1
|
Dionne G, Mascheretti S, Feng B, Paradis H, Brendgen M, Vitaro F, Tremblay R, Boivin M. Genetic and phenotypic evidence of the predictive validity of preschool parent reports of hyperactivity/impulsivity and inattention. Dev Psychopathol 2025; 37:590-602. [PMID: 38439652 DOI: 10.1017/s095457942400035x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
To determine the validity of parent reports (PRs) of ADHD in preschoolers, we assessed hyperactivity/impulsivity (HI) and inattention (IN) in 1114 twins with PRs at 1.5, 2.5, 4, 5, 14, 15, and 17 years, and teacher-reports at 6, 7, 9, 10, and 12. We examined if preschool PRs (1) predict high HI/IN trajectories, and (2) capture genetic contributions to HI/IN into adolescence. Group-based trajectory analyses identified three 6-17 years trajectories for both HI and IN, including small groups with high HI (N = 88, 10.4%, 77% boys) and IN (N = 158, 17.3%, 75% boys). Controlling for sex, each unit of HI PRs starting at 1.5 years and at 4 years for IN, increased more than 2-fold the risk of belonging to the high trajectory, with incremental contributions (Odds Ratios = 2.5-4.5) at subsequent ages. Quantitative genetic analyses showed that genetic contributions underlying preschool PRs accounted for up to a quarter and a third of the heritability of later HI and IN, respectively. Genes underlying 1.5-year HI and 4-year IN contributed to 6 of 8 later HI and IN time-points and largely explained the corresponding phenotypic correlations. Results provide phenotypic and genetic evidence that preschool parent reports of HI and IN are valid means to predict developmental risk of ADHD.
Collapse
Affiliation(s)
- Ginette Dionne
- School of Psychology, Université Laval, Québec City, Canada
| | - Sara Mascheretti
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Bei Feng
- School of Psychology, Université Laval, Québec City, Canada
| | - Hélène Paradis
- School of Psychology, Université Laval, Québec City, Canada
| | - Mara Brendgen
- Department of Psychology, Université du Québec à Montréal, Montréal, Canada
| | - Frank Vitaro
- School of Psychoeducation, Université de Montréal, Montréal, Canada
| | - Richard Tremblay
- Department of Psychology, Université de Montréal, Montréal, Canada
| | - Michel Boivin
- School of Psychology, Université Laval, Québec City, Canada
| |
Collapse
|
2
|
Lesch KP, Gorbunov N. Antisocial personality disorder:Failure to balance excitation/inhibition? Neuropharmacology 2025; 268:110321. [PMID: 39855295 DOI: 10.1016/j.neuropharm.2025.110321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
While healthy brain function relies on a dynamic but tightly regulated interaction between excitation (E) and inhibition (I), a spectrum of social cognition disorders, including antisocial behavior and antisocial personality disorder (ASPD), frequently ensuing from irregular neurodevelopment, may be associated with E/I imbalance and concomitant alterations in neural connectivity. Technological advances in the evaluation of structural and functional E/I balance proxies in clinical settings and in human cell culture models provide a general basis for identification of biomarkers providing a powerful concept for prevention and intervention across different dimensions of mental health and disease. In this perspective we outline a framework for research to characterize neurodevelopmental pathways to antisocial behavior and ASPD driven by (epi)genetic factors across life, and to identify molecular targets for preventing the detrimental effects of cognitive dysfunction and maladaptive social behavior, considering psychosocial experience; to validate signatures of E/I imbalance and altered myelination proxies as biomarkers of pathogenic neural circuitry mechanisms to determine etiological processes in the transition from mental health to antisocial behavior and ASPD and in the switch from prevention to treatment; to develop a neurobiologically-grounded integrative model of antisocial behavior and ASPD resultant of disrupted E/I balance, allowing to establish objective diagnoses and monitoring tools, to personalize prevention and therapeutic decisions, to predict treatment response, and thus counteract relapse; and finally, to promote transformation of dimensional disorder taxonomy and to enhance societal awareness and reception of the neurobiological basis of antisocial behavior and ASPD.
Collapse
Affiliation(s)
- Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany; Department of Child- and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.
| | - Nikita Gorbunov
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany; Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Bertollo AG, Puntel CF, da Silva BV, Martins M, Bagatini MD, Ignácio ZM. Neurobiological Relationships Between Neurodevelopmental Disorders and Mood Disorders. Brain Sci 2025; 15:307. [PMID: 40149827 PMCID: PMC11940368 DOI: 10.3390/brainsci15030307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
According to the Diagnostic and Statistical Manual of Mental Disorders (DSM-5), neurodevelopmental disorders (NDDs) are a group of conditions that arise early in development and are characterized by deficits in personal, social, academic, or occupational functioning. These disorders frequently co-occur and include conditions such as autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD). Mood disorders (MDs), such as major depressive disorder and bipolar disorder, also pose significant global health challenges due to their high prevalence and substantial impact on quality of life. Emerging evidence highlights overlapping neurobiological mechanisms between NDDs and MDs, including shared genetic susceptibilities, neurotransmitter dysregulation (e.g., dopaminergic and serotonergic pathways), neuroinflammation, and hypothalamic-pituitary-adrenal (HPA) axis dysfunction. Environmental factors such as early-life adversity further exacerbate these vulnerabilities, contributing to the complexity of their clinical presentation and comorbidity. Functional neuroimaging studies reveal altered connectivity in brain regions critical for emotional regulation and executive function, such as the prefrontal cortex and amygdala, across these disorders. Despite these advances, integrative diagnostic frameworks and targeted therapeutic strategies remain underexplored, limiting effective intervention. This review synthesizes current knowledge on the shared neurobiological underpinnings of NDDs and MDs, emphasizing the need for multidisciplinary research, including genetic, pharmacological, and psychological approaches, for unified diagnosis and treatment. Addressing these intersections can improve clinical outcomes and enhance the quality of life for individuals affected by these disorders.
Collapse
Affiliation(s)
- Amanda Gollo Bertollo
- Postgraduate Program in Neuroscience, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, SC, Brazil;
| | - Camila Ferreira Puntel
- Laboratory of Physiology, Pharmacology and Psychopathology, Federal University of Fronteira Sul (UFFS), Chapecó 89815-899, SC, Brazil; (C.F.P.); (B.V.d.S.)
| | - Brunna Varela da Silva
- Laboratory of Physiology, Pharmacology and Psychopathology, Federal University of Fronteira Sul (UFFS), Chapecó 89815-899, SC, Brazil; (C.F.P.); (B.V.d.S.)
| | - Marcio Martins
- Postgraduate Program in Contemporary Cultural Studies, Federal University of Mato Grosso (UFMT), Cuiabá 78060-900, MT, Brazil;
| | - Margarete Dulce Bagatini
- Cell Culture Laboratory, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul (UFFS), Chapecó 89815-899, SC, Brazil;
| | - Zuleide Maria Ignácio
- Laboratory of Physiology, Pharmacology and Psychopathology, Federal University of Fronteira Sul (UFFS), Chapecó 89815-899, SC, Brazil; (C.F.P.); (B.V.d.S.)
| |
Collapse
|
4
|
Camerota M, Lester BM, McGowan EC, Carter BS, Check J, Dansereau LM, DellaGrotta SA, Helderman JB, Hofheimer JA, Loncar CM, Neal CR, O’Shea TM, Pastyrnak SL, Smith LM, Abrishamcar S, Hüls A, Marsit CJ, Everson TM. Contributions of prenatal risk factors and neonatal epigenetics to cognitive outcome in children born very preterm. Dev Psychol 2024; 60:1606-1619. [PMID: 38358663 PMCID: PMC11618652 DOI: 10.1037/dev0001709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Children born less than 30 weeks gestational age (GA) are at high risk for neurodevelopmental delay compared to term peers. Prenatal risk factors and neonatal epigenetics could help identify preterm children at highest risk for poor cognitive outcomes. We aimed to understand the associations among cumulative prenatal risk, neonatal DNA methylation, and child cognitive ability at age 3 years, including whether DNA methylation mediates the association between prenatal risk and cognitive ability. We studied 379 neonates (54% male) born less than 30 weeks GA who had DNA methylation measured at neonatal intensive care unit discharge along with 3-year follow-up data. Cumulative prenatal risk was calculated from 24 risk factors obtained from maternal report and medical record and epigenome-wide neonatal DNA methylation was assayed from buccal swabs. At 3-year follow-up, child cognitive ability was assessed using the Bayley Scales of Infant and Toddler Development (third edition). Cumulative prenatal risk and DNA methylation at two cytosine-phosphate-guanines (CpGs) were uniquely associated with child cognitive ability. Using high-dimensional mediation analysis, we also identified differential methylation of 309 CpGs that mediated the association between cumulative prenatal risk and child cognitive ability. Many of the associated CpGs were located in genes (TNS3, TRAPPC4, MAD1L1, APBB2, DIP2C, TRAPPC9, DRD2) that have previously been associated with prenatal exposures and/or neurodevelopmental phenotypes. Our findings suggest a role for both prenatal risk factors and DNA methylation in explaining outcomes for children born preterm and suggest we should further study DNA methylation as a potential mechanism underlying the association between prenatal risk and child neurodevelopment. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
- Marie Camerota
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI
- Center for the Study of Children at Risk, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI
| | - Barry M. Lester
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI
- Center for the Study of Children at Risk, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI
- Department of Pediatrics, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI
| | - Elisabeth C. McGowan
- Center for the Study of Children at Risk, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI
- Department of Pediatrics, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI
| | - Brian S. Carter
- Department of Pediatrics-Neonatology, Children’s Mercy Hospital, Kansas City, MO
| | - Jennifer Check
- Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC
| | - Lynne M. Dansereau
- Department of Pediatrics, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI
| | - Sheri A. DellaGrotta
- Department of Pediatrics, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI
| | | | - Julie A. Hofheimer
- Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Cynthia M. Loncar
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI
- Center for the Study of Children at Risk, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI
- Department of Pediatrics, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI
| | - Charles R. Neal
- Department of Pediatrics, University of Hawaii John A. Burns School of Medicine, Honolulu, HI
| | - T. Michael O’Shea
- Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Steven L. Pastyrnak
- Department of Pediatrics, Spectrum Health-Helen DeVos Hospital, Grand Rapids, MI
| | - Lynne M. Smith
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA
| | - Sarina Abrishamcar
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA
| | - Anke Hüls
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA
| | - Carmen J. Marsit
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA
| | - Todd M. Everson
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA
| |
Collapse
|
5
|
Salontaji K, Haftorn KL, Sanders F, Page CM, Walton E, Felix JF, Bekkhus M, Bohlin J, Tiemeier H, Cecil CAM. Gestational epigenetic age and ADHD symptoms in childhood: a prospective, multi-cohort study. Mol Psychiatry 2024; 29:2911-2918. [PMID: 38561466 PMCID: PMC7616513 DOI: 10.1038/s41380-024-02544-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Epigenetic age acceleration (EAA), defined as the difference between chronological age and epigenetically predicted age, was calculated from multiple gestational epigenetic clocks (Bohlin, EPIC overlap, and Knight) using DNA methylation levels from cord blood in three large population-based birth cohorts: the Generation R Study (The Netherlands), the Avon Longitudinal Study of Parents and Children (United Kingdom), and the Norwegian Mother, Father and Child Cohort Study (Norway). We hypothesized that a lower EAA associates prospectively with increased ADHD symptoms. We tested our hypotheses in these three cohorts and meta-analyzed the results (n = 3383). We replicated previous research on the association between gestational age (GA) and ADHD. Both clinically measured gestational age as well as epigenetic age measures at birth were negatively associated with ADHD symptoms at ages 5-7 years (clinical GA: β = -0.04, p < 0.001, Bohlin: β = -0.05, p = 0.01; EPIC overlap: β = -0.05, p = 0.01; Knight: β = -0.01, p = 0.26). Raw EAA (difference between clinical and epigenetically estimated gestational age) was positively associated with ADHD in our main model, whereas residual EAA (raw EAA corrected for clinical gestational age) was not associated with ADHD symptoms across cohorts. Overall, findings support a link between lower gestational age (either measured clinically or using epigenetic-derived estimates) and ADHD symptoms. Epigenetic age acceleration does not, however, add unique information about ADHD risk independent of clinically estimated gestational age at birth.
Collapse
Affiliation(s)
- Kristina Salontaji
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Centre, University Medical Center Rotterdam, Rotterdam, The Netherlands
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Kristine L Haftorn
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Faye Sanders
- Department of Psychology, University of Bath, Bath, United Kingdom
| | - Christian M Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Physical Health and Ageing, Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Esther Walton
- Department of Psychology, University of Bath, Bath, United Kingdom
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mona Bekkhus
- Promenta research centre, Department of Psychology, University of Oslo, Oslo, Norway
| | - Jon Bohlin
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department for methods development and analysis, section for modeling and bioinformatics, Division for infectious diseases, Norwegian Institute of Public Health, Oslo, Norway
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Centre, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Medicine, Boston, MA, USA
| | - Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Centre, University Medical Center Rotterdam, Rotterdam, The Netherlands.
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
6
|
Vinci M, Greco D, Treccarichi S, Chiavetta V, Figura MG, Musumeci A, Greco V, Federico C, Calì F, Saccone S. Bioinformatic Evaluation of KLF13 Genetic Variant: Implications for Neurodevelopmental and Psychiatric Symptoms. Genes (Basel) 2024; 15:1056. [PMID: 39202416 PMCID: PMC11354057 DOI: 10.3390/genes15081056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
The Krüppel-like factor (KLF) family represents a group of transcription factors (TFs) performing different biological processes that are crucial for proper neuronal function, including neuronal development, synaptic plasticity, and neuronal survival. As reported, genetic variants within the KLF family have been associated with a wide spectrum of neurodevelopmental and psychiatric symptoms. In a patient exhibiting attention deficit hyperactivity disorder (ADHD) combined with both neurodevelopmental and psychiatric symptoms, whole-exome sequencing (WES) analysis revealed a de novo heterozygous variant within the Krüppel-like factor 13 (KLF13) gene, which belongs to the KLF family and regulates axonal growth, development, and regeneration in mice. Moreover, in silico analyses pertaining to the likely pathogenic significance of the variant and the impact of the mutation on the KLF13 protein structure suggested a potential deleterious effect. In fact, the variant was localized in correspondence to the starting residue of the N-terminal domain of KLF13, essential for protein-protein interactions, DNA binding, and transcriptional activation or repression. This study aims to highlight the potential involvement of the KLF13 gene in neurodevelopmental and psychiatric disorders. Nevertheless, we cannot rule out that excluded variants, those undetectable by WES, or the polygenic risk may have contributed to the patient's phenotype given ADHD's high polygenic risk. However, further functional studies are required to validate its potential contribution to these disorders.
Collapse
Affiliation(s)
- Mirella Vinci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Donatella Greco
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Simone Treccarichi
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Valeria Chiavetta
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Maria Grazia Figura
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Antonino Musumeci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Vittoria Greco
- Department of Biomedical Science, University of Messina, 98122 Messina, Italy;
| | - Concetta Federico
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (S.S.)
| | - Francesco Calì
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (S.S.)
| |
Collapse
|
7
|
Mahrous NN, Albaqami A, Saleem RA, Khoja B, Khan MI, Hawsawi YM. The known and unknown about attention deficit hyperactivity disorder (ADHD) genetics: a special emphasis on Arab population. Front Genet 2024; 15:1405453. [PMID: 39165752 PMCID: PMC11333229 DOI: 10.3389/fgene.2024.1405453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/15/2024] [Indexed: 08/22/2024] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a clinically and genetically heterogeneous neurodevelopmental syndrome characterized by behavioral appearances such as impulsivity, inattention, and hyperactivity. The prevalence of ADHD is high in childhood when compared to adults. ADHD has been significantly advanced by genetic research over the past 25 years. However, it is logically conceivable that both genetic and/or non-genetic factors, such as postnatal environmental and social influences, are associated with ADHD phenotype in Arab populations. While genetic influences are strongly linked with the etiology of ADHD, it remains obscure how consanguinity which is an underlying factor for many genetic diseases, contributes to ADHD subtypes. Arabian Gulf Nations have one the highest rates of consanguineous marriages, and consanguinity plays an important contributing factor in many genetic diseases that exist in higher percentages in Arabian Gulf Nations. Therefore, the current review aims to shed light on the genetic variants associated with ADHD subtypes in Arabian Gulf nations and Saudi Arabia in particular. It also focuses on the symptoms and the diagnosis of ADHD before turning to the neuropsychological pathways and subgroups of ADHD. The impact of a consanguinity-based understanding of the ADHD subtype will help to understand the genetic variability of the Arabian Gulf population in comparison with the other parts of the world and will provide novel information to develop new avenues for future research in ADHD.
Collapse
Affiliation(s)
- Nahed N. Mahrous
- Department of Biological Sciences, College of Science, University of Hafr Al-Batin, Hafr Al- Batin, Saudi Arabia
| | - Amirah Albaqami
- Department of Clinical Laboratory Sciences, Turbah University College, Taif University, Taif, Saudi Arabia
| | - Rimah A. Saleem
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
| | - Basmah Khoja
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Mohammed I. Khan
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Yousef M. Hawsawi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Mao Q, Luo Z, Wang X, Wang K, Wang Z, Zhang Y, Luo X. Methylome-wide association studies of psychiatric disorders. EC PSYCHOLOGY AND PSYCHIATRY 2024; 2024:01143. [PMID: 40171497 PMCID: PMC11960846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Neuroepigenetics underscores the significance of the methylome in both normal and pathological brain function, influencing neurobiological processes and psychiatric well-being. This study systematically examines methylome-wide association studies (MWAS) across various psychiatric disorders that utilize array-based and sequencing approaches on blood or brain tissue samples. The findings provide valuable insights into the early stages of neuropathogenesis in psychiatric disorders, revealing altered epigenetic mechanisms. The methylome emerges as a pivotal factor in the development and treatment of psychiatric conditions, potentially offering avenues for identifying therapeutic targets and informing treatment strategies.
Collapse
Affiliation(s)
- Qiao Mao
- Department of Psychosomatic Medicine, People’s Hospital of Deyang City, Deyang, Sichuan 618000, China
| | - Zhixiong Luo
- College of Integrative Medicine, Fujian University of Traditional Medicine, Fuzhou 350122, China
| | - Xiaoping Wang
- Department of Neurology, Jiading Branch of Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kesheng Wang
- Department of Family and Community Health, School of Nursing, Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Zhiren Wang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical School of Medicine, Beijing 100096, China
| | - Yong Zhang
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
9
|
Golm D, Brandt V. The longitudinal association between infant negative emotionality, childhood maltreatment, and ADHD symptoms: A secondary analysis of data from the Fragile Families and Child Wellbeing Study. Dev Psychopathol 2024; 36:1231-1238. [PMID: 37138529 DOI: 10.1017/s0954579423000457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND Infant temperament predicts harsh parenting, and attention deficit/ hyperactivity disorder (ADHD) symptoms. Moreover, childhood maltreatment has consistently been associated with later ADHD symptoms. We hypothesized that infant negative emotionality predicted both ADHD symptoms and maltreatment, and that there was a bidirectional association between maltreatment experiences and ADHD symptoms. METHODS The study used secondary data from the longitudinal Fragile Families and Child Wellbeing Study (N = 2860). A structural equation model was conducted, using maximum likelihood with robust standard errors. Infant negative emotionality acted as a predictor. Outcome variables were childhood maltreatment and ADHD symptoms at ages 5 and 9. RESULTS The model demonstrated good fit (root-mean-square error of approximation = .02, comparative fit index = .99, Tucker-Lewis index = .96). Infant negative emotionality positively predicted childhood maltreatment at ages 5 and 9, and ADHD symptoms at age 5. Age 5 maltreatment/ADHD symptoms predicted age 9 ADHD symptoms/maltreatment. Additionally, both childhood maltreatment and ADHD symptoms at age 5 mediated the association between negative emotionality and childhood maltreatment/ADHD symptoms at age 9. CONCLUSIONS Given the bidirectional relationship between ADHD and experiences of maltreatment, it is vital to identify early shared risk factors to prevent negative downstream effects and support families at risk. Our study showed that infant negative emotionality, poses one of these risk factors.
Collapse
Affiliation(s)
- Dennis Golm
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, UK
| | - Valerie Brandt
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, UK
- Clinic of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany
| |
Collapse
|
10
|
Parkkinen S, Radua J, Andrews DS, Murphy D, Dell'Acqua F, Parlatini V. Cerebellar network alterations in adult attention-deficit/hyperactivity disorder. J Psychiatry Neurosci 2024; 49:E233-E241. [PMID: 38960626 PMCID: PMC11230668 DOI: 10.1503/jpn.230146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/07/2024] [Accepted: 05/22/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental condition that often persists into adulthood. Underlying alterations in brain connectivity have been identified but some relevant connections, such as the middle, superior, and inferior cerebellar peduncles (MCP, SCP, and ICP, respectively), have remained largely unexplored; thus, we sought to investigate whether the cerebellar peduncles contribute to ADHD pathophysiology among adults. METHODS We applied diffusion-weighted spherical deconvolution tractography to dissect the cerebellar peduncles of male adults with ADHD (including those who did or did not respond to methylphenidate, based on at least 30% symptom improvement at 2 months) and controls. We investigated differences in tract metrics between controls and the whole ADHD sample and between controls and treatment-response groups using sensitivity analyses. Finally, we analyzed the association between the tract metrics and cliniconeuropsychological profiles. RESULTS We included 60 participants with ADHD (including 42 treatment responders and 18 nonresponders) and 20 control participants. In the whole ADHD sample, MCP fractional anisotropy (FA; t 78 = 3.24, p = 0.002) and hindrance modulated orientational anisotropy (HMOA; t 78 = 3.01, p = 0.004) were reduced, and radial diffusivity (RD) in the right ICP was increased (t 78 = -2.84, p = 0.006), compared with controls. Although case-control differences in MCP FA and HMOA, which reflect white-matter microstructural organization, were driven by both treatment response groups, only responders significantly differed from controls in right ICP RD, which relates to myelination (t 60 = 3.14, p = 0.003). Hindrance modulated orientational anisotropy of the MCP was significantly positively associated with hyperactivity measures. LIMITATIONS This study included only male adults with ADHD. Further research needs to investigate potential sex- and development-related differences. CONCLUSION These results support the role of the cerebellar networks, especially of the MCP, in adult ADHD pathophysiology and should encourage further investigation. CLINICAL TRIAL REGISTRATION NCT03709940.
Collapse
Affiliation(s)
- Salla Parkkinen
- From the Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Parkkinen, Andrews, Murphy, Dell'Acqua, Parlatini); the Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Parkkinen, Murphy, Dell'Acqua, Parlatini); the Institut d'Investigacions Biomèdiques August Pi i Sunyer, CIBERSAM, Instituto de Salud Carlos III, University of Barcelona, Barcelona, Spain (Radua); the Department of Psychiatry and Behavioral Sciences, The MIND Institute, University of California, Davis, Sacramento, CA, USA (Andrews); the Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Dell'Acqua); the NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK (Dell'Acqua); the School of Psychology, University of Southampton, Southampton, UK (Parlatini); the Solent NHS Trust, Southampton, UK (Parlatini)
| | - Joaquim Radua
- From the Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Parkkinen, Andrews, Murphy, Dell'Acqua, Parlatini); the Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Parkkinen, Murphy, Dell'Acqua, Parlatini); the Institut d'Investigacions Biomèdiques August Pi i Sunyer, CIBERSAM, Instituto de Salud Carlos III, University of Barcelona, Barcelona, Spain (Radua); the Department of Psychiatry and Behavioral Sciences, The MIND Institute, University of California, Davis, Sacramento, CA, USA (Andrews); the Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Dell'Acqua); the NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK (Dell'Acqua); the School of Psychology, University of Southampton, Southampton, UK (Parlatini); the Solent NHS Trust, Southampton, UK (Parlatini)
| | - Derek S Andrews
- From the Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Parkkinen, Andrews, Murphy, Dell'Acqua, Parlatini); the Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Parkkinen, Murphy, Dell'Acqua, Parlatini); the Institut d'Investigacions Biomèdiques August Pi i Sunyer, CIBERSAM, Instituto de Salud Carlos III, University of Barcelona, Barcelona, Spain (Radua); the Department of Psychiatry and Behavioral Sciences, The MIND Institute, University of California, Davis, Sacramento, CA, USA (Andrews); the Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Dell'Acqua); the NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK (Dell'Acqua); the School of Psychology, University of Southampton, Southampton, UK (Parlatini); the Solent NHS Trust, Southampton, UK (Parlatini)
| | - Declan Murphy
- From the Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Parkkinen, Andrews, Murphy, Dell'Acqua, Parlatini); the Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Parkkinen, Murphy, Dell'Acqua, Parlatini); the Institut d'Investigacions Biomèdiques August Pi i Sunyer, CIBERSAM, Instituto de Salud Carlos III, University of Barcelona, Barcelona, Spain (Radua); the Department of Psychiatry and Behavioral Sciences, The MIND Institute, University of California, Davis, Sacramento, CA, USA (Andrews); the Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Dell'Acqua); the NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK (Dell'Acqua); the School of Psychology, University of Southampton, Southampton, UK (Parlatini); the Solent NHS Trust, Southampton, UK (Parlatini)
| | - Flavio Dell'Acqua
- From the Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Parkkinen, Andrews, Murphy, Dell'Acqua, Parlatini); the Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Parkkinen, Murphy, Dell'Acqua, Parlatini); the Institut d'Investigacions Biomèdiques August Pi i Sunyer, CIBERSAM, Instituto de Salud Carlos III, University of Barcelona, Barcelona, Spain (Radua); the Department of Psychiatry and Behavioral Sciences, The MIND Institute, University of California, Davis, Sacramento, CA, USA (Andrews); the Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Dell'Acqua); the NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK (Dell'Acqua); the School of Psychology, University of Southampton, Southampton, UK (Parlatini); the Solent NHS Trust, Southampton, UK (Parlatini)
| | - Valeria Parlatini
- From the Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Parkkinen, Andrews, Murphy, Dell'Acqua, Parlatini); the Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Parkkinen, Murphy, Dell'Acqua, Parlatini); the Institut d'Investigacions Biomèdiques August Pi i Sunyer, CIBERSAM, Instituto de Salud Carlos III, University of Barcelona, Barcelona, Spain (Radua); the Department of Psychiatry and Behavioral Sciences, The MIND Institute, University of California, Davis, Sacramento, CA, USA (Andrews); the Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Dell'Acqua); the NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK (Dell'Acqua); the School of Psychology, University of Southampton, Southampton, UK (Parlatini); the Solent NHS Trust, Southampton, UK (Parlatini)
| |
Collapse
|
11
|
Schuurmans IK, Mulder RH, Baltramonaityte V, Lahtinen A, Qiuyu F, Rothmann LM, Staginnus M, Tuulari J, Burt SA, Buss C, Craig JM, Donald KA, Felix JF, Freeman TP, Grassi-Oliveira R, Huels A, Hyde LW, Jones SA, Karlsson H, Karlsson L, Koen N, Lawn W, Mitchell C, Monk CS, Mooney MA, Muetzel R, Nigg JT, Belangero SIN, Notterman D, O'Connor T, O'Donnell KJ, Pan PM, Paunio T, Ryabinin P, Saffery R, Salum GA, Seal M, Silk TJ, Stein DJ, Zar H, Walton E, Cecil CAM. Consortium Profile: The Methylation, Imaging and NeuroDevelopment (MIND) Consortium. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.23.24309353. [PMID: 38978656 PMCID: PMC11230303 DOI: 10.1101/2024.06.23.24309353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Epigenetic processes, such as DNA methylation, show potential as biological markers and mechanisms underlying gene-environment interplay in the prediction of mental health and other brain-based phenotypes. However, little is known about how peripheral epigenetic patterns relate to individual differences in the brain itself. An increasingly popular approach to address this is by combining epigenetic and neuroimaging data; yet, research in this area is almost entirely comprised of cross-sectional studies in adults. To bridge this gap, we established the Methylation, Imaging and NeuroDevelopment (MIND) Consortium, which aims to bring a developmental focus to the emerging field of Neuroimaging Epigenetics by (i) promoting collaborative, adequately powered developmental research via multi-cohort analyses; (ii) increasing scientific rigor through the establishment of shared pipelines and open science practices; and (iii) advancing our understanding of DNA methylation-brain dynamics at different developmental periods (from birth to emerging adulthood), by leveraging data from prospective, longitudinal pediatric studies. MIND currently integrates 15 cohorts worldwide, comprising (repeated) measures of DNA methylation in peripheral tissues (blood, buccal cells, and saliva) and neuroimaging by magnetic resonance imaging across up to five time points over a period of up to 21 years (Npooled DNAm = 11,299; Npooled neuroimaging = 10,133; Npooled combined = 4,914). By triangulating associations across multiple developmental time points and study types, we hope to generate new insights into the dynamic relationships between peripheral DNA methylation and the brain, and how these ultimately relate to neurodevelopmental and psychiatric phenotypes.
Collapse
|
12
|
Shen F, Zhou H. Advances in the etiology and neuroimaging of children with attention deficit hyperactivity disorder. Front Pediatr 2024; 12:1400468. [PMID: 38915870 PMCID: PMC11194347 DOI: 10.3389/fped.2024.1400468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/20/2024] [Indexed: 06/26/2024] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is the most common neurodevelopmental disorder in children, characterized by age-inappropriate inattention, hyperactivity, and impulsivity, which can cause extensive damage to children's academic, occupational, and social skills. This review will present current advancements in the field of attention deficit hyperactivity disorder, including genetics, environmental factors, epigenetics, and neuroimaging features. Simultaneously, we will discuss the highlights of promising directions for further study.
Collapse
Affiliation(s)
| | - Hui Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, China
| |
Collapse
|
13
|
Ko YK, Chi S, Nam GH, Baek KW, Ahn K, Ahn Y, Kang J, Lee MS, Gim JA. Epigenome-wide Association Study for Tic Disorders in Children: A Preliminary Study in Korean Population. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2024; 22:295-305. [PMID: 38627076 PMCID: PMC11024688 DOI: 10.9758/cpn.23.1099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/24/2023] [Accepted: 11/24/2023] [Indexed: 04/20/2024]
Abstract
Objective : Tic disorders can affect the quality of life in both childhood and adolescence. Many factors are involved in the etiology of tic disorders, and the genetic and epigenetic factors of tic disorders are considered complex and heterogeneous. Methods : In this study, the differentially methylated regions (DMRs) between normal controls (n = 24; aged 6-15; 7 females) and patients with tic disorders (n = 16; aged 6-15; 5 females) were analyzed. We performed an epigenome-wide association study of tic disorders in Korean children. The tics were assessed using Yale Global Tic Severity Scale. The DNA methylation data consisted of 726,945 cytosine phosphate guanine (CpG) sites, assessed using the Illumina Infinium MethylationEPIC (850k) BeadChip. The DNA methylation data of the 40 participants were retrieved, and DMRs between the four groups based on sex and tic disorder were identified. From 28 male and 16 female samples, 37 and 38 DMRs were identified, respectively. We analyzed the enriched terms and visualized the network, heatmap, and upset plot. Results : In male, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed hypomethylated patterns in the ligand, receptor, and second signal transductors of the PI3K-Akt and MAPK signaling pathway (most cells were indicated as green color), and in female, the opposite patterns were revealed (most cells were indicated as red color). Five mental disorder-related enriched terms were identified in the network analysis. Conclusion : Here, we provide insights into the epigenetic mechanisms of tic disorders. Abnormal DNA methylation patterns are associated with mental disorder-related symptoms.
Collapse
Affiliation(s)
- Young Kyung Ko
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Suhyuk Chi
- Department of Psychiatry, Korea University Guro Hospital, Seoul, Korea
| | - Gyu-Hwi Nam
- PhileKorea Technology Co. Ltd., Daejeon, Korea
| | - Kyung-Wan Baek
- Department of Physical Education, Gyeongsang National University, Jinju, Korea
| | | | | | - June Kang
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea
| | - Moon-Soo Lee
- Department of Psychiatry, Korea University Guro Hospital, Seoul, Korea
| | - Jeong-An Gim
- Department of Medical Science, Soonchunhyang University, Asan, Korea
| |
Collapse
|
14
|
Shastri GG, Sudre G, Ahn K, Jung B, Kolachana B, Auluck PK, Elnitski L, Marenco S, Shaw P. Cortico-striatal differences in the epigenome in attention-deficit/ hyperactivity disorder. Transl Psychiatry 2024; 14:189. [PMID: 38605038 PMCID: PMC11009227 DOI: 10.1038/s41398-024-02896-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
While epigenetic modifications have been implicated in ADHD through studies of peripheral tissue, to date there has been no examination of the epigenome of the brain in the disorder. To address this gap, we mapped the methylome of the caudate nucleus and anterior cingulate cortex in post-mortem tissue from fifty-eight individuals with or without ADHD. While no single probe showed adjusted significance in differential methylation, several differentially methylated regions emerged. These regions implicated genes involved in developmental processes including neurogenesis and the differentiation of oligodendrocytes and glial cells. We demonstrate a significant association between differentially methylated genes in the caudate and genes implicated by GWAS not only in ADHD but also in autistic spectrum, obsessive compulsive and bipolar affective disorders through GWAS. Using transcriptomic data available on the same subjects, we found modest correlations between the methylation and expression of genes. In conclusion, this study of the cortico-striatal methylome points to gene and gene pathways involved in neurodevelopment, consistent with studies of common and rare genetic variation, as well as the post-mortem transcriptome in ADHD.
Collapse
Affiliation(s)
- Gauri G Shastri
- Social and Behavioral Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
| | - Gustavo Sudre
- Social and Behavioral Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
| | - Kwangmi Ahn
- Social and Behavioral Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
| | - Benjamin Jung
- Social and Behavioral Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
| | - Bhaskar Kolachana
- Human Brain Collection Core, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - Pavan K Auluck
- Human Brain Collection Core, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - Laura Elnitski
- Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
| | - Stefano Marenco
- Human Brain Collection Core, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - Philip Shaw
- Social and Behavioral Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
15
|
Sánchez RM, Bermeo Losada JF, Marín Martínez JA. The research landscape concerning environmental factors in neurodevelopmental disorders: Endocrine disrupters and pesticides-A review. Front Neuroendocrinol 2024; 73:101132. [PMID: 38561126 DOI: 10.1016/j.yfrne.2024.101132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/08/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
In recent years, environmental epidemiology and toxicology have seen a growing interest in the environmental factors that contribute to the increased prevalence of neurodevelopmental disorders, with the purpose of establishing appropriate prevention strategies. A literature review was performed, and 192 articles covering the topic of endocrine disruptors and neurodevelopmental disorders were found, focusing on polychlorinated biphenyls, polybrominated diphenyl ethers, bisphenol A, and pesticides. This study contributes to analyzing their effect on the molecular mechanism in maternal and infant thyroid function, essential for infant neurodevelopment, and whose alteration has been associated with various neurodevelopmental disorders. The results provide scientific evidence of the association that exists between the environmental neurotoxins and various neurodevelopmental disorders. In addition, other possible molecular mechanisms by which pesticides and endocrine disruptors may be associated with neurodevelopmental disorders are being discussed.
Collapse
Affiliation(s)
- Rebeca Mira Sánchez
- Universidad de Murcia, Spain; Instituto de Ciencias Medioambientales y Neurodesarrollo ICMYN, Murcia, Spain.
| | | | | |
Collapse
|
16
|
Hubers N, Hagenbeek FA, Pool R, Déjean S, Harms AC, Roetman PJ, van Beijsterveldt CEM, Fanos V, Ehli EA, Vermeiren RRJM, Bartels M, Hottenga JJ, Hankemeier T, van Dongen J, Boomsma DI. Integrative multi-omics analysis of genomic, epigenomic, and metabolomics data leads to new insights for Attention-Deficit/Hyperactivity Disorder. Am J Med Genet B Neuropsychiatr Genet 2024; 195:e32955. [PMID: 37534875 DOI: 10.1002/ajmg.b.32955] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 06/13/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
The evolving field of multi-omics combines data and provides methods for simultaneous analysis across several omics levels. Here, we integrated genomics (transmitted and non-transmitted polygenic scores [PGSs]), epigenomics, and metabolomics data in a multi-omics framework to identify biomarkers for Attention-Deficit/Hyperactivity Disorder (ADHD) and investigated the connections among the three omics levels. We first trained single- and next multi-omics models to differentiate between cases and controls in 596 twins (cases = 14.8%) from the Netherlands Twin Register (NTR) demonstrating reasonable in-sample prediction through cross-validation. The multi-omics model selected 30 PGSs, 143 CpGs, and 90 metabolites. We confirmed previous associations of ADHD with glucocorticoid exposure and the transmembrane protein family TMEM, show that the DNA methylation of the MAD1L1 gene associated with ADHD has a relation with parental smoking behavior, and present novel findings including associations between indirect genetic effects and CpGs of the STAP2 gene. However, out-of-sample prediction in NTR participants (N = 258, cases = 14.3%) and in a clinical sample (N = 145, cases = 51%) did not perform well (range misclassification was [0.40, 0.57]). The results highlighted connections between omics levels, with the strongest connections between non-transmitted PGSs, CpGs, and amino acid levels and show that multi-omics designs considering interrelated omics levels can help unravel the complex biology underlying ADHD.
Collapse
Affiliation(s)
- Nikki Hubers
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Fiona A Hagenbeek
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - René Pool
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Sébastien Déjean
- Toulouse Mathematics Institute, UMR 5219, University of Toulouse, CNRS, Toulouse, France
| | - Amy C Harms
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
- The Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Peter J Roetman
- LUMC-Curium, Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Vassilios Fanos
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, Cagliari, Italy
| | - Erik A Ehli
- Avera Institute for Human Genetics, Sioux Falls, South Dakota, USA
| | - Robert R J M Vermeiren
- LUMC-Curium, Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
- Youz, Parnassia Group, the Netherlands
| | - Meike Bartels
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Jouke Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Thomas Hankemeier
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
- The Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| |
Collapse
|
17
|
Camerota M, Lester BM, Castellanos FX, Carter BS, Check J, Helderman J, Hofheimer JA, McGowan EC, Neal CR, Pastyrnak SL, Smith LM, O'Shea TM, Marsit CJ, Everson TM. Epigenome-wide association study identifies neonatal DNA methylation associated with two-year attention problems in children born very preterm. Transl Psychiatry 2024; 14:126. [PMID: 38418845 PMCID: PMC10902402 DOI: 10.1038/s41398-024-02841-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
Prior research has identified epigenetic predictors of attention problems in school-aged children but has not yet investigated these in young children, or children at elevated risk of attention problems due to preterm birth. The current study evaluated epigenome-wide associations between neonatal DNA methylation and attention problems at age 2 years in children born very preterm. Participants included 441 children from the Neonatal Neurobehavior and Outcomes in Very Preterm Infants (NOVI) Study, a multi-site study of infants born < 30 weeks gestational age. DNA methylation was measured from buccal swabs collected at NICU discharge using the Illumina MethylationEPIC Bead Array. Attention problems were assessed at 2 years of adjusted age using the attention problems subscale of the Child Behavior Checklist (CBCL). After adjustment for multiple testing, DNA methylation at 33 CpG sites was associated with child attention problems. Differentially methylated CpG sites were located in genes previously linked to physical and mental health, including several genes associated with ADHD in prior epigenome-wide and genome-wide association studies. Several CpG sites were located in genes previously linked to exposure to prenatal risk factors in the NOVI sample. Neonatal epigenetics measured at NICU discharge could be useful in identifying preterm children at risk for long-term attention problems and related psychiatric disorders, who could benefit from early prevention and intervention efforts.
Collapse
Affiliation(s)
- Marie Camerota
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA.
- Brown Center for the Study of Children at Risk, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI, USA.
| | - Barry M Lester
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
- Brown Center for the Study of Children at Risk, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI, USA
- Department of Pediatrics, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI, USA
| | - Francisco Xavier Castellanos
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Brian S Carter
- Department of Pediatrics-Neonatology, Children's Mercy Hospital, Kansas City, MO, USA
| | - Jennifer Check
- Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jennifer Helderman
- Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Julie A Hofheimer
- Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Elisabeth C McGowan
- Department of Pediatrics, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI, USA
| | - Charles R Neal
- Department of Pediatrics, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, USA
| | - Steven L Pastyrnak
- Department of Pediatrics, Spectrum Health-Helen DeVos Hospital, Grand Rapids, MI, USA
| | - Lynne M Smith
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Thomas Michael O'Shea
- Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Todd M Everson
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
18
|
Eng AG, Bansal PS, Goh PK, Nirjar U, Petersen MK, Martel MM. Evidence-Based Assessment for Attention-Deficit/Hyperactivity Disorder. Assessment 2024; 31:42-52. [PMID: 36633097 DOI: 10.1177/10731911221149957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder that affects individuals from all life stages, genders, and races/ethnicities. Accurate assessment of ADHD across different populations is essential as undiagnosed ADHD is associated with numerous costly negative public health outcomes and is complicated by high comorbidity and developmental change in symptoms over time. Predictive analysis suggests that best-practice evidence-based assessment of ADHD should include both ADHD-specific and broadband rating scales from multiple informants with consideration of IQ, academic achievement, and executive function when there are concerns about learning. For children under age 12, parent and teacher ratings should be averaged. For adolescents and adults, informant reports should be prioritized when self- and other-report are inconsistent. Future research should provide more stringent evaluation of the sensitivity of measures to treatment response and developmental change over time as well as further validate measures on historically understudied populations (i.e., adults, women, and racial/ethnic minorities).
Collapse
|
19
|
Talukdar PD, Chatterji U. Transcriptional co-activators: emerging roles in signaling pathways and potential therapeutic targets for diseases. Signal Transduct Target Ther 2023; 8:427. [PMID: 37953273 PMCID: PMC10641101 DOI: 10.1038/s41392-023-01651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 11/14/2023] Open
Abstract
Specific cell states in metazoans are established by the symphony of gene expression programs that necessitate intricate synergic interactions between transcription factors and the co-activators. Deregulation of these regulatory molecules is associated with cell state transitions, which in turn is accountable for diverse maladies, including developmental disorders, metabolic disorders, and most significantly, cancer. A decade back most transcription factors, the key enablers of disease development, were historically viewed as 'undruggable'; however, in the intervening years, a wealth of literature validated that they can be targeted indirectly through transcriptional co-activators, their confederates in various physiological and molecular processes. These co-activators, along with transcription factors, have the ability to initiate and modulate transcription of diverse genes necessary for normal physiological functions, whereby, deregulation of such interactions may foster tissue-specific disease phenotype. Hence, it is essential to analyze how these co-activators modulate specific multilateral processes in coordination with other factors. The proposed review attempts to elaborate an in-depth account of the transcription co-activators, their involvement in transcription regulation, and context-specific contributions to pathophysiological conditions. This review also addresses an issue that has not been dealt with in a comprehensive manner and hopes to direct attention towards future research that will encompass patient-friendly therapeutic strategies, where drugs targeting co-activators will have enhanced benefits and reduced side effects. Additional insights into currently available therapeutic interventions and the associated constraints will eventually reveal multitudes of advanced therapeutic targets aiming for disease amelioration and good patient prognosis.
Collapse
Affiliation(s)
- Priyanka Dey Talukdar
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
20
|
Parlatini V, Itahashi T, Lee Y, Liu S, Nguyen TT, Aoki YY, Forkel SJ, Catani M, Rubia K, Zhou JH, Murphy DG, Cortese S. White matter alterations in Attention-Deficit/Hyperactivity Disorder (ADHD): a systematic review of 129 diffusion imaging studies with meta-analysis. Mol Psychiatry 2023; 28:4098-4123. [PMID: 37479785 PMCID: PMC10827669 DOI: 10.1038/s41380-023-02173-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/23/2023]
Abstract
Aberrant anatomical brain connections in attention-deficit/hyperactivity disorder (ADHD) are reported inconsistently across diffusion weighted imaging (DWI) studies. Based on a pre-registered protocol (Prospero: CRD42021259192), we searched PubMed, Ovid, and Web of Knowledge until 26/03/2022 to conduct a systematic review of DWI studies. We performed a quality assessment based on imaging acquisition, preprocessing, and analysis. Using signed differential mapping, we meta-analyzed a subset of the retrieved studies amenable to quantitative evidence synthesis, i.e., tract-based spatial statistics (TBSS) studies, in individuals of any age and, separately, in children, adults, and high-quality datasets. Finally, we conducted meta-regressions to test the effect of age, sex, and medication-naïvety. We included 129 studies (6739 ADHD participants and 6476 controls), of which 25 TBSS studies provided peak coordinates for case-control differences in fractional anisotropy (FA)(32 datasets) and 18 in mean diffusivity (MD)(23 datasets). The systematic review highlighted white matter alterations (especially reduced FA) in projection, commissural and association pathways of individuals with ADHD, which were associated with symptom severity and cognitive deficits. The meta-analysis showed a consistent reduced FA in the splenium and body of the corpus callosum, extending to the cingulum. Lower FA was related to older age, and case-control differences did not survive in the pediatric meta-analysis. About 68% of studies were of low quality, mainly due to acquisitions with non-isotropic voxels or lack of motion correction; and the sensitivity analysis in high-quality datasets yielded no significant results. Findings suggest prominent alterations in posterior interhemispheric connections subserving cognitive and motor functions affected in ADHD, although these might be influenced by non-optimal acquisition parameters/preprocessing. Absence of findings in children may be related to the late development of callosal fibers, which may enhance case-control differences in adulthood. Clinicodemographic and methodological differences were major barriers to consistency and comparability among studies, and should be addressed in future investigations.
Collapse
Affiliation(s)
- Valeria Parlatini
- Sackler Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK.
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK.
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK.
| | - Takashi Itahashi
- Medical Institute of Developmental Disabilities Research, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, Japan
| | - Yeji Lee
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Siwei Liu
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Thuan T Nguyen
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore, Singapore
| | - Yuta Y Aoki
- Medical Institute of Developmental Disabilities Research, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, Japan
- Department of Psychiatry, Aoki Clinic, Tokyo, Japan
| | - Stephanie J Forkel
- Donders Centre for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
- Departments of Neurosurgery, Technical University of Munich School of Medicine, Munich, Germany
| | - Marco Catani
- Sackler Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK
| | - Katya Rubia
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK
| | - Juan H Zhou
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Declan G Murphy
- Sackler Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK
| | - Samuele Cortese
- Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK
- Solent NHS Trust, Southampton, UK
- Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York, NY, USA
- Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
21
|
Chaumette B, Grizenko N, Fageera W, Fortier MÈ, Ter-Stepanian M, Labbe A, Joober R. Correlation of the methylomic signature of smoking during pregnancy with clinical traits in ADHD. J Psychiatry Neurosci 2023; 48:E390-E399. [PMID: 37857414 PMCID: PMC10599658 DOI: 10.1503/jpn.230062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/27/2023] [Accepted: 08/11/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Attention deficit/hyperactivity disorder (ADHD) is a highly prevalent childhood disorder. Maternal smoking during pregnancy is a replicated environmental risk factor for this disorder. It is also a robust modifier of gene methylation during the prenatal developmental period. In this study, we sought to identify loci differentially methylated by maternal smoking during pregnancy and relate their methylation levels to various behavioural and physical outcomes relevant to ADHD. METHODS We extracted DNA from blood samples from children diagnosed with ADHD and deeply phenotyped. Genome-wide DNA methylation was assessed using Infinium MethylationEPIC BeadChip. Maternal smoking during pregnancy was self-declared and assessed retrospectively. RESULTS Our sample included 231 children with ADHD. Statistically significant differences in DNA methylation between children exposed or not to maternal smoking during pregnancy were detected in 3457 CpGs. We kept 30 CpGs with at least 5% of methylation difference between the 2 groups for further analysis. Six genes were associated with varied phenotypes of clinical relevance to ADHD. The levels of DNA methylation in RUNX1 were positively correlated with the CBCL scores, and DNA methylation in MYO1G correlated positively with the score at the Conners rating scale. Methylation level in a CpG located in GFI1 correlated with birthweight, a risk factor for ADHD. Differentially methylated regions were also identified and confirmed the association of RUNX1 methylation levels with the CBCL score. LIMITATIONS The study has several limitations, including the retrospective recall with self-report of maternal smoking during pregnancy as well as the grouping of individuals of varying age and developmental stage and of both males and females. In addition, the correlation design prevents the building of causation models. CONCLUSION This study provides evidence for the association between the level of methylation at specific loci and quantitative dimensions highly relevant for ADHD as well as birth weight, a measure that has already been associated with increased risk for ADHD. Our results provide further support to public health educational initiatives to stop maternal smoking during pregnancy.
Collapse
Affiliation(s)
- Boris Chaumette
- From the Douglas Mental Health University Institute, Montréal, Que. (Chaumette, Grizenko, Fageerat, Fortier, Ter-Stepanian, Joober); the Department of Psychiatry, McGill University, Montréal, Que. (Chaumette, Grizenko, Joober); The Neuro, McGill University, Montréal, Que. (Chaumette); the Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France (Chaumette); the GHU Paris Psychiatrie & Neurosciences, Paris, France (Chaumette); the Department of Human Genetics, McGill University, Montréal, Que. (Fageera, Joober); the Department of Educational and Counselling Psychology, McGill University, Montréal, Que. (Ter-Stepanian); the Département de Psychoéducation, Université de Sherbrooke, Que. (Ter-Stepanian); the Department of Decision Sciences, HEC Montreal, Montréal, Que. (Labbe); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que. (Joober)
| | - Natalie Grizenko
- From the Douglas Mental Health University Institute, Montréal, Que. (Chaumette, Grizenko, Fageerat, Fortier, Ter-Stepanian, Joober); the Department of Psychiatry, McGill University, Montréal, Que. (Chaumette, Grizenko, Joober); The Neuro, McGill University, Montréal, Que. (Chaumette); the Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France (Chaumette); the GHU Paris Psychiatrie & Neurosciences, Paris, France (Chaumette); the Department of Human Genetics, McGill University, Montréal, Que. (Fageera, Joober); the Department of Educational and Counselling Psychology, McGill University, Montréal, Que. (Ter-Stepanian); the Département de Psychoéducation, Université de Sherbrooke, Que. (Ter-Stepanian); the Department of Decision Sciences, HEC Montreal, Montréal, Que. (Labbe); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que. (Joober)
| | - Weam Fageera
- From the Douglas Mental Health University Institute, Montréal, Que. (Chaumette, Grizenko, Fageerat, Fortier, Ter-Stepanian, Joober); the Department of Psychiatry, McGill University, Montréal, Que. (Chaumette, Grizenko, Joober); The Neuro, McGill University, Montréal, Que. (Chaumette); the Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France (Chaumette); the GHU Paris Psychiatrie & Neurosciences, Paris, France (Chaumette); the Department of Human Genetics, McGill University, Montréal, Que. (Fageera, Joober); the Department of Educational and Counselling Psychology, McGill University, Montréal, Que. (Ter-Stepanian); the Département de Psychoéducation, Université de Sherbrooke, Que. (Ter-Stepanian); the Department of Decision Sciences, HEC Montreal, Montréal, Que. (Labbe); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que. (Joober)
| | - Marie-Ève Fortier
- From the Douglas Mental Health University Institute, Montréal, Que. (Chaumette, Grizenko, Fageerat, Fortier, Ter-Stepanian, Joober); the Department of Psychiatry, McGill University, Montréal, Que. (Chaumette, Grizenko, Joober); The Neuro, McGill University, Montréal, Que. (Chaumette); the Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France (Chaumette); the GHU Paris Psychiatrie & Neurosciences, Paris, France (Chaumette); the Department of Human Genetics, McGill University, Montréal, Que. (Fageera, Joober); the Department of Educational and Counselling Psychology, McGill University, Montréal, Que. (Ter-Stepanian); the Département de Psychoéducation, Université de Sherbrooke, Que. (Ter-Stepanian); the Department of Decision Sciences, HEC Montreal, Montréal, Que. (Labbe); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que. (Joober)
| | - Marina Ter-Stepanian
- From the Douglas Mental Health University Institute, Montréal, Que. (Chaumette, Grizenko, Fageerat, Fortier, Ter-Stepanian, Joober); the Department of Psychiatry, McGill University, Montréal, Que. (Chaumette, Grizenko, Joober); The Neuro, McGill University, Montréal, Que. (Chaumette); the Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France (Chaumette); the GHU Paris Psychiatrie & Neurosciences, Paris, France (Chaumette); the Department of Human Genetics, McGill University, Montréal, Que. (Fageera, Joober); the Department of Educational and Counselling Psychology, McGill University, Montréal, Que. (Ter-Stepanian); the Département de Psychoéducation, Université de Sherbrooke, Que. (Ter-Stepanian); the Department of Decision Sciences, HEC Montreal, Montréal, Que. (Labbe); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que. (Joober)
| | - Aurelie Labbe
- From the Douglas Mental Health University Institute, Montréal, Que. (Chaumette, Grizenko, Fageerat, Fortier, Ter-Stepanian, Joober); the Department of Psychiatry, McGill University, Montréal, Que. (Chaumette, Grizenko, Joober); The Neuro, McGill University, Montréal, Que. (Chaumette); the Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France (Chaumette); the GHU Paris Psychiatrie & Neurosciences, Paris, France (Chaumette); the Department of Human Genetics, McGill University, Montréal, Que. (Fageera, Joober); the Department of Educational and Counselling Psychology, McGill University, Montréal, Que. (Ter-Stepanian); the Département de Psychoéducation, Université de Sherbrooke, Que. (Ter-Stepanian); the Department of Decision Sciences, HEC Montreal, Montréal, Que. (Labbe); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que. (Joober)
| | - Ridha Joober
- From the Douglas Mental Health University Institute, Montréal, Que. (Chaumette, Grizenko, Fageerat, Fortier, Ter-Stepanian, Joober); the Department of Psychiatry, McGill University, Montréal, Que. (Chaumette, Grizenko, Joober); The Neuro, McGill University, Montréal, Que. (Chaumette); the Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France (Chaumette); the GHU Paris Psychiatrie & Neurosciences, Paris, France (Chaumette); the Department of Human Genetics, McGill University, Montréal, Que. (Fageera, Joober); the Department of Educational and Counselling Psychology, McGill University, Montréal, Que. (Ter-Stepanian); the Département de Psychoéducation, Université de Sherbrooke, Que. (Ter-Stepanian); the Department of Decision Sciences, HEC Montreal, Montréal, Que. (Labbe); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que. (Joober)
| |
Collapse
|
22
|
Camerota M, Lester BM, Everson TM. Epigenetic studies of child neurodevelopment: what can we learn from a developmental science perspective? Epigenomics 2023; 15:799-804. [PMID: 37702026 PMCID: PMC10520751 DOI: 10.2217/epi-2023-0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/08/2023] [Indexed: 09/14/2023] Open
Affiliation(s)
- Marie Camerota
- Departments of Pediatrics & Psychiatry and Human Behavior, Center for the Study of Children at Risk, Brown Alpert Medical School & Women & Infants Hospital, Providence, RI 02905, USA
| | - Barry M Lester
- Departments of Pediatrics & Psychiatry and Human Behavior, Center for the Study of Children at Risk, Brown Alpert Medical School & Women & Infants Hospital, Providence, RI 02905, USA
| | - Todd M Everson
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA 30322, USA
| |
Collapse
|
23
|
Walton E, Baltramonaityte V, Calhoun V, Heijmans BT, Thompson PM, Cecil CAM. A systematic review of neuroimaging epigenetic research: calling for an increased focus on development. Mol Psychiatry 2023; 28:2839-2847. [PMID: 37185958 PMCID: PMC10615743 DOI: 10.1038/s41380-023-02067-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/03/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023]
Abstract
Epigenetic mechanisms, such as DNA methylation (DNAm), have gained increasing attention as potential biomarkers and mechanisms underlying risk for neurodevelopmental, psychiatric and other brain-based disorders. Yet, surprisingly little is known about the extent to which DNAm is linked to individual differences in the brain itself, and how these associations may unfold across development - a time of life when many of these disorders emerge. Here, we systematically review evidence from the nascent field of Neuroimaging Epigenetics, combining structural or functional neuroimaging measures with DNAm, and the extent to which the developmental period (birth to adolescence) is represented in these studies. We identified 111 articles published between 2011-2021, out of which only a minority (21%) included samples under 18 years of age. Most studies were cross-sectional (85%), employed a candidate-gene approach (67%), and examined DNAm-brain associations in the context of health and behavioral outcomes (75%). Nearly half incorporated genetic data, and a fourth investigated environmental influences. Overall, studies support a link between peripheral DNAm and brain imaging measures, but there is little consistency in specific findings and it remains unclear whether DNAm markers present a cause, correlate or consequence of brain alterations. Overall, there is large heterogeneity in sample characteristics, peripheral tissue and brain outcome examined as well as the methods used. Sample sizes were generally low to moderate (median nall = 98, ndevelopmental = 80), and attempts at replication or meta-analysis were rare. Based on the strengths and weaknesses of existing studies, we propose three recommendations on how advance the field of Neuroimaging Epigenetics. We advocate for: (1) a greater focus on developmentally oriented research (i.e. pre-birth to adolescence); (2) the analysis of large, prospective, pediatric cohorts with repeated measures of DNAm and imaging to assess directionality; and (3) collaborative, interdisciplinary science to identify robust signals, triangulate findings and enhance translational potential.
Collapse
Affiliation(s)
- Esther Walton
- Department of Psychology, University of Bath, Bath, UK.
| | | | - Vince Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Bastiaan T Heijmans
- Molecular Epidemiology, Dept. of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA, USA
| | - Charlotte A M Cecil
- Molecular Epidemiology, Dept. of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
24
|
Olstad EW, Nordeng HME, Sandve GK, Lyle R, Gervin K. Effects of prenatal exposure to (es)citalopram and maternal depression during pregnancy on DNA methylation and child neurodevelopment. Transl Psychiatry 2023; 13:149. [PMID: 37147306 PMCID: PMC10163054 DOI: 10.1038/s41398-023-02441-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023] Open
Abstract
Studies assessing associations between prenatal exposure to antidepressants, maternal depression, and offspring DNA methylation (DNAm) have been inconsistent. Here, we investigated whether prenatal exposure to citalopram or escitalopram ((es)citalopram) and maternal depression is associated with differences in DNAm. Then, we examined if there is an interaction effect of (es)citalopram exposure and DNAm on offspring neurodevelopmental outcomes. Finally, we investigated whether DNAm at birth correlates with neurodevelopmental trajectories in childhood. We analyzed DNAm in cord blood from the Norwegian Mother, Father and Child Cohort Study (MoBa) biobank. MoBa contains questionnaire data on maternal (es)citalopram use and depression during pregnancy and information about child neurodevelopmental outcomes assessed by internationally recognized psychometric tests. In addition, we retrieved ADHD diagnoses from the Norwegian Patient Registry and information on pregnancies from the Medical Birth Registry of Norway. In total, 958 newborn cord blood samples were divided into three groups: (1) prenatal (es)citalopram exposed (n = 306), (2) prenatal maternal depression exposed (n = 308), and (3) propensity score-selected controls (n = 344). Among children exposed to (es)citalopram, there were more ADHD diagnoses and symptoms and delayed communication and psychomotor development. We did not identify differential DNAm associated with (es)citalopram or depression, nor any interaction effects on neurodevelopmental outcomes throughout childhood. Trajectory modeling identified subgroups of children following similar developmental patterns. Some of these subgroups were enriched for children exposed to maternal depression, and some subgroups were associated with differences in DNAm at birth. Interestingly, several of the differentially methylated genes are involved in neuronal processes and development. These results suggest DNAm as a potential predictive molecular marker of later abnormal neurodevelopmental outcomes, but we cannot conclude whether DNAm links prenatal (es)citalopram exposure or maternal depression with child neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Emilie Willoch Olstad
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
- UiO:RealArt Convergence Environment, University of Oslo, Oslo, Norway.
| | - Hedvig Marie Egeland Nordeng
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- UiO:RealArt Convergence Environment, University of Oslo, Oslo, Norway
- Department of Child Health and Development, Norwegian Institute of Public Health, Oslo, Norway
| | - Geir Kjetil Sandve
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- UiO:RealArt Convergence Environment, University of Oslo, Oslo, Norway
- Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Robert Lyle
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Kristina Gervin
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- UiO:RealArt Convergence Environment, University of Oslo, Oslo, Norway
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
25
|
Carvalho GFDS, Costa TVMM, Nascimento AM, Wolff BM, Damasceno JG, Vieira LL, Almeida VT, Oliveira YGD, Mello CBD, Muszkat M, Kulikowski LD. DNA methylation epi-signature and biological age in attention deficit hyperactivity disorder patients. Clin Neurol Neurosurg 2023; 228:107714. [PMID: 37054476 DOI: 10.1016/j.clineuro.2023.107714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
OBJECTIVE Attention Deficit/Hyperactivity Disorder (ADHD) is a common behavioral syndrome that begins in childhood and affects 3.4% of children worldwide. Due to its etiological complexity, there are no consistent biomarkers for ADHD, however the high heritability presented by the disorder indicates a genetic/epigenetic influence. The main epigenetic mechanism is DNA methylation, a process with an important role in gene expression and in many psychiatric disorders. Thus, our study sought to identify epi-signatures biomarkers in 29 children clinically diagnosed with ADHD. METHODS After DNA extraction and bisulfite conversion, we performed methylation array experiment for differential methylation, ontological and biological age analysis. RESULTS The biological response in ADHD patients was not sufficient to determine a conclusive epi-signature in our study. However, our results highlighted the interaction of energy metabolism and oxidative stress pathways in ADHD patients detected by differential methylation patterns. Furthermore, we were able to identify a marginal association between the DNAmAge and ADHD. CONCLUSION Our study present new methylation biomarkers findings associated with energy metabolism and oxidative stress pathways, in addition to DNAmAge in ADHD patients. However, we propose that further multiethnic studies, with larger cohorts and including maternal conditions, are necessary to demonstrate a definitive association between ADHD and these methylation biomarkers.
Collapse
Affiliation(s)
| | | | - Amom Mendes Nascimento
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Beatriz Martins Wolff
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Julian Gabriel Damasceno
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Lucas Liro Vieira
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Vanessa Tavares Almeida
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Yanca Gasparini de Oliveira
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Claudia Berlim de Mello
- Nucleo de Atendimento Neuropsicologico Infantil Interdisciplinar (NANI), Centro Paulista de Neuropsicologia, Departamento de Psicobiologia da Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil
| | - Mauro Muszkat
- Nucleo de Atendimento Neuropsicologico Infantil Interdisciplinar (NANI), Centro Paulista de Neuropsicologia, Departamento de Psicobiologia da Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil
| | - Leslie Domenici Kulikowski
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
26
|
Carpentieri V, Lambacher G, Troianiello M, Pucci M, Di Pietro D, Laviola G, D'Addario C, Pascale E, Adriani W. Methylation Dynamics on 5'-UTR of DAT1 Gene as a Bio-Marker to Recognize Therapy Success in ADHD Children. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10030584. [PMID: 36980142 PMCID: PMC10046904 DOI: 10.3390/children10030584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD), a neuropsychiatric condition characterized by inattention, hyperactivity, and impulsivity, afflicts 5% of children worldwide. Each ADHD patient presents with individual cognitive and motivational peculiarities. Furthermore, choice of appropriate therapy is still up to clinicians, who express somewhat qualitative advice on whether a child is being successfully cured or not: it would be more appropriate to use an objective biomarker to indicate whether a treatment led to benefits or not. The aim of our work is to search for such clinical biomarkers. We recruited 60 ADHD kids; psychopathological scales were administered at recruitment and after six weeks of therapy. Out of such a cohort of ADHD children, we rigorously extracted two specific subgroups; regardless of the initial severity of their disease, we compared those who obtained the largest improvement (ΔCGAS > 5) vs. those who were still characterized by a severe condition (CGAS < 40). After such a therapy, methylation levels of DNA extracted from buccal swabs were measured in the 5'-UTR of the DAT1 gene. CpGs 3 and 5 displayed, in relation to the other CpGs, a particular symmetrical pattern; for "improving" ADHD children, they were methylated together with CpG 2 and CpG 6; instead, for "severe" ADHD children, they accompanied a methylated CpG 1. These specific patterns of methylation could be used as objective molecular biomarkers of successful cures, establishing if a certain therapy is akin to a given patient (personalized medicine). Present data support the use of post-therapy molecular data obtained with non-invasive techniques.
Collapse
Affiliation(s)
- Valentina Carpentieri
- Center for Behavioral Science and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | | - Miriam Troianiello
- Servizio Tutela Salute Mentale e Riabilitazione in Età Evolutiva, A.S.L. Roma 6, 00044 Frascati, Italy
| | - Mariangela Pucci
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Diana Di Pietro
- Servizio Tutela Salute Mentale e Riabilitazione in Età Evolutiva, A.S.L. Roma 6, 00044 Frascati, Italy
| | - Giovanni Laviola
- Center for Behavioral Science and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Claudio D'Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Esterina Pascale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy
| | - Walter Adriani
- Center for Behavioral Science and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
- Faculty of Psychology, Uninettuno University, 00186 Rome, Italy
| |
Collapse
|
27
|
Choi YJ, Cho J, Hong YC, Lee DW, Moon S, Park SJ, Lee KS, Shin CH, Lee YA, Kim BN, Kaminsky Z, Kim JI, Lim YH. DNA methylation is associated with prenatal exposure to sulfur dioxide and childhood attention-deficit hyperactivity disorder symptoms. Sci Rep 2023; 13:3501. [PMID: 36859453 PMCID: PMC9977725 DOI: 10.1038/s41598-023-29843-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 02/10/2023] [Indexed: 03/03/2023] Open
Abstract
Epigenetic influence plays a role in the association between exposure to air pollution and attention deficit hyperactivity disorder (ADHD); however, research regarding sulfur dioxide (SO2) is scarce. Herein, we investigate the associations between prenatal SO2 exposure and ADHD rating scale (ARS) at ages 4, 6 and 8 years repeatedly in a mother-child cohort (n = 329). Whole blood samples were obtained at ages 2 and 6 years, and genome-wide DNA methylation (DNAm) was analyzed for 51 children using the Illumina Infinium HumanMethylation BeadChip. We analyzed the associations between prenatal SO2 exposure and DNAm levels at ages 2 and 6, and further investigated the association between the DNAm and ARS at ages 4, 6 and 8. Prenatal SO2 exposure was associated with ADHD symptoms. From candidate gene analysis, DNAm levels at the 6 CpGs at age 2 were associated with prenatal SO2 exposure levels. Of the 6 CpGs, cg07583420 (INS-IGF2) was persistently linked with ARS at ages 4, 6 and 8. Epigenome-wide analysis showed that DNAm at 6733 CpG sites were associated with prenatal SO2 exposure, of which 58 CpGs involved in Notch signalling pathway were further associated with ARS at age 4, 6 and 8 years, persistently. DNAm at age 6 was not associated with prenatal SO2 exposure. Changes in DNAm levels associated with prenatal SO2 exposure during early childhood are associated with increases in ARS in later childhood.
Collapse
Affiliation(s)
- Yoon-Jung Choi
- National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Republic of Korea.,Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jinwoo Cho
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Dong-Wook Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea.,Public Healthcare Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sungji Moon
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soo Jin Park
- Department of Surgery, Wonkwang University Sanbon Hospital, Gunpo, Republic of Korea
| | - Kyung-Shin Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea.,Public Health Research Institute, National Medical Center, Seoul, Republic of Korea
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Bung-Nyun Kim
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Zachary Kaminsky
- Institute of Mental Health Research, University of Ottawa, Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University Medical Center, 222-1 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea.
| | - Youn-Hee Lim
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Section of Environmental Epidemiology, Department of Public Health, University of Copenhagen, Østerster Farimagsgade 5, 1014, København K, Copenhagen, Denmark.
| |
Collapse
|
28
|
Garcia-Argibay M, Zhang-James Y, Cortese S, Lichtenstein P, Larsson H, Faraone SV. Predicting childhood and adolescent attention-deficit/hyperactivity disorder onset: a nationwide deep learning approach. Mol Psychiatry 2023; 28:1232-1239. [PMID: 36536075 PMCID: PMC10005952 DOI: 10.1038/s41380-022-01918-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a heterogeneous disorder with a high degree of psychiatric and physical comorbidity, which complicates its diagnosis in childhood and adolescence. We analyzed registry data from 238,696 persons born and living in Sweden between 1995 and 1999. Several machine learning techniques were used to assess the ability of registry data to inform the diagnosis of ADHD in childhood and adolescence: logistic regression, random Forest, gradient boosting, XGBoost, penalized logistic regression, deep neural network (DNN), and ensemble models. The best fitting model was the DNN, achieving an area under the receiver operating characteristic curve of 0.75, 95% CI (0.74-0.76) and balanced accuracy of 0.69. At the 0.45 probability threshold, sensitivity was 71.66% and specificity was 65.0%. There was an overall agreement in the feature importance among all models (τ > .5). The top 5 features contributing to classification were having a parent with criminal convictions, male sex, having a relative with ADHD, number of academic subjects failed, and speech/learning disabilities. A DNN model predicting childhood and adolescent ADHD trained exclusively on Swedish register data achieved good discrimination. If replicated and validated in an external sample, and proven to be cost-effective, this model could be used to alert clinicians to individuals who ought to be screened for ADHD and to aid clinicians' decision-making with the goal of decreasing misdiagnoses. Further research is needed to validate results in different populations and to incorporate new predictors.
Collapse
Affiliation(s)
- Miguel Garcia-Argibay
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | - Yanli Zhang-James
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Samuele Cortese
- School of Psychology, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK
- Solent NHS Trust, Southampton, UK
- Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York City, New York, NY, USA
- Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Paul Lichtenstein
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Larsson
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
29
|
Cecil CAM, Neumann A, Walton E. Epigenetics applied to child and adolescent mental health: Progress, challenges and opportunities. JCPP ADVANCES 2023; 3:jcv2.12133. [PMID: 36910008 PMCID: PMC7614304 DOI: 10.1002/jcv2.12133] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Epigenetic processes are fast emerging as a promising molecular system in the search for both biomarkers and mechanisms underlying human health and disease risk, including psychopathology. Methods In this review, we discuss the application of epigenetics (specifically DNA methylation) to research in child and adolescent mental health, with a focus on the use of developmentally sensitive datasets, such as prospective, population-based cohorts. We look back at lessons learned to date, highlight current developments in the field and areas of priority for future research. We also reflect on why epigenetic research on child and adolescent mental health currently lags behind other areas of epigenetic research and what we can do to overcome existing barriers. Results To move the field forward, we advocate for the need of large-scale, harmonized, collaborative efforts that explicitly account for the time-varying nature of epigenetic and mental health data across development. Conclusion We conclude with a perspective on what the future may hold in terms of translational applications as more robust signals emerge from epigenetic research on child and adolescent mental health.
Collapse
Affiliation(s)
- Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands.,Department of Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alexander Neumann
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Esther Walton
- Department of Psychology, University of Bath, Bath, UK
| |
Collapse
|
30
|
Feil D, Abrishamcar S, Christensen GM, Vanker A, Koen N, Kilanowski A, Hoffman N, Wedderburn CJ, Donald KA, Kobor MS, Zar HJ, Stein DJ, Hüls A. DNA methylation as a potential mediator of the association between indoor air pollution and neurodevelopmental delay in a South African birth cohort. Clin Epigenetics 2023; 15:31. [PMID: 36855151 PMCID: PMC9972733 DOI: 10.1186/s13148-023-01444-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 02/08/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Exposure to indoor air pollution during pregnancy has been linked to neurodevelopmental delay in toddlers. Epigenetic modification, particularly DNA methylation (DNAm), may explain this link. In this study, we employed three high-dimensional mediation analysis methods (HIMA, DACT, and gHMA) followed by causal mediation analysis to identify differentially methylated CpG sites and genes that mediate the association between indoor air pollution and neurodevelopmental delay. Analyses were performed using data from 142 mother to child pairs from a South African birth cohort, the Drakenstein Child Health Study. DNAm from cord blood was measured using the Infinium MethylationEPIC and HumanMethylation450 arrays. Neurodevelopment was assessed at age 2 years using the Bayley Scores of Infant and Toddler Development, 3rd edition across four domains (cognitive development, general adaptive behavior, language, and motor function). Particulate matter with an aerodynamic diameter of 10 μm or less (PM10) was measured inside participants' homes during the second trimester of pregnancy. RESULTS A total of 29 CpG sites and 4 genes (GOPC, RP11-74K11.1, DYRK1A, RNMT) were identified as significant mediators of the association between PM10 and cognitive neurodevelopment. The estimated proportion mediated (95%-confidence interval) ranged from 0.29 [0.01, 0.86] for cg00694520 to 0.54 [0.11, 1.56] for cg05023582. CONCLUSIONS Our findings suggest that DNAm may mediate the association between prenatal PM10 exposure and cognitive neurodevelopment. DYRK1A and several genes that our CpG sites mapped to, including CNKSR1, IPO13, IFNGR1, LONP2, and CDH1, are associated with biological pathways implicated in cognitive neurodevelopment and three of our identified CpG sites (cg23560546 [DAPL1], cg22572779 [C6orf218], cg15000966 [NT5C]) have been previously associated with fetal brain development. These findings are novel and add to the limited literature investigating the relationship between indoor air pollution, DNAm, and neurodevelopment, particularly in low- and middle-income country settings and non-white populations.
Collapse
Affiliation(s)
- Dakotah Feil
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA, 30322, USA
| | - Sarina Abrishamcar
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA, 30322, USA
| | - Grace M Christensen
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA, 30322, USA
| | - Aneesa Vanker
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, SA and SA-MRC Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Nastassja Koen
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Anna Kilanowski
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA, 30322, USA
- German Research Center for Environmental Health, Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry, and Epidemiology, Pettenkofer School of Public Health, LMU Munich, Munich, Germany
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, Munich, Germany
| | - Nadia Hoffman
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Catherine J Wedderburn
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, SA and SA-MRC Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Kirsten A Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, SA and SA-MRC Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Michael S Kobor
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, SA and SA-MRC Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Anke Hüls
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA, 30322, USA.
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
31
|
Sato JR, Biazoli CE, Bueno APA, Caye A, Pan PM, Santoro M, Honorato-Mauer J, Salum GA, Hoexter MQ, Bressan RA, Jackowski AP, Miguel EC, Belangero S, Rohde LA. Polygenic risk score for attention-deficit/hyperactivity disorder and brain functional networks segregation in a community-based sample. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12838. [PMID: 36811275 PMCID: PMC10067387 DOI: 10.1111/gbb.12838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/29/2022] [Accepted: 01/20/2023] [Indexed: 02/24/2023]
Abstract
Neuroimaging studies suggest that brain development mechanisms might explain at least some behavioural and cognitive attention-deficit/hyperactivity disorder (ADHD) symptoms. However, the putative mechanisms by which genetic susceptibility factors influence clinical features via alterations of brain development remain largely unknown. Here, we set out to integrate genomics and connectomics tools by investigating the associations between an ADHD polygenic risk score (ADHD-PRS) and functional segregation of large-scale brain networks. With this aim, ADHD symptoms score, genetic and rs-fMRI (resting-state functional magnetic resonance image) data obtained in a longitudinal community-based cohort of 227 children and adolescents were analysed. A follow-up was conducted approximately 3 years after the baseline, with rs-fMRI scanning and ADHD likelihood assessment in both stages. We hypothesised a negative correlation between probable ADHD and the segregation of networks involved in executive functions, and a positive correlation with the default-mode network (DMN). Our findings suggest that ADHD-PRS is correlated with ADHD at baseline, but not at follow-up. Despite not surviving for multiple comparison correction, we found significant correlations between ADHD-PRS and segregation of cingulo-opercular networks and DMN at baseline. ADHD-PRS was negatively correlated with the segregation level of cingulo-opercular networks but positively correlated with the DMN segregation. These directions of associations corroborate the proposed counter-balanced role of attentional networks and DMN in attentional processes. However, the association between ADHD-PRS and brain networks functional segregation was not found at follow-up. Our results provide evidence for specific influences of genetic factors on development of attentional networks and DMN. We found significant correlations between polygenic risk score for ADHD (ADHD-PRS) and segregation of cingulo-opercular networks and default-mode network (DMN) at baseline. ADHD-PRS was negatively correlated with the segregation level of cingulo-opercular networks but positively correlated with the DMN segregation.
Collapse
Affiliation(s)
- João Ricardo Sato
- Center of Mathematics, Computing, and Cognition, Universidade Federal do ABC, Santo André, Brazil.,Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil.,Department of Radiology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil.,Big Data, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Claudinei Eduardo Biazoli
- Center of Mathematics, Computing, and Cognition, Universidade Federal do ABC, Santo André, Brazil.,Department of Experimental and Biological Psychology, Queen Mary University of London, London, UK
| | - Ana Paula Arantes Bueno
- Center of Mathematics, Computing, and Cognition, Universidade Federal do ABC, Santo André, Brazil
| | - Arthur Caye
- National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil.,Hospital de Clínicas de Porto Alegre and Department of Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Pedro Mario Pan
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil
| | - Marcos Santoro
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil.,Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Jessica Honorato-Mauer
- Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Giovanni Abrahão Salum
- National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil.,Hospital de Clínicas de Porto Alegre and Department of Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcelo Queiroz Hoexter
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil.,Department of Psychiatry, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Rodrigo Affonseca Bressan
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil
| | - Andrea Parolin Jackowski
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil.,Department of Education, ICT and Learning, Østfold University College, Halden, Norway
| | - Euripedes Constantino Miguel
- National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil.,Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Sintia Belangero
- Laboratory of Integrative Neuroscience (LiNC), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil.,Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Luis Augusto Rohde
- National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), Sao Paulo, Brazil.,Hospital de Clínicas de Porto Alegre and Department of Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,UniEduK, Jaguariúna, Brazil.,ADHD Outpatient Program & Developmental Psychiatry Program, Hospital de Clinica de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
32
|
Meijer M, Franke B, Sandi C, Klein M. Epigenome-wide DNA methylation in externalizing behaviours: A review and combined analysis. Neurosci Biobehav Rev 2023; 145:104997. [PMID: 36566803 PMCID: PMC12042733 DOI: 10.1016/j.neubiorev.2022.104997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/24/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
DNA methylation (DNAm) is one of the most frequently studied epigenetic mechanisms facilitating the interplay of genomic and environmental factors, which can contribute to externalizing behaviours and related psychiatric disorders. Previous epigenome-wide association studies (EWAS) for externalizing behaviours have been limited in sample size, and, therefore, candidate genes and biomarkers with robust evidence are still lacking. We 1) performed a systematic literature review of EWAS of attention-deficit/hyperactivity disorder (ADHD)- and aggression-related behaviours conducted in peripheral tissue and cord blood and 2) combined the most strongly associated DNAm sites observed in individual studies (p < 10-3) to identify candidate genes and biological systems for ADHD and aggressive behaviours. We observed enrichment for neuronal processes and neuronal cell marker genes for ADHD. Astrocyte and granulocytes cell markers among genes annotated to DNAm sites were relevant for both ADHD and aggression-related behaviours. Only 1 % of the most significant epigenetic findings for ADHD/ADHD symptoms were likely to be directly explained by genetic factors involved in ADHD. Finally, we discuss how the field would greatly benefit from larger sample sizes and harmonization of assessment instruments.
Collapse
Affiliation(s)
- Mandy Meijer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Laboratory of Behavioural Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Carmen Sandi
- Laboratory of Behavioural Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marieke Klein
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, University of California, La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
33
|
da Silva BS, Grevet EH, Silva LCF, Ramos JKN, Rovaris DL, Bau CHD. An overview on neurobiology and therapeutics of attention-deficit/hyperactivity disorder. DISCOVER MENTAL HEALTH 2023; 3:2. [PMID: 37861876 PMCID: PMC10501041 DOI: 10.1007/s44192-022-00030-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/29/2022] [Indexed: 10/21/2023]
Abstract
Attention-Deficit/Hyperactivity Disorder (ADHD) is a prevalent psychiatric condition characterized by developmentally inappropriate symptoms of inattention and/or hyperactivity/impulsivity, which leads to impairments in the social, academic, and professional contexts. ADHD diagnosis relies solely on clinical assessment based on symptom evaluation and is sometimes challenging due to the substantial heterogeneity of the disorder in terms of clinical and pathophysiological aspects. Despite the difficulties imposed by the high complexity of ADHD etiology, the growing body of research and technological advances provide good perspectives for understanding the neurobiology of the disorder. Such knowledge is essential to refining diagnosis and identifying new therapeutic options to optimize treatment outcomes and associated impairments, leading to improvements in all domains of patient care. This review is intended to be an updated outline that addresses the etiological and neurobiological aspects of ADHD and its treatment, considering the impact of the "omics" era on disentangling the multifactorial architecture of ADHD.
Collapse
Affiliation(s)
- Bruna Santos da Silva
- ADHD and Developmental Psychiatry Programs, Hospital de Clínicas de Porto Alegre, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Department of Genetics and Graduate Program in Genetics and Molecular Biology, Instituto de Biociências, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas Universidade de Sao Paulo, São Paulo, Brazil
- Laboratory of Physiological Genomics of Mental Health (PhysioGen Lab), Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Eugenio Horacio Grevet
- ADHD and Developmental Psychiatry Programs, Hospital de Clínicas de Porto Alegre, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Department of Psychiatry and Graduate Program in Psychiatry and Behavioral Sciences, Faculdade de Medicina, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Luiza Carolina Fagundes Silva
- ADHD and Developmental Psychiatry Programs, Hospital de Clínicas de Porto Alegre, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Department of Psychiatry and Graduate Program in Psychiatry and Behavioral Sciences, Faculdade de Medicina, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - João Kleber Neves Ramos
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas Universidade de Sao Paulo, São Paulo, Brazil
- Laboratory of Physiological Genomics of Mental Health (PhysioGen Lab), Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Diego Luiz Rovaris
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas Universidade de Sao Paulo, São Paulo, Brazil
- Laboratory of Physiological Genomics of Mental Health (PhysioGen Lab), Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Claiton Henrique Dotto Bau
- ADHD and Developmental Psychiatry Programs, Hospital de Clínicas de Porto Alegre, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.
- Department of Genetics and Graduate Program in Genetics and Molecular Biology, Instituto de Biociências, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.
- Department of Psychiatry and Graduate Program in Psychiatry and Behavioral Sciences, Faculdade de Medicina, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.
| |
Collapse
|
34
|
Cecil CAM, Nigg JT. Epigenetics and ADHD: Reflections on Current Knowledge, Research Priorities and Translational Potential. Mol Diagn Ther 2022; 26:581-606. [PMID: 35933504 PMCID: PMC7613776 DOI: 10.1007/s40291-022-00609-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 12/30/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common and debilitating neurodevelopmental disorder influenced by both genetic and environmental factors, typically identified in the school-age years but hypothesized to have developmental origins beginning in utero. To improve current strategies for prediction, prevention and treatment, a central challenge is to delineate how, at a molecular level, genetic and environmental influences jointly shape ADHD risk, phenotypic presentation, and developmental course. Epigenetic processes that regulate gene expression, such as DNA methylation, have emerged as a promising molecular system in the search for both biomarkers and mechanisms to address this challenge. In this Current Opinion, we discuss the relevance of epigenetics (specifically DNA methylation) for ADHD research and clinical practice, starting with the current state of knowledge, what challenges we have yet to overcome, and what the future may hold in terms of methylation-based applications for personalized medicine in ADHD. We conclude that the field of epigenetics and ADHD is promising but is still in its infancy, and the potential for transformative translational applications remains a distant goal. Nevertheless, rapid methodological advances, together with the rise of collaborative science and increased availability of high-quality, longitudinal data make this a thriving research area that in future may contribute to the development of new tools for improved prediction, management, and treatment of ADHD.
Collapse
Affiliation(s)
- Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia, Rotterdam, The Netherlands.
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands.
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands.
| | - Joel T Nigg
- Division of Psychology, Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
35
|
Hüls A, Wedderburn CJ, Groenewold NA, Gladish N, Jones MJ, Koen N, MacIsaac JL, Lin DTS, Ramadori KE, Epstein MP, Donald KA, Kobor MS, Zar HJ, Stein DJ. Newborn differential DNA methylation and subcortical brain volumes as early signs of severe neurodevelopmental delay in a South African Birth Cohort Study. World J Biol Psychiatry 2022; 23:601-612. [PMID: 34895032 PMCID: PMC9273810 DOI: 10.1080/15622975.2021.2016955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Early detection of neurodevelopmental delay is crucial for intervention and treatment strategies. We analysed associations between newborn DNA methylation (DNAm), neonatal magnetic resonance imaging (MRI) neuroimaging data, and neurodevelopment. METHODS Neurodevelopment was assessed in 161 children from the South African Drakenstein Child Health Study at 2 years of age using the Bayley Scales of Infant and Toddler Development III. We performed an epigenome-wide association study of neurodevelopmental delay using DNAm from cord blood. Subsequently, we analysed if associations between DNAm and neurodevelopmental delay were mediated by altered neonatal brain volumes (subset of 51 children). RESULTS Differential DNAm at SPTBN4 (cg26971411, Δbeta = -0.024, p-value = 3.28 × 10-08), and two intergenic regions (chromosome 11: cg00490349, Δbeta = -0.036, p-value = 3.02 × 10-08; chromosome 17: cg15660740, Δbeta = -0.078, p-value = 6.49 × 10-08) were significantly associated with severe neurodevelopmental delay. While these associations were not mediated by neonatal brain volume, neonatal caudate volumes were independently associated with neurodevelopmental delay, particularly in language (Δcaudate volume = 165.30 mm3, p = 0.0443) and motor (Δcaudate volume = 365.36 mm3, p-value = 0.0082) domains. CONCLUSIONS Differential DNAm from cord blood and increased neonatal caudate volumes were independently associated with severe neurodevelopmental delay at 2 years of age. These findings suggest that neurobiological signals for severe developmental delay may be detectable in very early life.
Collapse
Affiliation(s)
- Anke Hüls
- Department of Epidemiology and Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Catherine J Wedderburn
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Nynke A Groenewold
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Nicole Gladish
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Meaghan J Jones
- Department of Biochemistry and Medical Genetics, University of Manitoba, and Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Nastassja Koen
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Julia L MacIsaac
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - David T S Lin
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Katia E Ramadori
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Michael P Epstein
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Kirsten A Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Michael S Kobor
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
36
|
Cabana-Domínguez J, Soler Artigas M, Arribas L, Alemany S, Vilar-Ribó L, Llonga N, Fadeuilhe C, Corrales M, Richarte V, Ramos-Quiroga JA, Ribasés M. Comprehensive analysis of omics data identifies relevant gene networks for Attention-Deficit/Hyperactivity Disorder (ADHD). Transl Psychiatry 2022; 12:409. [PMID: 36153331 PMCID: PMC9509350 DOI: 10.1038/s41398-022-02182-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder that results from the interaction of both genetic and environmental risk factors. Genome-wide association studies have started to identify multiple genetic risk loci associated with ADHD, however, the exact causal genes and biological mechanisms remain largely unknown. We performed a multi-step analysis to identify and characterize modules of co-expressed genes associated with ADHD using data from peripheral blood mononuclear cells of 270 ADHD cases and 279 controls. We identified seven ADHD-associated modules of co-expressed genes, some of them enriched in both genetic and epigenetic signatures for ADHD and in biological pathways relevant for psychiatric disorders, such as the regulation of gene expression, epigenetics and immune system. In addition, for some of the modules, we found evidence of potential regulatory mechanisms, including microRNAs and common genetic variants. In conclusion, our results point to promising genes and pathways for ADHD, supporting the use of peripheral blood to assess gene expression signatures in psychiatric disorders. Furthermore, they highlight that the combination of multi-omics signals provides deeper and broader insights into the biological mechanisms underlying ADHD.
Collapse
Affiliation(s)
- Judit Cabana-Domínguez
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain.
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.
| | - María Soler Artigas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Lorena Arribas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Silvia Alemany
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Laura Vilar-Ribó
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
| | - Natalia Llonga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Christian Fadeuilhe
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montse Corrales
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vanesa Richarte
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Antoni Ramos-Quiroga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain.
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
37
|
Christensen GM, Rowcliffe C, Chen J, Vanker A, Koen N, Jones MJ, Gladish N, Hoffman N, Donald KA, Wedderburn CJ, Kobor MS, Zar HJ, Stein DJ, Hüls A. In-utero exposure to indoor air pollution or tobacco smoke and cognitive development in a South African birth cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155394. [PMID: 35460774 PMCID: PMC9177804 DOI: 10.1016/j.scitotenv.2022.155394] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS There is increasing evidence indicating that air pollution exposure is associated with neuronal damage. Since pregnancy is a critical window of vulnerability, air pollution exposure during this period could have adverse effects on neurodevelopment. This study aims 1) to analyze associations of prenatal exposure to indoor air pollution (particulate matter with diameters ≤10 μm, PM10) and tobacco smoke with neurodevelopment and 2) to determine whether these associations are mediated by deviations of epigenetic gestational age from chronological gestational age (ΔGA). METHODS Data of 734 children from the South African Drakenstein Child Health Study were analyzed. Prenatal PM10 exposure was measured using devices placed in the families' homes. Maternal smoking during pregnancy was determined by maternal urine cotinine measures. The Bayley Scales of Infant and Toddler Development III (BSID-III) was used to measure cognition, language and motor development and adaptive behavior at two years of age. Linear regression models adjusted for maternal age, gestational age, sex of child, ancestry, birth weight/length, and socioeconomic status were used to explore associations between air pollutants and BSID-III scores. A mediation analysis was conducted to analyze if these associations were mediated by ΔGA using DNA methylation measurements from cord blood. RESULTS An increase of one interquartile range in natural-log transformed PM10 (lnPM10; 1.58 μg/m3) was significantly associated with lower composite scores in cognition, language, and adaptive behavior sub-scores (composite score β-estimate [95%-confidence interval]: -0.950 [-1.821, -0.120]). Maternal smoking was significantly associated with lower adaptive behavior scores (-3.386 [-5.632, -1.139]). Associations were not significantly mediated by ΔGA (e.g., for PM10 and cognition, proportion mediated [p-value]: 4% [0.52]). CONCLUSION We found an association of prenatal exposure to indoor air pollution (PM10) and tobacco smoke on neurodevelopment at two years of age, particularly cognition, language, and adaptive behavior. Further research is needed to understand underlying biological mediators.
Collapse
Affiliation(s)
- Grace M Christensen
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Claire Rowcliffe
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Junyu Chen
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Aneesa Vanker
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, South Africa
| | - Nastassja Koen
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa; Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa; South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Meaghan J Jones
- Department of Biochemistry and Medical Genetics, University of Manitoba, Children's Hospital Research, Institute of Manitoba, Winnipeg, Canada
| | - Nicole Gladish
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada
| | - Nadia Hoffman
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa; Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Kirsten A Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, South Africa; Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Catherine J Wedderburn
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, South Africa; Neuroscience Institute, University of Cape Town, Cape Town, South Africa; Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Michael S Kobor
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, South Africa; South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa; Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa; South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Anke Hüls
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, USA.
| |
Collapse
|
38
|
Silk T, Dipnall L, Wong YT, Craig JM. Epigenetics and ADHD. Curr Top Behav Neurosci 2022; 57:269-289. [PMID: 35505060 DOI: 10.1007/7854_2022_339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
There is robust evidence of genetic susceptibility to Attention-Deficit Hyperactivity Disorder (ADHD); however, there still remains significant variability that is not attributable to genetic factors. The emerging field of epigenetics is beginning to reveal how genotypic expression can be mediated by an array of variables including external environmental exposure, inter-individual developmental variation, and by the genome itself. Epigenetic modification plays a central role in neurobiological and developmental processes, and disturbances to these processes can have implications for a range of mental health problems. Although the field is still in its early days, this chapter will discuss the current standing of epigenetic research into ADHD. Firstly, key relevant epigenetic processes will be discussed. This will be followed by an overview of the key findings to date investigating the role of epigenetics in ADHD. Human studies have included the theory-driven approach of candidate-gene studies (CGS), as well as the increasingly popular exploratory approach of epigenome-wide association studies (EWAS). Overall, the findings are heterogeneous. However, it is possible that with more longitudinal studies and better characterised cohorts, both predictive and protective links between epigenetic processes and ADHD will be revealed.
Collapse
Affiliation(s)
- Timothy Silk
- Centre for Social and Early Emotional Development and School of Psychology, Deakin University, Geelong, VIC, Australia. .,Murdoch Children's Research Institute, Parkville, VIC, Australia.
| | - Lillian Dipnall
- Centre for Social and Early Emotional Development and School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Yen Ting Wong
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Jeffrey M Craig
- Murdoch Children's Research Institute, Parkville, VIC, Australia.,Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
39
|
Peedicayil J. The Role of Epigenetics in the Pathogenesis and Potential Treatment of Attention Deficit Hyperactivity Disorder. Curr Neuropharmacol 2022; 20:1642-1650. [PMID: 34544344 PMCID: PMC9881064 DOI: 10.2174/1570159x19666210920091036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/22/2022] Open
Abstract
There is increasing evidence that dysregulated epigenetic mechanisms of gene expression are involved in the pathogenesis of attention deficit hyperactivity disorder (ADHD). This review presents a comprehensive summary of the current state of research on the role of epigenetics in the pathogenesis of ADHD. The potential role of epigenetic drugs in the treatment of ADHD is also reviewed. Several studies suggest that there are epigenetic abnormalities in preclinical models of ADHD and in ADHD patients. Regarding DNA methylation, many studies have reported DNA hypermethylation. There is evidence that there is increased histone deacetylation in ADHD patients. Abnormalities in the expression of microRNAs (miRNAs) in ADHD patients have also been found. Some currently used drugs for treating ADHD, in addition to their more well-established mechanisms of action, have been shown to alter epigenetic mechanisms of gene expression. Clinical trials of epigenetic drugs in patients with ADHD report favorable results. These data suggest that abnormal epigenetic mechanisms of gene expression may be involved in the pathogenesis of ADHD. Drugs acting on epigenetic mechanisms may be a potential new class of drugs for treating ADHD.
Collapse
Affiliation(s)
- Jacob Peedicayil
- Department of Pharmacology and Clinical Pharmacology, Christian Medical College, Vellore, India,Address correspondence to this author at the Department of Pharmacology and Clinical Pharmacology, Christian Medical College, Vellore, India;Tel: 91-0416-2284237; E-mail:
| |
Collapse
|
40
|
Epigenetic profiling of social communication trajectories and co-occurring mental health problems: a prospective, methylome-wide association study. Dev Psychopathol 2022; 34:854-863. [PMID: 33494854 PMCID: PMC8622455 DOI: 10.1017/s0954579420001662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
While previous studies suggest that both genetic and environmental factors play an important role in the development of autism-related traits, little is known about potential biological mechanisms underlying these associations. Using data from the Avon Longitudinal Study of Parents and Children (ALSPAC), we examined prospective associations between DNA methylation (DNAm: nbirth = 804, nage 7 = 877) and trajectories of social communication deficits at age 8-17 years. Methylomic variation at three loci across the genome (false discovery rate = 0.048) differentiated children following high (n = 80) versus low (n = 724) trajectories of social communication deficits. This differential DNAm was specific to the neonatal period and not observed at 7 years of age. Associations between DNAm and trajectory membership remained robust after controlling for co-occurring mental health problems (i.e., hyperactivity/inattention, conduct problems). The three loci identified at birth were not replicated in the Generation R Study. However, to the best of our knowledge, ALSPAC is the only study to date that is prospective enough to examine DNAm in relation to longitudinal trajectories of social communication deficits from childhood to adolescence. Although the present findings might point to potentially novel sites that differentiate between a high versus low trajectory of social communication deficits, the results should be considered tentative until further replicated.
Collapse
|
41
|
Hohmann S, Häge A, Millenet S, Banaschewski T. [The Genetic Basis of ADHD - An Update]. ZEITSCHRIFT FUR KINDER-UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE 2022; 50:203-217. [PMID: 35514173 DOI: 10.1024/1422-4917/a000868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Genetic Basis of ADHD - An Update Abstract. Genetic risks play an important role in the etiology of attention-deficit/hyperactivity disorder (ADHD). This review presents the current state of knowledge concerning the genetic basis of the disorder. It discusses the results of twin- and family-based studies, linkage and association studies as well as recent findings resulting from Genome Wide Association Studies (GWAS). Furthermore, it elaborates on the relevance of polygenic risk scores, rare variants, and epigenetic alterations, especially in light of findings on genetic pleiotropy in the context of frequent psychiatric comorbidities in patients with ADHD.
Collapse
Affiliation(s)
- Sarah Hohmann
- Klinik für Psychiatrie und Psychotherapie des Kindes- und Jugendalters, Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Deutschland
| | - Alexander Häge
- Klinik für Psychiatrie und Psychotherapie des Kindes- und Jugendalters, Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Deutschland
| | - Sabina Millenet
- Klinik für Psychiatrie und Psychotherapie des Kindes- und Jugendalters, Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Deutschland
| | - Tobias Banaschewski
- Klinik für Psychiatrie und Psychotherapie des Kindes- und Jugendalters, Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Deutschland
| |
Collapse
|
42
|
Montanari M, Martella G, Bonsi P, Meringolo M. Autism Spectrum Disorder: Focus on Glutamatergic Neurotransmission. Int J Mol Sci 2022; 23:ijms23073861. [PMID: 35409220 PMCID: PMC8998955 DOI: 10.3390/ijms23073861] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022] Open
Abstract
Disturbances in the glutamatergic system have been increasingly documented in several neuropsychiatric disorders, including autism spectrum disorder (ASD). Glutamate-centered theories of ASD are based on evidence from patient samples and postmortem studies, as well as from studies documenting abnormalities in glutamatergic gene expression and metabolic pathways, including changes in the gut microbiota glutamate metabolism in patients with ASD. In addition, preclinical studies on animal models have demonstrated glutamatergic neurotransmission deficits and altered expression of glutamate synaptic proteins. At present, there are no approved glutamatergic drugs for ASD, but several ongoing clinical trials are currently focusing on evaluating in autistic patients glutamatergic pharmaceuticals already approved for other conditions. In this review, we provide an overview of the literature concerning the role of glutamatergic neurotransmission in the pathophysiology of ASD and as a potential target for novel treatments.
Collapse
Affiliation(s)
- Martina Montanari
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
- Department of Systems Neuroscience, University Tor Vergata, 00133 Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
- Correspondence: (P.B.); (M.M.)
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
- Correspondence: (P.B.); (M.M.)
| |
Collapse
|
43
|
Carucci S, Narducci C, Bazzoni M, Balia C, Donno F, Gagliano A, Zuddas A. Clinical characteristics, neuroimaging findings, and neuropsychological functioning in attention-deficit hyperactivity disorder: Sex differences. J Neurosci Res 2022; 101:704-717. [PMID: 35293009 DOI: 10.1002/jnr.25038] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/17/2022]
Abstract
Recent clinical studies, in both children/adolescents and adults, have shown the extreme neuropsychological heterogeneity of attention-deficit hyperactivity disorder (ADHD): specific neuropsychological deficits have been found only in a minority of individuals, with no direct correlation between discrete cognitive performances and the trajectory of clinical symptoms. Deficits in specific neuropsychological functions may be common in ADHD, but nevertheless no cognitive or neuropsychological profile may fully explain the disorder. Sex differences in the ADHD presentation, both at a neuropsychological and clinical level, also contribute to this clinical and neuropsychological heterogeneity. At a neuropsychological level, females with ADHD may show greater working memory problems, poorer vocabulary skills and worse visual spatial reasoning. Structural and functional imaging study also show discrete differences across sex; however, the great majority of clinical studies mainly or exclusively include male participants with insufficient data to draw firm conclusions on sex differences within the disorder. Here, we report the recent literature data, discussing still open research questions about the clinical presentation, neuroimaging findings, and neuropsychological functioning in ADHD with a focus on the impact of sex differences-a deeper insight in these unresolved issues may have relevant clinical and therapeutic implications for tailored, effective, and long-lasting interventions.
Collapse
Affiliation(s)
- Sara Carucci
- Department of Biomedical Sciences, Section of Neuroscience & Clinical Pharmacology, University of Cagliari, Cagliari, Italy.,Child & Adolescent Neuropsychiatry Unit, "A.Cao" Paediatric Hospital, Cagliari, Italy
| | - Chiara Narducci
- Department of Biomedical Sciences, Section of Neuroscience & Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Marzia Bazzoni
- Department of Biomedical Sciences, Section of Neuroscience & Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Carla Balia
- Department of Biomedical Sciences, Section of Neuroscience & Clinical Pharmacology, University of Cagliari, Cagliari, Italy.,Child & Adolescent Neuropsychiatry Unit, "A.Cao" Paediatric Hospital, Cagliari, Italy
| | - Federica Donno
- Department of Biomedical Sciences, Section of Neuroscience & Clinical Pharmacology, University of Cagliari, Cagliari, Italy.,Child & Adolescent Neuropsychiatry Unit, "A.Cao" Paediatric Hospital, Cagliari, Italy
| | - Antonella Gagliano
- Department of Biomedical Sciences, Section of Neuroscience & Clinical Pharmacology, University of Cagliari, Cagliari, Italy.,Child & Adolescent Neuropsychiatry Unit, "A.Cao" Paediatric Hospital, Cagliari, Italy
| | - Alessandro Zuddas
- Department of Biomedical Sciences, Section of Neuroscience & Clinical Pharmacology, University of Cagliari, Cagliari, Italy.,Child & Adolescent Neuropsychiatry Unit, "A.Cao" Paediatric Hospital, Cagliari, Italy
| |
Collapse
|
44
|
Xu Y, Lin S, Tao J, Liu X, Zhou R, Chen S, Vyas P, Yang C, Chen B, Qian A, Wang M. Correlation research of susceptibility single nucleotide polymorphisms and the severity of clinical symptoms in attention deficit hyperactivity disorder. Front Psychiatry 2022; 13:1003542. [PMID: 36213906 PMCID: PMC9538111 DOI: 10.3389/fpsyt.2022.1003542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/01/2022] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE To analyze the correlation between susceptibility single nucleotide polymorphisms (SNPs) and the severity of clinical symptoms in children with attention deficit hyperactivity disorder (ADHD), so as to supplement the clinical significance of gene polymorphism and increase our understanding of the association between genetic mutations and ADHD phenotypes. METHODS 193 children with ADHD were included in our study from February 2017 to February 2020 in the Children's ADHD Clinic of the author's medical institution. 23 ADHD susceptibility SNPs were selected based on the literature, and multiple polymerase chain reaction (PCR) targeted capture sequencing technology was used for gene analysis. A series of ADHD-related questionnaires were used to reflect the severity of the disease, and the correlation between the SNPs of specific sites and the severity of clinical symptoms was evaluated. R software was used to search for independent risk factors by multivariate logistic regression and the "corplot" package was used for correlation analysis. RESULTS Among the 23 SNP loci of ADHD children, no mutation was detected in 6 loci, and 2 loci did not conform to Hardy-Weinberg equilibrium. Of the remaining 15 loci, there were 9 SNPs, rs2652511 (SLC6A3 locus), rs1410739 (OBI1-AS1 locus), rs3768046 (TIE1 locus), rs223508 (MANBA locus), rs2906457 (ST3GAL3 locus), rs4916723 (LINC00461 locus), rs9677504 (SPAG16 locus), rs1427829 (intron) and rs11210892 (intron), correlated with the severity of clinical symptoms of ADHD. Specifically, rs1410739 (OBI1-AS1 locus) was found to simultaneously affect conduct problems, control ability and abstract thinking ability of children with ADHD. CONCLUSION There were 9 SNPs significantly correlated with the severity of clinical symptoms in children with ADHD, and the rs1410739 (OBI1-AS1 locus) may provide a new direction for ADHD research. Our study builds on previous susceptibility research and further investigates the impact of a single SNP on the severity of clinical symptoms of ADHD. This can help improve the diagnosis, prognosis and treatment of ADHD.
Collapse
Affiliation(s)
- Yunyu Xu
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuangxiang Lin
- Department of Radiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Jiejie Tao
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinmiao Liu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ronghui Zhou
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuangli Chen
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Punit Vyas
- School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Chuang Yang
- Department of Psychiatry, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Andan Qian
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Meihao Wang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
45
|
Kim JI, Lee J, Lee KS, Lee YA, Shin CH, Hong YC, Kim BN, Lim YH. Association of phthalate exposure with autistic traits in children. ENVIRONMENT INTERNATIONAL 2021; 157:106775. [PMID: 34314979 DOI: 10.1016/j.envint.2021.106775] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 05/23/2023]
Abstract
BACKGROUND Phthalates are synthetic chemicals with endocrine-disrupting properties. They are reportedly associated with various neurotoxic outcomes. Studies on exposure to phthalates and children's autistic traits have shown inconsistent results with respect to sex and susceptible time periods. We investigated the association of phthalate exposure during the prenatal period and childhood with autistic traits over time using a birth cohort in South Korea. METHODS Five phthalate metabolites were measured during mid-term pregnancy and children's follow-up at ages of 4, 6, and 8 years among a total of 547 mother-child pairs. The social communication questionnaire (SCQ) was used to assess autistic traits of children at each time point. The relationship between phthalate metabolites and SCQ scores were analyzed by exposure windows and sex. RESULTS A 2.7 fold increase in di-(2-ethylhexyl) phthalate metabolite levels, mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) during pregnancy was associated with increased SCQ scores at 4 years by 8.5% (95% confidence intervals [CI]: 1.9%, 15.5%) and 7.4% (95% CI: 0.3%, 15.0%), respectively, but not at the age of 6 or 8 years. Moreover, MEHHP levels at ages of 4 and 8 years were associated with increased SCQ scores at 8 years by 9.9% (95% CI: 1.8%, 18.6%) and 9.6% (95% CI: 1.3%, 18.6%), respectively. Boys showed stronger associations between phthalate exposure and SCQ scores than girls. CONCLUSION The study suggested different susceptible time windows of phthalate exposure: exposure during pregnancy is associated with autistic traits in young children, whereas exposure during early childhood years leads to autistic traits in school-aged children, particularly boys.
Collapse
Affiliation(s)
- Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University Medical Center, Seoul, Republic of Korea
| | - Jung Lee
- Integrative Care Hub, Children's Hospital, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kyung-Shin Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, South Korea
| | - Bung-Nyun Kim
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Youn-Hee Lim
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
46
|
The Role of Iron and Zinc in the Treatment of ADHD among Children and Adolescents: A Systematic Review of Randomized Clinical Trials. Nutrients 2021; 13:nu13114059. [PMID: 34836314 PMCID: PMC8618748 DOI: 10.3390/nu13114059] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/01/2021] [Accepted: 11/11/2021] [Indexed: 12/18/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder common from childhood to adulthood, affecting 5% to 12% among the general population in developed countries. Potential etiological factors have been identified, including genetic causes, environmental elements and epigenetic components. Nutrition is currently considered an influencing factor, and several studies have explored the contribution of restriction and dietary supplements in ADHD treatments. Iron is an essential cofactor required for a number of functions, such as transport of oxygen, immune function, cellular respiration, neurotransmitter metabolism (dopamine production), and DNA synthesis. Zinc is also an essential trace element, required for cellular functions related to the metabolism of neurotransmitters, melatonin, and prostaglandins. Epidemiological studies have found that iron and zinc deficiencies are common nutritional deficits worldwide, with important roles on neurologic functions (poor memory, inattentiveness, and impulsiveness), finicky appetite, and mood changes (sadness and irritability). Altered levels of iron and zinc have been related with the aggravation and progression of ADHD. Objective: This is a systematic review focused on the contribution of iron and zinc in the progression of ADHD among children and adolescents, and how therapies including these elements are tolerated along with its effectiveness (according to PRISMA guidelines). Method: The scientific literature was screened for randomized controlled trials published between January 2000 to July 2021. The databases consulted were Medline, PsycINFO, Web of Science, and Google Scholar. Two independent reviewers screened studies, extracted data, and assessed quality and risk of bias (CONSORT, NICE, and Cochrane checklists used). Conclusion: Nine studies met the eligibility criteria and were selected. Evidence was obtained regarding the contribution of iron-zinc supplementation in the treatment of ADHD among young individuals. The discussion was focused on how the deficits of these elements contribute to affectation on multiple ADHD correlates, and potential mechanisms explaining the mediational pathways. Evidence also suggested that treating ADHD with diet interventions might be particularly useful for specific subgroups of children and adolescents, but further investigations of the effects of these diet interventions are needed.
Collapse
|
47
|
DNA methylation of the KLK8 gene in depression symptomatology. Clin Epigenetics 2021; 13:200. [PMID: 34715912 PMCID: PMC8556955 DOI: 10.1186/s13148-021-01184-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/12/2021] [Indexed: 12/02/2022] Open
Abstract
Background Depression is a common, complex, and debilitating mental disorder estimated to be under-diagnosed and insufficiently treated in society. Liability to depression is influenced by both genetic and environmental risk factors, which are both capable of impacting DNA methylation (DNAm). Accordingly, numerous studies have researched for DNAm signatures of this disorder. Recently, an epigenome-wide association study of monozygotic twins identified an association between DNAm status in the KLK8 (neuropsin) promoter region and severity of depression symptomatology. Methods In this study, we aimed to investigate: (i) if blood DNAm levels, quantified by pyrosequencing, at two CpG sites in the KLK8 promoter are associated with depression symptomatology and depression diagnosis in an independent clinical cohort and (ii) if KLK8 DNAm levels are associated with depression, postpartum depression, and depression symptomatology in four independent methylomic cohorts, with blood and brain DNAm quantified by either MBD-seq or 450 k methylation array. Results DNAm levels in KLK8 were not significantly different between depression cases and controls, and were not significantly associated with any of the depression symptomatology scores after correction for multiple testing (minimum p value for KLK8 CpG1 = 0.12 for ‘Depressed mood,’ and for CpG2 = 0.03 for ‘Loss of self-confidence with other people’). However, investigation of the link between KLK8 promoter DNAm levels and depression-related phenotypes collected from four methylomic cohorts identified significant association (p value < 0.05) between severity of depression symptomatology and blood DNAm levels at seven CpG sites. Conclusions Our findings suggest that variance in blood DNAm levels in KLK8 promoter region is associated with severity of depression symptoms, but not depression diagnosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01184-5.
Collapse
|
48
|
Rivero O, Alhama-Riba J, Ku HP, Fischer M, Ortega G, Álmos P, Diouf D, van den Hove D, Lesch KP. Haploinsufficiency of the Attention-Deficit/Hyperactivity Disorder Risk Gene St3gal3 in Mice Causes Alterations in Cognition and Expression of Genes Involved in Myelination and Sialylation. Front Genet 2021; 12:688488. [PMID: 34650588 PMCID: PMC8505805 DOI: 10.3389/fgene.2021.688488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022] Open
Abstract
Genome wide association meta-analysis identified ST3GAL3, a gene encoding the beta-galactosidase-alpha-2,3-sialyltransferase-III, as a risk gene for attention-deficit/hyperactivity disorder (ADHD). Although loss-of-function mutations in ST3GAL3 are implicated in non-syndromic autosomal recessive intellectual disability (NSARID) and West syndrome, the impact of ST3GAL3 haploinsufficiency on brain function and the pathophysiology of neurodevelopmental disorders (NDDs), such as ADHD, is unknown. Since St3gal3 null mutant mice display severe developmental delay and neurological deficits, we investigated the effects of partial inactivation of St3gal3 in heterozygous (HET) knockout (St3gal3±) mice on behavior as well as expression of markers linked to myelination processes and sialylation pathways. Our results reveal that male St3gal3 HET mice display cognitive deficits, while female HET animals show increased activity, as well as increased cognitive control, compared to their wildtype littermates. In addition, we observed subtle alterations in the expression of several markers implicated in oligodendrogenesis, myelin formation, and protein sialylation as well as cell adhesion/synaptic target glycoproteins of ST3GAL3 in a brain region- and/or sex-specific manner. Taken together, our findings indicate that haploinsufficiency of ST3GAL3 results in a sex-dependent alteration of cognition, behavior and markers of brain plasticity.
Collapse
Affiliation(s)
- Olga Rivero
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Valencia, Spain
| | - Judit Alhama-Riba
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Hsing-Ping Ku
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Matthias Fischer
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Gabriela Ortega
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Péter Álmos
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - David Diouf
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Daniel van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany.,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
49
|
Buck JM, Yu L, Knopik VS, Stitzel JA. DNA methylome perturbations: an epigenetic basis for the emergingly heritable neurodevelopmental abnormalities associated with maternal smoking and maternal nicotine exposure†. Biol Reprod 2021; 105:644-666. [PMID: 34270696 PMCID: PMC8444709 DOI: 10.1093/biolre/ioab138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/29/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Maternal smoking during pregnancy is associated with an ensemble of neurodevelopmental consequences in children and therefore constitutes a pressing public health concern. Adding to this burden, contemporary epidemiological and especially animal model research suggests that grandmaternal smoking is similarly associated with neurodevelopmental abnormalities in grandchildren, indicative of intergenerational transmission of the neurodevelopmental impacts of maternal smoking. Probing the mechanistic bases of neurodevelopmental anomalies in the children of maternal smokers and the intergenerational transmission thereof, emerging research intimates that epigenetic changes, namely DNA methylome perturbations, are key factors. Altogether, these findings warrant future research to fully elucidate the etiology of neurodevelopmental impairments in the children and grandchildren of maternal smokers and underscore the clear potential thereof to benefit public health by informing the development and implementation of preventative measures, prophylactics, and treatments. To this end, the present review aims to encapsulate the burgeoning evidence linking maternal smoking to intergenerational epigenetic inheritance of neurodevelopmental abnormalities, to identify the strengths and weaknesses thereof, and to highlight areas of emphasis for future human and animal model research therein.
Collapse
Affiliation(s)
- Jordan M Buck
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO, USA
| | - Li Yu
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA
| | - Valerie S Knopik
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO, USA
| |
Collapse
|
50
|
Shirvani-Farsani Z, Maloum Z, Bagheri-Hosseinabadi Z, Vilor-Tejedor N, Sadeghi I. DNA methylation signature as a biomarker of major neuropsychiatric disorders. J Psychiatr Res 2021; 141:34-49. [PMID: 34171761 DOI: 10.1016/j.jpsychires.2021.06.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/27/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023]
Abstract
DNA methylation is a broadly-investigated epigenetic modification that has been considered as a heritable and reversible change. Previous findings have indicated that DNA methylation regulates gene expression in the central nervous system (CNS). Also, disturbance of DNA methylation patterns has been associated with destructive consequences that lead to human brain diseases such as neuropsychiatric disorders (NPDs). In this review, we comprehensively discuss the mechanism and function of DNA methylation and its most recent associations with the pathology of NPDs-including major depressive disorder (MDD), schizophrenia (SZ), autism spectrum disorder (ASD), bipolar disorder (BD), and attention/deficit hyperactivity disorder (ADHD). We also discuss how heterogeneous findings demand further investigations. Finally, based on the recent studies we conclude that DNA methylation status may have implications in clinical diagnostics and therapeutics as a potential epigenetic biomarker of NPDs.
Collapse
Affiliation(s)
- Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C., Tehran, IR, Iran.
| | - Zahra Maloum
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C., Tehran, IR, Iran.
| | - Zahra Bagheri-Hosseinabadi
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Natalia Vilor-Tejedor
- BarcelonaBeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Carrer Wellington 30, 08005, Barcelona, Spain; Center for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain; Erasmus University Medical Center, Department of Clinical Genetics, Rotterdam, the Netherlands; Pompeu Fabra University, Barcelona, Spain.
| | - Iman Sadeghi
- BarcelonaBeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Carrer Wellington 30, 08005, Barcelona, Spain; Center for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.
| |
Collapse
|