRG3 with a delusion phenotype in schizophrenia. MOLECULAR NEUROPSYCHIATRY 2015; 1:36-46. [PMID: 26528484 PMCID: PMC4627703 DOI: 10.1159/000371518] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/12/2014] [Indexed: 12/12/2022]
Abstract
We previously reported genetic linkage for Schizophrenia (SZ) (NPL of 4.7) at 10q22 in the Ashkenazi Jewish (AJ) population. In follow up fine mapping we found strong evidence of association between three intronic single nucleotide variants (SNVs) in the 5' end of Neuregulin 3 (NRG3) and the delusion factor score of our phenotypic principal component analysis. Two independent groups replicated these findings, indicating that variants in NRG3 confer risk for a delusion-rich SZ subtype. To identify the causative variants, we sequenced the 162 kb linkage disequilibrium (LD) block covering the NRG3 5' end in 47 AJ SZ patients at the extremes of the delusion factor quantitative trait distribution. Among the identified variants we found 5 noncoding SNVs present on the high delusion factor haplotype and significantly overrepresented in high delusion factor subjects. We tested these for regulatory effects and found that risk alleles of rs10883866 and rs60827755 decreased and increased, respectively, the expression of a reporter gene as compared to the reference allele. In post-mortem brain RNA quantification experiments we found the same variants also perturb relative expression of alternative NRG3 isoforms. In summary, we have identified regulatory SNVs contributing to the association of NRG3 with delusion symptoms in SZ.
Collapse
Affiliation(s)
- Mariela Zeledón
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Predoctoral Training Program in Human Genetics, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Nicole Eckart
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Predoctoral Training Program in Human Genetics, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Margaret Taub
- Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Md., USA
| | - Hilary Vernon
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Megan Szymanski
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Predoctoral Training Program in Human Genetics, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Ruihua Wang
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Pei-Lung Chen
- Department of Medical Genetics, National Taiwan University Hospital, Taipei City, Taiwan, ROC
| | - Gerry Nestadt
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - John A. McGrath
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Epidemiology-Genetics Program, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Md., USA
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Ann E. Pulver
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Epidemiology-Genetics Program, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Md., USA
| | - Dimitrios Avramopoulos
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - David Valle
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| |
Collapse
|
39
|
Plani-Lam JHC, Chow TC, Siu KL, Chau WH, Ng MHJ, Bao S, Ng CT, Sham P, Shum DKY, Ingley E, Jin DY, Song YQ. PTPN21 exerts pro-neuronal survival and neuritic elongation via ErbB4/NRG3 signaling. Int J Biochem Cell Biol 2015; 61:53-62. [PMID: 25681686 DOI: 10.1016/j.biocel.2015.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 01/27/2015] [Accepted: 02/03/2015] [Indexed: 10/24/2022]
Abstract
Although expression quantitative trait locus, eQTL, serves as an explicit indicator of gene-gene associations, challenges remain to disentangle the mechanisms by which genetic variations alter gene expression. Here we combined eQTL and molecular analyses to identify an association between two seemingly non-associated genes in brain expression data from BXD inbred mice, namely Ptpn21 and Nrg3. Using biotinylated receptor tracking and immunoprecipitation analyses, we determined that PTPN21 de-phosphorylates the upstream receptor tyrosine kinase ErbB4 leading to the up-regulation of its downstream signaling. Conversely, kinase-dead ErbB4 (K751R) or phosphatase-dead PTPN21 (C1108S) mutants impede PTPN21-dependent signaling. Furthermore, PTPN21 also induced Elk-1 activation in embryonic cortical neurons and a novel Elk-1 binding motif was identified in a region located 1919bp upstream of the NRG3 initiation codon. This enables PTPN21 to promote NRG3 expression through Elk-1, which provides a biochemical mechanism for the PTPN21-NRG3 association identified by eQTL. Biologically, PTPN21 positively influences cortical neuronal survival and, similar to Elk-1, it also enhances neuritic length. Our combined approaches show for the first time, a link between NRG3 and PTPN21 within a signaling cascade. This may explain why these two seemingly unrelated genes have previously been identified as risk genes for schizophrenia.
Collapse
Affiliation(s)
| | - Tai-Cheong Chow
- Department of Biochemistry, University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Kam-Leung Siu
- Department of Biochemistry, University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Wing Hin Chau
- Department of Biochemistry, University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Ming-Him James Ng
- Department of Biochemistry, University of Hong Kong, 21 Sassoon Road, Hong Kong, China; Poison Treatment Centre, Department of Medicine and Therapeutics, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Suying Bao
- Department of Biochemistry, University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Cheung Toa Ng
- Department of Biochemistry, University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Pak Sham
- Department of Psychiatry, University of Hong Kong, 21 Sassoon Road, Hong Kong, China; Centre for Genomic Sciences, University of Hong Kong, 5 Sassoon Road, Hong Kong, China
| | - Daisy Kwok-Yan Shum
- Department of Biochemistry, University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Evan Ingley
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Dong-Yan Jin
- Department of Biochemistry, University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - You-Qiang Song
- Department of Biochemistry, University of Hong Kong, 21 Sassoon Road, Hong Kong, China.
| |
Collapse
|
40
|
Functional variants in DPYSL2 sequence increase risk of schizophrenia and suggest a link to mTOR signaling. G3-GENES GENOMES GENETICS 2014; 5:61-72. [PMID: 25416705 PMCID: PMC4291470 DOI: 10.1534/g3.114.015636] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Numerous linkage and association studies by our group and others have implicated DPYSL2 at 8p21.2 in schizophrenia. Here we explore DPYSL2 for functional variation that underlies these associations. We sequenced all 14 exons of DPYSL2 as well as 27 conserved noncoding regions at the locus in 137 cases and 151 controls. We identified 120 variants, eight of which we genotyped in an additional 729 cases and 1542 controls. Several were significantly associated with schizophrenia, including a three single-nucleotide polymorphism (SNP) haplotype in the proximal promoter, two SNPs in intron 1, and a polymorphic dinucleotide repeat in the 5′-untranslated region that alters sequences predicted to be involved in translational regulation by mammalian target of rapamycin signaling. The 3-SNP promoter haplotype and the sequence surrounding one of the intron 1 SNPs direct tissue-specific expression in the nervous systems of Zebrafish in a pattern consistent with the two endogenous dpysl2 paralogs. In addition, two SNP haplotypes over the coding exons and 3′ end of DPYSL2 showed association with opposing sex-specific risks. These data suggest that these polymorphic, schizophrenia-associated sequences function as regulatory elements for DPYSL2 expression. In transient transfection assays, the high risk allele of the polymorphic dinucleotide repeat diminished reporter expression by 3- to 4-fold. Both the high- and low-risk alleles respond to allosteric mTOR inhibition by rapamycin until, at high drug levels, allelic differences are eliminated. Our results suggest that reduced transcription and mTOR-regulated translation of certain DPYSL2 isoforms increase the risk for schizophrenia.
Collapse
|
41
|
Loos M, Mueller T, Gouwenberg Y, Wijnands R, van der Loo RJ, Birchmeier C, Smit AB, Spijker S. Neuregulin-3 in the mouse medial prefrontal cortex regulates impulsive action. Biol Psychiatry 2014; 76:648-55. [PMID: 24703509 DOI: 10.1016/j.biopsych.2014.02.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 01/24/2014] [Accepted: 02/11/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND A deficit in impulse control is a prominent, heritable symptom in several psychiatric disorders, such as addiction, attention-deficit/hyperactivity disorder, and schizophrenia. Here, we aimed to identify genes regulating impulsivity, specifically of impulsive action, in mice. METHODS Using the widely used 5-choice serial reaction time task, we measured impulsive action in 1) a panel of 41 BXD recombinant inbred strains of mice (n = 13.7 ± .8 per strain; n = 654 total) to detect underlying genetic loci; 2) congenic mice (n = 23) to replicate the identified locus; 3) mice overexpressing the Nrg3 candidate gene in the medial prefrontal cortex (n = 21); and 4) a Nrg3 loss-of-function mutant (n = 59) to functionally implicate the Nrg3 candidate gene in impulsivity. RESULTS Genetic mapping of impulsive action in the BXD panel identified a locus on chromosome 14 (34.5-41.4 Mb), syntenic with the human 10q22-q23 schizophrenia-susceptibility locus. Congenic mice carrying the impulsivity locus (Impu1) confirmed its influence on impulsive action. Increased impulsivity was associated with increased Nrg3 gene expression in the medial prefrontal cortex (mPFC). Viral overexpression of Nrg3 in the mPFC increased impulsivity, whereas a constitutive Nrg3 loss-of-function mutation decreased it. CONCLUSIONS The causal relation between Nrg3 expression in the mPFC and level of impulsive action shown here provides a mechanism by which polymorphism in NRG3 in humans contributes to a specific cognitive deficit seen in several psychiatric diseases, such as addiction, attention-deficit/hyperactivity disorder, and schizophrenia.
Collapse
Affiliation(s)
- Maarten Loos
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam; Sylics (Synaptologics BV), Amsterdam, The Netherlands
| | - Thomas Mueller
- Department of Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Yvonne Gouwenberg
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam
| | - Ruud Wijnands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam; Sylics (Synaptologics BV), Amsterdam, The Netherlands
| | - Rolinka J van der Loo
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam; Sylics (Synaptologics BV), Amsterdam, The Netherlands
| | | | - Carmen Birchmeier
- Department of Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam
| | - Sabine Spijker
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam.
| |
Collapse
|
42
|
Gould IC, Shepherd AM, Laurens KR, Cairns MJ, Carr VJ, Green MJ. Multivariate neuroanatomical classification of cognitive subtypes in schizophrenia: a support vector machine learning approach. Neuroimage Clin 2014; 6:229-36. [PMID: 25379435 PMCID: PMC4215428 DOI: 10.1016/j.nicl.2014.09.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 09/12/2014] [Indexed: 01/09/2023]
Abstract
Heterogeneity in the structural brain abnormalities associated with schizophrenia has made identification of reliable neuroanatomical markers of the disease difficult. The use of more homogenous clinical phenotypes may improve the accuracy of predicting psychotic disorder/s on the basis of observable brain disturbances. Here we investigate the utility of cognitive subtypes of schizophrenia - 'cognitive deficit' and 'cognitively spared' - in determining whether multivariate patterns of volumetric brain differences can accurately discriminate these clinical subtypes from healthy controls, and from each other. We applied support vector machine classification to grey- and white-matter volume data from 126 schizophrenia patients previously allocated to the cognitive spared subtype, 74 cognitive deficit schizophrenia patients, and 134 healthy controls. Using this method, cognitive subtypes were distinguished from healthy controls with up to 72% accuracy. Cross-validation analyses between subtypes achieved an accuracy of 71%, suggesting that some common neuroanatomical patterns distinguish both subtypes from healthy controls. Notably, cognitive subtypes were best distinguished from one another when the sample was stratified by sex prior to classification analysis: cognitive subtype classification accuracy was relatively low (<60%) without stratification, and increased to 83% for females with sex stratification. Distinct neuroanatomical patterns predicted cognitive subtype status in each sex: sex-specific multivariate patterns did not predict cognitive subtype status in the other sex above chance, and weight map analyses demonstrated negative correlations between the spatial patterns of weights underlying classification for each sex. These results suggest that in typical mixed-sex samples of schizophrenia patients, the volumetric brain differences between cognitive subtypes are relatively minor in contrast to the large common disease-associated changes. Volumetric differences that distinguish between cognitive subtypes on a case-by-case basis appear to occur in a sex-specific manner that is consistent with previous evidence of disrupted relationships between brain structure and cognition in male, but not female, schizophrenia patients. Consideration of sex-specific differences in brain organization is thus likely to assist future attempts to distinguish subgroups of schizophrenia patients on the basis of neuroanatomical features.
Collapse
Affiliation(s)
- Ian C. Gould
- Schizophrenia Research Institute, Darlinghurst, NSW, Australia
- School of Psychiatry, University of New South Wales, Australia
| | - Alana M. Shepherd
- Schizophrenia Research Institute, Darlinghurst, NSW, Australia
- School of Psychiatry, University of New South Wales, Australia
| | - Kristin R. Laurens
- Schizophrenia Research Institute, Darlinghurst, NSW, Australia
- School of Psychiatry, University of New South Wales, Australia
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Murray J. Cairns
- Schizophrenia Research Institute, Darlinghurst, NSW, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
| | - Vaughan J. Carr
- Schizophrenia Research Institute, Darlinghurst, NSW, Australia
- School of Psychiatry, University of New South Wales, Australia
| | - Melissa J. Green
- Schizophrenia Research Institute, Darlinghurst, NSW, Australia
- School of Psychiatry, University of New South Wales, Australia
- Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
- Neuroscience Research Australia, Randwick, NSW, Australia
| |
Collapse
|
43
|
Mei L, Nave KA. Neuregulin-ERBB signaling in the nervous system and neuropsychiatric diseases. Neuron 2014; 83:27-49. [PMID: 24991953 DOI: 10.1016/j.neuron.2014.06.007] [Citation(s) in RCA: 436] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neuregulins (NRGs) comprise a large family of growth factors that stimulate ERBB receptor tyrosine kinases. NRGs and their receptors, ERBBs, have been identified as susceptibility genes for diseases such as schizophrenia (SZ) and bipolar disorder. Recent studies have revealed complex Nrg/Erbb signaling networks that regulate the assembly of neural circuitry, myelination, neurotransmission, and synaptic plasticity. Evidence indicates there is an optimal level of NRG/ERBB signaling in the brain and deviation from it impairs brain functions. NRGs/ERBBs and downstream signaling pathways may provide therapeutic targets for specific neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Lin Mei
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Goettingen, Germany.
| |
Collapse
|
44
|
Paterson C, Law AJ. Transient overexposure of neuregulin 3 during early postnatal development impacts selective behaviors in adulthood. PLoS One 2014; 9:e104172. [PMID: 25093331 PMCID: PMC4122441 DOI: 10.1371/journal.pone.0104172] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 07/08/2014] [Indexed: 02/06/2023] Open
Abstract
Neuregulin 3 (NRG3), a specific ligand for ErbB4 and a neuronal-enriched neurotrophin is implicated in the genetic predisposition to a broad spectrum of neurodevelopmental, neurocognitive and neuropsychiatric disorders, including Alzheimer's disease, autism and schizophrenia. Genetic studies in schizophrenia demonstrate that risk variants in NRG3 are associated with cognitive and psychotic symptom severity, accompanied by increased expression of prefrontal cortical NRG3. Despite our expanding knowledge of genetic involvement of NRG3 in neurological disorders, little is known about the neurodevelopmental mechanisms of risk. Here we exploited the fact that a paralog of NRG3, NRG1, readily penetrates the murine blood brain barrier (BBB). In this study we synthesized the bioactive epidermal growth factor (EGF) domain of NRG3, and using previously validated in-vivo peripheral injection methodologies in neonatal mice, demonstrate that NRG3 successfully crosses the BBB, where it activates its receptor ErbB4 and downstream Akt signaling at levels of bioactivity comparable to NRG1. To determine the impact of NRG3 overexpression during one critical developmental window, C57BL/6 male mice were subcutaneously injected daily with NRG1-EGF, NRG3-EGF or vehicle from postnatal days 2–10. Mice were tested in adulthood using a comprehensive battery of behavioral tasks relevant to neurocognitive and psychiatric disorders. In agreement with previous studies, developmental overexposure to NRG1 induced multiple non-CNS mediated peripheral effects as well as severely disrupting performance of prepulse inhibition of the startle response. In contrast, NRG3 had no effect on any peripheral measures investigated or sensorimotor gating. Specifically, developmental NRG3 overexposure produced an anxiogenic-like phenotype and deficits in social behavior in adulthood. These results provide primary data to support a role for NRG3 in brain development and function, which appears to be distinct from its paralog NRG1. Furthermore we demonstrate how perturbations in NRG3 expression at distinct developmental stages may contribute to the neurological deficits observed in brain disorders such as schizophrenia and autism.
Collapse
Affiliation(s)
- Clare Paterson
- Department of Psychiatry, University of Colorado, School of Medicine, Aurora, Colorado, United States of America
| | - Amanda J. Law
- Department of Psychiatry, University of Colorado, School of Medicine, Aurora, Colorado, United States of America
- Department of Cell and Developmental Biology, University of Colorado, School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
45
|
Turner JR, Ray R, Lee B, Everett L, Xiang J, Jepson C, Kaestner KH, Lerman C, Blendy JA. Evidence from mouse and man for a role of neuregulin 3 in nicotine dependence. Mol Psychiatry 2014; 19:801-10. [PMID: 23999525 PMCID: PMC3877725 DOI: 10.1038/mp.2013.104] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 07/12/2013] [Accepted: 07/18/2013] [Indexed: 12/31/2022]
Abstract
Addiction to nicotine and the ability to quit smoking are influenced by genetic factors. We used functional genomic approaches (chromatin immunoprecipitation (ChIP) and whole-genome sequencing) to identify cAMP response element-binding protein (CREB) targets following chronic nicotine administration and withdrawal (WD) in rodents. We found that chronic nicotine and WD differentially modulate CREB binding to the gene for neuregulin 3 (NRG3). Quantitative analysis of saline, nicotine and nicotine WD in two biological replicates corroborate this finding, with NRG3 increases in both mRNA and protein following WD from chronic nicotine treatment. To translate these data for human relevance, single-nucleotide polymorphisms (SNPs) across NRG3 were examined for association with prospective smoking cessation among smokers of European ancestry treated with transdermal nicotine in two independent cohorts. Individual SNP and haplotype analysis support the association of NRG3 SNPs and smoking cessation success. NRG3 is a neural-enriched member of the epidermal growth factor family, and a specific ligand for the receptor tyrosine kinase ErbB4, which is also upregulated following nicotine treatment and WD. Mice with significantly reduced levels of NRG3 or pharmacological inhibition of ErbB4 show similar reductions in anxiety following nicotine WD compared with control animals, suggesting a role for NRG3 in nicotine dependence. Although the function of the SNP in NRG3 in humans is not known, these data suggest that Nrg3/ErbB4 signaling may be an important factor in nicotine dependence.
Collapse
Affiliation(s)
- Jill R. Turner
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Riju Ray
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Bridgin Lee
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Logan Everett
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jing Xiang
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Christopher Jepson
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Klaus H. Kaestner
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Caryn Lerman
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Julie A. Blendy
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
46
|
Abstract
The neuregulin 3 gene (NRG3) plays pleiotropic roles in neurodevelopment and is a putative susceptibility locus for schizophrenia. Specifically, the T allele of NRG3 rs10748842 has been associated with illness risk, altered cognitive function, and the expression of a novel splice isoform in prefrontal cortex (PFC), but the neural system effects are unexplored. Here, we report an association between rs10748842 and PFC physiology as measured by functional magnetic resonance imaging of human working memory performance, where a convincing link between increased genetic risk for schizophrenia and increased activation in some PFC areas has been established. In 410 control individuals (195 males, 215 females), we detected a highly significant effect of NRG3 genotype manifesting as an unanticipated increase in ventrolateral PFC activation in nonrisk-associated C allele carriers. An additional analysis including 78 patients with schizophrenia spectrum disorders (64 males, 14 females) and 123 unaffected siblings (53 males, 70 females) revealed a whole-brain significant genotype by group interaction in right dorsolateral PFC (DLPFC), manifesting as a relative activation increase in healthy controls and siblings (C > T/T) and as a hypoactivation in patients (T/T > C). These observed genotype-dependent effects in PFC were not explained by task performance and did not conform to established locales of prefrontal inefficiency linked to genetic risk for schizophrenia. Our data indicate a complex modulation of brain physiology by rs10748842, which does not fit the simple inefficiency model of risk association in DLPFC and suggests that other neurobiological mechanisms are involved.
Collapse
|
47
|
Nicodemus KK, Elvevåg B, Foltz PW, Rosenstein M, Diaz-Asper C, Weinberger DR. Category fluency, latent semantic analysis and schizophrenia: a candidate gene approach. Cortex 2013; 55:182-91. [PMID: 24447899 DOI: 10.1016/j.cortex.2013.12.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/14/2013] [Accepted: 12/11/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND Category fluency is a widely used task that relies on multiple neurocognitive processes and is a sensitive assay of cortical dysfunction, including in schizophrenia. The test requires naming of as many words belonging to a certain category (e.g., animals) as possible within a short period of time. The core metrics are the overall number of words produced and the number of errors, namely non-members generated for a target category. We combine a computational linguistic approach with a candidate gene approach to examine the genetic architecture of this traditional fluency measure. METHODS In addition to the standard metric of overall word count, we applied a computational approach to semantics, Latent Semantic Analysis (LSA), to analyse the clustering pattern of the categories generated, as it likely reflects the search in memory for meanings. Also, since fluency performance probably also recruits verbal learning and recall processes, we included two standard measures of this cognitive process: the Wechsler Memory Scale and California Verbal Learning Test (CVLT). To explore the genetic architecture of traditional and LSA-derived fluency measures we employed a candidate gene approach focused on SNPs with known function that were available from a recent genome-wide association study (GWAS) of schizophrenia. The selected candidate genes were associated with language and speech, verbal learning and recall processes, and processing speed. A total of 39 coding SNPs were included for analysis in 665 subjects. RESULTS AND DISCUSSION Given the modest sample size, the results should be regarded as exploratory and preliminary. Nevertheless, the data clearly illustrate how extracting the meaning from participants' responses, by analysing the actual content of words, generates useful and neurocognitively viable metrics. We discuss three replicated SNPs in the genes ZNF804A, DISC1 and KIAA0319, as well as the potential for computational analyses of linguistic and textual data in other genomics tasks.
Collapse
Affiliation(s)
- Kristin K Nicodemus
- Neuropsychiatric Genetics Group, Department of Psychiatry, Trinity Centre for Health Sciences, Trinity College Dublin, St James Hospital, Dublin, Ireland.
| | - Brita Elvevåg
- Psychiatry Research Group, Department of Clinical Medicine, University of Tromsø, Norway; Norwegian Centre for Integrated Care and Telemedicine (NST), University Hospital of North Norway, Tromsø, Norway
| | - Peter W Foltz
- Pearson Knowledge Technologies, Boulder, CO, USA; Institute for Cognitive Science, University of Colorado, Boulder, CO, USA
| | | | - Catherine Diaz-Asper
- Clinical Brain Disorders Branch, National Institute of Mental Health/NIH, Bethesda, MD, USA
| | - Daniel R Weinberger
- Clinical Brain Disorders Branch, National Institute of Mental Health/NIH, Bethesda, MD, USA; Lieber Institute for Brain Development, Baltimore, MD, USA; Departments of Psychiatry, Neurology, Neuroscience and The Institute of Genomic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
48
|
Del Pino I, García-Frigola C, Dehorter N, Brotons-Mas JR, Alvarez-Salvado E, Martínez de Lagrán M, Ciceri G, Gabaldón MV, Moratal D, Dierssen M, Canals S, Marín O, Rico B. Erbb4 deletion from fast-spiking interneurons causes schizophrenia-like phenotypes. Neuron 2013; 79:1152-68. [PMID: 24050403 DOI: 10.1016/j.neuron.2013.07.010] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2013] [Indexed: 01/09/2023]
Abstract
Genetic variation in neuregulin and its ErbB4 receptor has been linked to schizophrenia, although little is known about how they contribute to the disease process. Here, we have examined conditional Erbb4 mouse mutants to study how disruption of specific inhibitory circuits in the cerebral cortex may cause large-scale functional deficits. We found that deletion of ErbB4 from the two main classes of fast-spiking interneurons, chandelier and basket cells, causes relatively subtle but consistent synaptic defects. Surprisingly, these relatively small wiring abnormalities boost cortical excitability, increase oscillatory activity, and disrupt synchrony across cortical regions. These functional deficits are associated with increased locomotor activity, abnormal emotional responses, and impaired social behavior and cognitive function. Our results reinforce the view that dysfunction of cortical fast-spiking interneurons might be central to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Isabel Del Pino
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d'Alacant 03550, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wang KS, Xu N, Wang L, Aragon L, Ciubuc R, Arana TB, Mao C, Petty L, Briones D, Su BB, Luo X, Camarillo C, Escamilla MA, Xu C. NRG3 gene is associated with the risk and age at onset of Alzheimer disease. J Neural Transm (Vienna) 2013; 121:183-92. [PMID: 24061483 DOI: 10.1007/s00702-013-1091-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/03/2013] [Indexed: 10/26/2022]
Abstract
The Neuregulin 3 (NRG3) gene at 10q22-q24 has been implicated in multiple psychiatric traits such as cognitive impairment. We therefore hypothesized that NRG3 gene polymorphisms may play a role in Alzheimer disease (AD). This present study explored the association of NRG3 with the age at onset (AAO) of AD and the risk of developing AD. Secondary data analysis of 257 single-nucleotide polymorphisms (SNPs) in NRG3 gene was performed in 806 Alzheimer's disease patients and 782 controls using logistic regression and linear regression analyses. Eight SNPs were associated with the risk of AD (p < 0.05), while linear regression analysis showed 33 SNPs associated with the AAO of AD (p < 0.05). Two-SNP haplotype analyses based on UNPHASED revealed that the G-C haplotype from rs17685233 and rs17101017 was significantly associated with AD (p = 0.0031) and the A-G haplotype from rs504522 and rs474018 as well as the A-G haplotype from rs504522 and rs2483295 were more significantly associated with the AAO of AD (p = 6.72 × 10(-5)). Using an independent family-based sample, we found one SNP rs11192423 associated with AAO both in the case-control sample (p = 0.0155) and in the family sample (p = 0.0166). In addition, we observed nominally significant associations with AD and AAO for several flanking SNPs (p < 0.05). This is the first study demonstrating that genetic variants in the NRG3 gene play a role in AD. Our results also revealed that SNPs in the NRG3 genes were more strongly associated with AAO of AD.
Collapse
Affiliation(s)
- Ke-Sheng Wang
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, PO Box 70259, Lamb Hall, Johnson City, TN, 37614-1700, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Torniainen M, Wedenoja J, Varilo T, Partonen T, Suokas J, Häkkinen L, Lönnqvist J, Suvisaari J, Tuulio-Henriksson A. Does originating from a genetic isolate affect the level of cognitive impairments in schizophrenia families? Psychiatry Res 2013; 208:111-7. [PMID: 23083916 DOI: 10.1016/j.psychres.2012.09.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 08/21/2012] [Accepted: 09/27/2012] [Indexed: 11/28/2022]
Abstract
Earlier studies have detected differences in the prevalence, symptomatology and genetic risk variants of schizophrenia between a north-eastern Finnish genetic isolate and the rest of Finland. This study compared a population-based isolate sample (145 persons with schizophrenia, 304 first-degree relatives and 32 controls) with a rest of Finland sample (73 persons with schizophrenia, 100 first-degree relatives and 80 controls) in cognitive functioning. Persons from the isolate outperformed persons in the rest of Finland sample in verbal learning, verbal ability and cognitive flexibility in the schizophrenia groups and in verbal learning, speeded processing and attentional control in the relatives groups. The differences between the subsamples remained significant after taking into account an intragenic Reelin STR allele, previously associated with cognitive impairments and almost absent from the isolate, in addition to disorder characteristics and familial loading. In control groups, we observed no differences between the isolate and the rest of Finland. In conclusion, cognitive impairments were milder in schizophrenia patients and their first-degree relatives within than outside the isolate. An absence of differences between the control samples suggests that the differences in schizophrenia families may relate to genetic background, possibly to partly distinct variants affecting the liability inside and outside the isolate.
Collapse
Affiliation(s)
- Minna Torniainen
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, PO Box 30, 00271 Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|